
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Journal of Business and Technology, 2005-10

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=ba3eeb35-0c80-4033-8f1a-c1dddb1a7c37

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ba3eeb35-0c80-4033-8f1a-c1dddb1a7c37

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Realizing agile workflow with DeFleX to support adaptive business

processes
Liu, Sandy; Spencer, Bruce; Adsett, C.; Bernardi, A.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Realizing Agile Workflow with DeFleX to

Support Adaptive Business Processes *

Liu, S., Spencer, B., Adsett, C., and Bernardi, A.
October 2005

* published in the Journal of Business and Technology. Atlantic Academic

Press. ISSN 1712-1116. October 2005. NRC 48486.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Realizing Agile Workflow with DeFleX to Support Adaptive Business Processes

Connie Adsett1

1Faculty of Computer Science

University of New Brunswick

Fredericton, New Brunswick, Canada

Connie.Adsett@unb.ca

Ansgar Bernardi2

2The German Research Center

for Artificial Intelligence GmbH

Kaiserslautern, Germany

bernardi@dfki.uni-kl.de

Sandy Liu and Bruce Spencer1,3

3Institute for Information Technology – e-Business

National Research Council of Canada, Fredericton, New Brunswick, Canada

{Sandy.Liu,Bruce.Spencer}@nrc.gc.ca

Abstract

An agile workflow within an organization’s information

system allows processes to be defined as they are being per-

formed. It requires general knowledge about the organi-

zation to be dynamically combined with specific informa-

tion about a current workflow. This information, as well

as the roles of agents involved, is declared in RuleML so

that inferences can drive the workflow. We describe a use

case of a bug tracking system where agents need help to

decide where to send a document next. DeFleX (Declar-

ative Flexible XML routing) is a prototype implementation

of this architecture using standard Web Services technol-

ogy and an open source inference engine, jDREW. DeFleX

uses an often-ignored feature of SOAP, allowing intermedi-

ate locations to be dynamically determined, to realize agile

workflows.

1 Introduction

Business process modeling and workflow systems are

well-suited to handle processes which are repetitive by na-

ture, where the work in question can be modeled a priori,

and if information needs and support opportunities are de-

termined once and for all. However, many interesting and

valuable work activities do not fit into this static scheme.

Static process models might even hinder the development

of the intended innovation. Distributed cross-organizational

workflows in dynamic and ad hoc cooperations are difficult

to model a priori, and complex but unique problems result

in complex but unique solutions, which do not justify the

effort of complete a priori modeling. The concept of agile

workflow is therefore introduced to handle incomplete pro-

cess models and to intertwine modeling and enactment of

workflows.

With its distributed and composable nature, the Web Ser-

vices architecture is considered to be suitable for realizing

agile workflow applications. SOAP, the core protocol that

enables Web Services, offers a lightweight approach for ex-

changing structured information in a distributed environ-

ment. In this paper, we utilize the extensibility of the SOAP

header to assemble agile workflows, in which SOAP inter-

mediaries are used to model agents or nodes in workflows

and the path for message exchange signifies the change of

the responsibility among participating agents. To distin-

guish agile workflows from static ones, the complete mes-

sage routing path is not specified until run-time.

We proposed a Web Services based architecture enabling

just-in-time service composition in accordance with the

context and content. A deductive inference engine is em-

ployed to perform reasoning services for all the participat-

ing agents, or nodes. In this architecture, an organization

can define a set of declarative processing rules as general

policy and allow insertion of specific processing rules and

facts at runtime by each intermediary node. A prototype De-

FleX(Declarative Flexible XML routing) is implemented to

demonstrate how dynamic message passing is made possi-

ble in an agile workflow environment.

We describe a simplified use case based on a bug track-

ing scenario where the initial document is a bug report with

incrementally appended information about the attempts to

fix the bug, including any test activities that were subse-

quently performed, a log history of contributing personnel

and affected modules, and ad hoc rules and facts inserted

by agents to express routing information used for directing

this document to appropriate agents, and anything else dy-

namically determined to be relevant.

Following some background on agile workflows, SOAP

and WS-Routing, and reasoning with RuleML, the paper

describes the DeFleX architecture, its application in the bug

tracking use case, and the state of the current DeFleX proto-

type. After related proposals are discussed, the final section

combines conclusions and future work.

2 Background

2.1 Agile Workflow

The modeling of business processes and their enactment

in workflow systems is a well-established approach. Ex-

plicit process models facilitate the documentation of busi-

ness work activities, represent crucial know-how, and are

the basis for reflection and re-organization of work prac-

tices. Their enactment in workflow systems results in im-

proved control and traceability of work, guaranteed ob-

servation of approved processes, and various possibilities

for automatic and semi-automatic support like information

routing, task and role assignment, load balancing, or log-

ging and archiving services.

Furthermore, process models and workflow instances

can be seen as an explicit representation of the encompass-

ing application context of individual tasks in an enterprise.

While the context is exploited to adequately describe, store,

and retrieve information, the current workflow may trigger

automatic information delivery to the user or similar proac-

tive services. The paradigm of Business Process-Oriented

Knowledge Management relies on this basis to support ac-

quisition, utilization, and distribution of knowledge in mod-

ern enterprises [8, 15, 10].

Nevertheless, knowledge-intensive processes typically

require solving difficult problems and so the solution and

the solution process are invented and evolved in parallel

[11, 13]. Thus, task sequences are not known in advance,

and details of the work are not repetitive by nature. To re-

tain the advantages of process-oriented knowledge support

and workflow approaches in face of these ill-structured but

interesting work activities, the FRODO project [20, 9] de-

veloped the notion of agile workflows (also called weakly

structured or weak workflow) as an approach to handle in-

complete process models and to intertwine modeling and

enactment of workflows. This approach requires only a

minimum of a priori modeling workload and imposes min-

imal restrictions on the knowledge worker.

The design of agile workflows is characterized by

• Support for lazy and late modeling: Work may start

with an abstract and incomplete process description

which is completed and refined during the actual work

when necessary.

• Interleaving of modeling and execution: In order to

enable the dynamic refinement during work, the in-

dividual workflow instance (which reflects a process

model) has to be accessible for modification at run-

time. The traditional workflow’s separation between

modeling phase and execution phase is thus blurred.

• Hierarchical refinement of task descriptions: The most

important way to realize the late/lazy modeling of the

workflow is to allow the replacement of some abstract

process step by a more detailed sub-process at run-

time. This approach reflects the phenomenon that

knowledge-intensive activities are often well-known

on an abstract level but all details have to be worked

out carefully in the individual case.

• Rich explicit process logic: The interdependence be-

tween different work steps in a knowledge-intensive

work process might depend on conditions which are

not completely known a priori. Thus the traditional

modeling of task sequences may not be sufficient. In-

stead, constraint-like descriptions of pre- and post-

conditions of individual tasks and appropriate reason-

ing mechanisms allow for the dynamic configuration

of the work process at runtime.

The restriction to hierarchical refinement preserves the

guarantees and assertions of the given abstract process

model. Beyond that, the agile workflow allows for arbitrary

modifications at runtime. This allows total modeling flex-

ibility but reduces the guarantee which the process model

can offer: In extreme cases, the pre-given models are re-

duced to references or examples which may be copied but

which are not binding for any given instance. Given these

characteristics, the concept of agile workflows balances the

need for formal representation (which enables automatic

support) against reduced costs for modeling and increased

flexibility. Furthermore, the interleaving of modeling and

execution leads to dual results of a knowledge work pro-

cess: Besides the intended solution, an individually-tailored

work process is created and retained. Such individual pro-

cess knowledge is a valuable basis for the build-up of solid

organizational know-how.

2.2 SOAP and WS­Routing

The SOAP[2] protocol, recommended by the W3C as the

means of communication between Web services[7], offers a

lightweight approach for exchanging structured information

in a distributed environment. Often SOAP is used merely

to carry a payload from a message sender directly to the

ultimate receiver. The specification, however, allows for

the use of intermediaries along the message path between

sender and ultimate receiver. In addition, the actor attribute

2

can be used in a SOAP header to indicate which part of

a message is intended for a given SOAP receiver. These

intermediaries may be actual deployed Web Services them-

selves, or they may be another resource as long as they can

be identified by a URI and are capable of receiving, pro-

cessing, and sending SOAP messages. They must act on

the SOAP message received and then pass the SOAP enve-

lope on to the next node in the message path, which may be

another intermediary or the ultimate receiver.

The ability to use intermediaries along the message

path provides a flexible mechanism for service composi-

tion where one individual Web Service or SOAP node is

often incapable of performing all tasks desired by the ini-

tial message sender. The potential set of distributed value-

added services provided by an active SOAP intermediary

could be many such as security services, annotation ser-

vices, and content manipulation services[3]. This feature

makes a SOAP node a sensible unit to compose a agile

workflow.

Despite the implied SOAP message model, SOAP does

not define any routing or forwarding semantics correspond-

ing with a message path. For example, an initial sender

A can indicate which part of the message is for node B,

C, and D, but it cannot specify the message is intended to

travel from A, via B, via C, then to D. The Web Services

Routing protocol (WS-Routing) fills in this gap by defin-

ing a message path model for exchanging SOAP messages

from an initial sender to an ultimate receiver, potentially via

a set of intermediaries[16]. WS-Routing is also transport

independent. The routing path can be clearly expressed de-

spite the use of different transport protocols (such as HTTP,

SMTP, etc.) which SOAP can travel over. In addition, it

also provides an optional reverse message path that enables

two-way messaging. This feature potentially facilitates roll

back procedures to be defined in an agile workflow.

2.3 Rule­based Systems, Representation of Rules,
and Reasoning with Rules

Each organization, large or small, has some general poli-

cies either for codifying or streamlining the business pro-

cesses. While they may not be written down explicitly,

a rule-based system allows these policies and tacit human

knowledge to be captured as a set of declarative rules. Rules

can also be built incrementally and each rule can be altered

independently when a certain policy has changed. A declar-

ative approach to agile workflow allows them to be flexible,

easily explained, and reusable.

While SOAP is an XML protocol, RuleML[5] is devel-

oped as the canonical Web language for rules using XML

markup. RuleML covers the entire rule spectrum, from

derivation rules to transformation rules to reaction rules.

RuleML can thus specify queries and inferences in ontolo-

gies, mappings between ontologies, and dynamic behaviors

of workflows, services, and agents. In this paper we use

RuleML version 0.85 to express general company policies,

case specific policies, and facts with regard to the context of

a specific message.

To make sense of the rules an inference engine is

required. The open source jDREW (java Deductive

Reasoning Engine for the Web)[1, 18] provides an applica-

tion programming interface to both a bottom-up and a top-

down reasoning engine. Our DeFleX prototype interfaces

with the bottom-up reasoning module to derive appropriate

information for handling a specific message.

3 Realizing Agile Workflow with DeFleX

The use of SOAP intermediaries along with WS-Routing

specification enables workflows to be executed through

SOAP messages. Currently, there exists the capability to

make use of SOAP intermediaries along the message path,

but there is little emphasis on developing a standard method

for determining which intermediaries to send the SOAP

message to if they are not known by the initial message

sender. Being able to determine intermediaries at later

points in the message path is crucial in situations where the

message path corresponds to agile weak workflow instead

of a strong workflow. In this section, we propose a method

and an implementation, namely DeFleX, to realize agile

workflow. There are two key concepts in our approach; one

is the usage of SOAP intermediaries to resemble operation

nodes in a workflow, and the other is rule based routing for

directing messages at each hop. At least one router that has

such reasoning capability must be defined in each DeFleX

system.

For our use case we consider a software development

company that offers clients the capability to report bugs and

have them dealt with through SOAP enabled agile work-

flow. These bug report messages are received by a Qual-

ity Controller(QC) who then determines the type of bug re-

ported, sets the priority, and sends it to the appropriate de-

veloper. The developer then attempts to fix the bug which,

in some cases, may involve sending the bug information to

other developers known to them. The developer then sends

the message to a tester who tests the fix developed. Based

on the observed result, the tester will report back to the QC

with an okay flag or with an indication that the bug is not

yet fixed. The workflow will be terminated when the bug is

fixed and testing is successful. This should include regres-

sion testing to detect whether any new bug is introduced

with the current fix. If testing does not succeed, the tester

will pass the report back to the QC and who then triggers

another workflow cycle. This model is an example of an

agile workflow because the complete message path cannot

be outlined by the client sending the SOAP message.

3

Since workflows are mostly defined within an organiza-

tion, we assume that there exists a commonly agreed upon

ontology that all the participating parties are aware of; thus

the terminology used in encoding the processing rules and

facts can be understood by all parties without further trans-

lation. If this is not the case then semantic integration of the

ontologies may be needed, and deferred for future work. To

take advantage of previous efforts in process modeling, a

company may specify a set of generic processing rules that

defines the general guideline for workflow management.

For instance, in the bug report and debugging workflow a

high level processing rule can be “All bug fixes must go

through a tester”, which in turn can be encoded1 as:

fixedBug(X):-

verified(tester,BugFix(X)).

In order to reduce the size of each SOAP message, we use

a URL that points to a file storing these global processing

rules to be embedded in a SOAP message instead of the

whole set of rules. As agile workflows should support dy-

namic refinement of the work at runtime, each SOAP in-

termediary should be able to add more specific processing

rules and facts that are known only locally to the current

node. Again these ad hoc rules can be stored in a file and

be referred to as a file pointer within the SOAP message.

Figure 1 depicts an abstract message path. There is a

critical inference service, the DeFleX router, introduced

here. This inference service will perform the following

tasks when a SOAP message is received:

1. Retrieve the generic policy file, if specified;

2. Retrieve the specific policy file(s), if specified;

3. Unpack the rules and facts embedded in the SOAP

header;

4. Infer which agent or node the message should be

routed to next;

5. Construct a new SOAP message indicating the next

node in the message path according to the inferred re-

sults.

6. Route this newly constructed SOAP message back to

the agent who sent the original message forward.

As Figure 1 shows, the DeFleX router provides inference

services to process all the declarative information, thus free-

ing all the other intermediaries from knowing how to pro-

cess rules.

It is also assumed that the initial sender either knows the

next hop in the workflow or some rules and facts about the

1To save space, rules are represented in Prolog as oppose to RuleML in

this paper, although we use RuleML in our prototype implementation.

Initial
Sender

Ultimate
Receiver

DeFleX
Router

Inter-
mediary

Some of the message
path may be

unknown

Figure 1. An Abstract Message Path with

SOAP intermediaries

message to be sent to the inference service. These rules

and facts are encapsulated within a SOAP header. By pro-

cessing them with an inference engine, the next node in the

message path can be determined. At each node more infor-

mation about the message and its path is revealed based on

the context of the node itself and its ability to gather rel-

evant information from the content of the SOAP message.

The message path may then be created dynamically, as the

SOAP envelope is passed along the path, thus facilitating an

agile workflow.

Referring back to the use case, the client only need to

be aware of the first step in the path, the QC or the DeFleX

router. The software company can even mask this informa-

tion from the end user by providing an client software, with

which the client only needs to press a button to send the bug

report to the destination that is pre-defined by the user’s ap-

plication.

The facts the client software would be able to include

could be:

currentLocation(user).

messageID(message1).

about(message1,bug).

The first fact states that the current location of the message

is with a specific user, the second fact gives the message

an ID number as message1, and the last fact states that

the message1 is about a bug.

Assuming there exists a file that contains a set of general

policy rules in terms of dealing with a bug fix indicating:

goTo(Next) :-

currentLocation(Current),

nextNode(Current,Next).

nextNode(user, QC) :-

messageID(X),

about(X,bug).

The first rule says if the current location is Current and

the next node of Current is Next, then go to Next.

Please note that the terms starting with a capital letter such

as Current and Next are variables. The second rule says

4

the next node of the user is QC if a given message ID is

about a bug.

The QC, with its capabilities and knowledge of some

specific bug fix routine, can then add some rules to the set

of processing rules stated by including:

nextNode(QC,developerComp) :-

messageID(X),

about(X,compilers).

nextNode(QC,developerUI) :-

messageID(X),

about(X,userInterface).

These rules specify how the bug report should be routed. If

the bug is about compilers, then pass the message from

QC to a specific compiler developer, developerComp; if

the bug is about the user interface, then pass the message

from QC to a specific GUI developer, developerUI.

The QC can also modify the facts to read:

currentLocation(QC).

messageID(message1).

about(message1,bug).

about(message1,compilers).

With this method the message path from the user to the

tester can be dynamically created.

Because SOAP itself is an XML-based protocol, rules

and facts can be naturally expressed in RuleML. In order to

determine where to direct the SOAP message to next, the

intermediary must be able to also process the RuleML con-

tained in the header and use the inferred facts (e.g. the query

result of goTo) to modify the message path. Although this

may be feasible for some intermediaries, it is unlikely that

all intermediaries are capable of doing this independently.

For this purpose, the DeFleX (Declarative Flexible XML)

router is designed to provide inference services. The fol-

lowing section outlines its implementation details.

3.1 Current Prototype

In the current prototype, the DeFleX router acts as a

SOAP intermediary itself. The intermediary which is in-

capable of determining the next node forwards the SOAP

message to the router after having added any known rules

and facts to the RuleML header. The router then reads the

RuleML header, processes the rules and facts, and obtains

inferences through the reasoning engine jDREW. It does not

modify the header in any way, but through the results from

jDREW, determines the next node in the message path. We

created a SOAP header following the WS-Routing specifi-

cation to express the message path. The details of a fwd

element in WS-Routing’s path can be modified to allow the

message path to be created dynamically by intermediaries.

Unfortunately, both WS-Routing and the SOAP inter-

mediary have not been widely supported by many SOAP

implementations albeit some commercial engines are avail-

able. We have chosen the highly configurable open source

Axis as our SOAP engine, so that it could be customized to

our needs.

The architecture of Axis is based on the concept of han-

dlers and chains. A handler is described as “a reusable class

which is responsible for processing a MessageContext in

some custom way” and a chain is a group of related handlers

which are invoked sequentially[6]. Axis has three levels of

operation: transport, global, and service. Handlers, as well

as chains, can be deployed at each level. The transport level

takes care of all processes which relate to the transport the

SOAP message was sent over. The global level handles all

processes relating to general SOAP issues. The service level

is responsible for processes relating to the SOAP message

for a specific Web Service. Intermediary handlers must be

deployed at the global level because they are not attached

to an individual Web Service, therefore this is the location

that the DeFleX handlers are deployed. At the global level,

they can access all SOAP messages received by the server

and not just those addressed to a specific service.

The DeFleX router implementation is broken into two

handlers; one to deal with the header containing the mes-

sage path rules, and one to deal with the WS-Routing

header. When SOAP messages are received by the server

they are checked for the related headers and processed if

they are present. The handler which operates on the rule

and fact header interacts with jDREW in order to obtain

the necessary inferences. From these inferences, the han-

dler makes the necessary modifications to the WS-Routing

header. The message is then sent back to the node which

forwarded the message to the DeFleX router and from there

it can be forwarded to the next applicable node, as spec-

ified in the WS-Routing header. If neither of these head-

ers are present in a SOAP message received by the Axis

SOAP server, the DeFleX functionality is not triggered and

the message is handled as befits a SOAP message without

path rules and facts.

In the case of the software development company de-

scribed earlier, the DeFleX router is necessary to direct the

SOAP message from the QC to the correct developer if the

QC was not able to process RuleML itself. After process-

ing the rules and facts with jDREW, the DeFleX router

can determine that the next node in the message path is

developerComp because the message is a bug about

compilers. The QC agent can then modify the path

header to state:

<path>

<action>

http://www.sftwrco.org/reportBug

</action>

5

<fwd>

<via>

soap://www.sftwrco.org/developerComp

</via>

</fwd>

</path>

The message would continue to be passed along the path

(being sent to the DeFleX router for further steps as neces-

sary) until the bug is fixed and fully tested.

4 Discussion and Related Work

While there is discussion about the need for the capabil-

ity to express agile workflows (or dynamic message paths)

using SOAP, what is often overlooked is where the infor-

mation necessary to determine nodes in the workflow is lo-

cated and how it is specified. It seems that most often the

SOAP router is expected to have all required information

within itself and not require input from external sources.

Although this may be feasible in some instances, there are

situations (such as the software development company ex-

ample) where the information may need to be different for

individual SOAP messages. For example, rules and facts

about a message path may change for messages depending

on the time they were sent at or other characteristics of its

context. In such a case, it is more logical to provide the

information needed for routing within the SOAP message

itself because it is unique to that message.

The WS-Referral Draft[12] in the Global XML Archi-

tecture Specifications (of which WS-Routing is also a part)

offers a solution for containing information about the mes-

sage path within referral statements. These can either be

sent separately from the SOAP message or with the message

as an additional header. However, the information about the

path which can be contained in such a statement is limited.

A paraphrased sample WS-Referral statement, provided in

the Web Services Referral Protocol Draft, states “For any

SOAP actor name matching the set of SOAP actors listed

in the for element, if the set of conditions listed in the if

element is met and hence the statement is satisfied, then go

via one of the SOAP routers listed in the go element.” [12]

The conditions which may be listed are currently limited

to ttl(time-to-live) and invalidates. Although further con-

ditions may be specified, there is no provision for further

rules and facts to be provided apart from those listed inde-

pendently in the if element. The referral statement basi-

cally consists of one rule and the recipient must be able to

provide the necessary facts about the message and use this

combined with the given rule to determine what action to

take. In short, WS-Referral provides a solution to dynamic

routing, but it does not go quite far enough. Only being able

to specify one rule at a time and not having the capability to

provide any facts constricts the flexibility of the routing and

limits its scope of use.

Other XML content-based routing solutions[14, 19, 17]

are often based on XPath [21]. XPath provides an effec-

tive means for users to express the node(s) of interest within

XML documents. Hence, XPath based XML routing solu-

tions often require a user to specify explicit XPath expres-

sions to be matched against received XML documents. In

other words, users have to know the structure or schema

of the documents to be received. This introduces a new

problem when the users don’t know what XML documents

to expect or when the set of available documents becomes

too large to manage by the user. Moreover, since XPath

knows nothing about the message path, the destination the

match should be sent to cannot be specified with XPath.

Additional resources are needed in order to route the fil-

tered or aggregated documents to the next node. DeFleX, on

the other hand, supports message routing natively through

SOAP intermediaries and WS-Routing. Each header block

can be targeted to different actors(nodes), and XPath ex-

pressions can be easily inserted in the header to indicate

which block in the SOAP payload should be processed.

Nonetheless there are still issues regarding the De-

FleX router architecture, message path expression, com-

mon predicate names, etc. that have not been fully dealt

with. Although a DeFleX prototype has been constructed,

we must consider alternative implementations before being

sure of which architecture is the best suited to the task. Be-

cause the prototype treats the router as a SOAP handler, it

is difficult to expose its functionality to the public as a Web

Service. An alternative would be to expose the router as a

web service, but this also has drawbacks. The node using

the router would have to then extract information from the

SOAP message it received and construct a new SOAP mes-

sage to send to the router. This requires more knowledge on

the part of the individual nodes in the message path. This

relates to the issue of simplicity. As much as possible, the

DeFleX router must be straightforward and intuitive to be-

come a practical solution to the industry. It should not be

difficult for a given node to add contextual rules and facts

about the message and its path and then send the message

to the router to determine the next node in the path. There

must also be a common manner of stating the message path

which can be understood by the participating sender, inter-

mediaries, Web Services, and router. Currently we assume

such problems are being dealt with by using a commonly

agreed upon ontology.

The DeFleX prototype uses WS-Routing but this is not

currently the common method of stating a message path. At

present, SOAP is usually dependant on its transport proto-

col to handle message path data. In addition, neither WS-

Routing nor RuleML has been ratified by standard bodies,

although efforts for standardizing a rule language for the

6

semantic web are well underway [4].

There are also issues surrounding how to handle the pos-

sibility of the wrong intermediaries modifying the SOAP

message (and potentially the message path) that need to be

looked after. Fortunately, there are a set of security stan-

dards and proposals that are intended to provide better so-

lutions for XML and Web Service security. In the DeFleX

application, one basic step to improve the integrity of a mes-

sage could be mandating each intermediary to sign the mes-

sage.

5 Conclusion and Future Work

The need to have a dynamic message path from the

sender to an ultimate web service via intermediaries arises

in information systems that must adapt to changes in work-

flows, as workflows are invented by participants dealing

with ad hoc cases. This need is only now being addressed

by new flexible agile workflow systems. The DeFleX router

realizes one solution based on standard web services and

open source technology. Information, expressed in RuleML

rules and facts, describes the contents of a SOAP message,

the location of the current agent, other relevant context in-

formation, the path taken by the message to get to this point,

general knowledge about the participating agents and their

capabilities, the organization’s general policy on workflow,

and any specialization of it that might have been necessary

to suit this specific message. This information is given to

an inference service, the DeFleX router, to dynamically de-

termine the next node in the path, and it is also stored with

the message to create a history from which a trace analysis

can be done, and ad hoc workflows can be extracted as can-

didates for general workflow policies. Yet without common

naming conventions, inference cannot be drawn. While our

use case assumes a common ontology, some semantic inte-

gration of terminology culminating in a common ontology

is required. This is not a focus of this paper, but reserved for

future work which may of interested to the Semantic Web

community.

References

[1] A Java Deductive Reasoning Engine for the Web.

http://www.jdrew.org. Accessed 2004 Jan 12.

[2] SOAP Version 1.2 Part 0: Primer.

http://www.w3.org/TR/2003/

REC-soap12-part0-20030624/. Accessed

2004 Jan 12.

[3] SOAP Version 1.2 Part 1: Messaging Framework.

http://www.w3.org/TR/soap12-part1/

\#forwardinter. Accessed 2004 Feb 20.

[4] SWRL: A Semantic Web Rule Language Combin-

ing OWL and RuleML. http://www.daml.org/

2003/11/swrl/. Accessed 2004 March 6.

[5] The Rule Markup Initiative RuleML. http://www.

ruleml.org. Accessed 2004 Jan 12.

[6] KnowNow Solution Overview. http://www.

knownow.com, 2002. Accessed 2004 Feb 18.

[7] Axis User’s Guide. http://ws.apache.org/

axis/java/user-guide.html, 2003. Ac-

cessed 2004 Jan 12.

[8] Andreas Abecker, Ansgar Bernardi, Knut Hinkel-

mann, Otto Kühn, and Michael Sintek. Toward a Tech-

nology for Organizational Memories. IEEE Intelligent

Systems, 13(3):40–48, June 1998.

[9] Andreas Abecker, Ansgar Bernardi, and Ludger van

Elst. Agent Technology for Distributed Organizational

Memories - The FRODO project. In 5th Interna-

tional Conference on Enterprise Information Systems

– ICEIS 03, volume 2, pages 3–10, Angers, France,

April 23-26 2003.

[10] Andreas Abecker, Knut Hinkelmann, Heiko

Maus, and Heinz-Jürgen Müller, editors.

Geschäftsprozessorientiertes Wissensmanagement.

xpert.press. Springer Verlag, June 2002.

[11] S. Buckingham Shum. Negotiating the Construc-

tion and Reconstruction of Organisational Memories.

Journal of Universal Computer Science, 3(8):899–

928, 1997. Auch als Report KMI-TR-56, Knowl-

edge Media Institute, The Open University, Mil-

ton Keynes, UK. http://kmi.open.ac.uk/

publications/techreports.html.

[12] E. Christensen, D. Levin, S. Lucco, and H. F. Nielsen.

Web Services Referral Protocol (WS-Referral).

http://msdn.microsoft.com/library/

en-us/dnglobspec/html/ws-referral.

asp%, 2001. Accessed 2004 Jan 12.

[13] Thomas H. Davenport, Sirkka L. Javenpaa, and

Michael C. Beers. Improving Knowledge Work Pro-

cesses. Sloan Management Review, 37(4):53–65,

Summer 1996.

[14] W3C Web Services Architecture Working Group.

Web Services Glossary. http://www.w3.org/

TR/2003/WD-ws-gloss-20030808/. Ac-

cessed 2004 Jan 12.

[15] H. Maus. Workflow Context as a Means for Intelli-

gent Information Support. In Akman,V. and Bouquet,

7

P. and Thomason, R. and Young, R.A. (Eds.): Mod-

eling and Using Context. 3rd International and Inter-

disciplinary Conference, CONTEXT’01, Dundee, UK,

Proceedings, volume 2116 of Lecture Notes in Artifi-

cial Intelligence. Springer, 2001.

[16] H. F. Nielsen and S. Thatte. Web Services

Routing Protocol (WS-Routing). http:

//msdn.microsoft.com/library/en-us/

dnglobspec/html/ws-routing.asp, 2001.

Accessed 2004 Jan 12.

[17] PolarLake. PolarLake Technology Overview

White Paper. http://www.polarlake.

com/resources/whitepapers/

technologyoverview/4.sht%ml, 2004.

Accessed 2004 Feb 18.

[18] Bruce Spencer. The Design of j-DREW: a De-

ductive Reasoning Engine for the Web. In Kung-

Kiu Lau Manuel Carro, Claudio Vaucheret, editor,

First Colognet Workshop on Component-based Soft-

ware Development and Implementation Technology

for Computational Logic Systems, pages 155–166.

Universidad Politécnica de Madrid, September 2002.

CLIP4/02.0.

[19] Todd Sundsted. Using the JMS API and XML in

Content-based Routing. 2000. Accessed 2004 Feb

18.

[20] Ludger van Elst, Felix-Robinson Aschoff, Ansgar

Bernardi, Heiko Maus, and Sven Schwarz. Weakly-

structured workflows for knowledge-intensive tasks:

An experimental evaluation. In Proceedings of the

Workshop Knowledge Management for Distributed

Agile Processes: Models, Techniques, and Infras-

tructure (KMDAP2003) at 12th IEEE International

Workshops on Enabling Technologies: Infrastructures

for Collaborative Enterprises (WETICE-2003), pages

340–345. IEEE Press, 2003.

[21] W3C. XML Path Language (XPath) Version 1.1.

http://www.w3.org/TR/xpath, 1999. Ac-

cessed 2004 Jan 12.

8

