
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

ACE '05: Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology, pp. 19-26, 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=b97e570f-12fc-4483-a9c7-f612550ca465

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b97e570f-12fc-4483-a9c7-f612550ca465

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1145/1178477.1178480

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Natural interaction with virtual objects using vision-based six DOF

sphere tracking
Bradley, D.; Roth, Gerhard

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Natural Interaction with Virtual Objects

Using Vision-Based Six DOF Sphere

Tracking*

Bradley, D., and Roth, G.
June 2005

* published in Advances in Computer Entertainment Technology. June

2005. NRC 48212.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Natural Interaction with Virtual Objects Using
Vision­Based Six DOF Sphere Tracking

Derek Bradley
School of Computer Science

Carleton University
Ottawa, Canada

derek@derekbradley.ca

Gerhard Roth
Institute for Information Technology

National Research Council of Canada
Ottawa, Canada

Gerhard.Roth@nrc­cnrc.gc.ca

ABSTRACT
A common task in computer entertainment is the ability
to interact with virtual 3D objects. Interacting with these
objects using standard computer input devices such as a
mouse and keyboard can often be a difficult task. For this
reason, Tangible User Interfaces (TUIs) were developed to
allow more natural interaction with complex virtual objects
by manipulating physical objects in a familiar way. Ap-
plying the movements of a physical object to control the
movement of a virtual object is often done by embedding
devices in the physical object, or by passively tracking the
object. We present a new TUI system that includes a pas-
sive optical tracking method to determine the six degree-of-
freedom (DOF) pose of a sphere in a real-time video stream,
and then apply the pose to a virtual object. Our tracking
system is based on standard computer vision techniques and
applications of 3D geometry. The pose of the sphere is accu-
rately resolved under partial occlusions, allowing the object
to be manipulated by hand without a tracking failure. We
demonstrate the use of our TUI system to control virtual
3D objects in an interactive way, proving to be a useful tool
for computer entertainment applications.

1. INTRODUCTION
Natural interaction methods that consist of manipulating
real physical objects to control virtual entities are often
called Tangible User Interfaces (TUIs) [9, 4, 14]. For more
than thirty years, people have relied primarily on screen-
based text and graphics, combined with keyboards, mice
and other electronic devices to interact with computers. The
concept of manipulating more natural physical objects in the
form of TUIs to control computer data is an emerging field.
TUIs are important in computer entertainment as they pro-
vide a simple and natural way to interact with many appli-
cations such as real-time video games. TUI systems have
been developed using wired inertial tracking, electromag-
netic tracking, and wireless optical tracking systems.

We present a passive optical TUI system that operates by
resolving the full six degrees-of-freedom (DOF) pose of a
sphere from real-time video input. The six DOF pose is
comprised of the three DOF location and the three DOF
orientation of the sphere in the scene. We use a specially
marked ball as the sphere, and we compute the pose us-
ing standard computer vision techniques and applications
of 3D geometry. Our method correctly determines the pose
of the sphere even when it is partially occluded, allowing
the sphere to be manipulated by hand without a tracking
failure. We show how our technique can be used as a TUI
to control 3D objects in a virtual environment using natural
hand movements.

The remainder of this paper is organized as follows. Related
TUI systems and other sphere tracking techniques are out-
lined in Section 2. Our method to track a sphere in a real-
time video stream is described in Section 3. Section 4 shows
the results and analysis of our tracking method. Example
entertainment applications that make use of our technique
as a TUI are described in Section 5. Finally, we conclude
with a discussion in Section 6.

2. RELATED WORK
Three-dimensional input devices were first considered in the
late 1970s by Aish [1] and Frazer et al. [6]. These systems
use building blocks with embedded computation to deter-
mine the geometry of a tangible model, built from rigidly
connected blocks of known size and shape. Tangible user
interfaces have since evolved to include passive tracking, in
order to offer wireless 3D interaction without the require-
ment of embedded devices in the physical object. Most sim-
ilar to our approach, Fjeld and Voegtli [4] and Huang et
al. [9] develop a TUI that uses a passive optical tracking
method to determine the pose of the tangible object. Spe-
cial markers are placed on a physical cube and a camera
is used to track the cube in real-time. One disadvantage of
the system is that the tracking accuracy of the cube markers
is dependent on the angle between the marker-plane normal
vector and the camera. So as the cube is manipulated, track-
ing is not consistent. Also, the cube markers are prone to
tracking error during occlusions. Our TUI method is based
on sphere tracking to obtain a consistent computation of the
pose from any orientation, even in the presence of occlusions.
Sphere tracking consists of locating the perspective projec-
tion of the sphere on the image plane and then determining
the 3D position and orientation of the sphere from the pro-

jection. Since the projection of a sphere onto a plane is a
circle, the problem of locating circles in images is of interest.
The concept of finding circular objects and curves in images
has been studied for many years. In general, there are two
different types of algorithms for curve detection (typically
circles and ellipses) in images, those that are based on the
Hough transform [3, 15, 16], and those that aren’t [2, 10,
11, 12, 13]. It should be noted that this is not an exhaus-
tive list of circle detection methods, since the main focus of
this paper is not the circle detection technique. For sim-
plicity, we use a fast color-based detection method that is
less accurate than some previous methods, however our sys-
tem is not dependent on this technique so more accurate
methods could be applied. The problem of actual sphere
tracking has been less studied in previous work. The first
research on sphere detection in images was performed by
Shiu and Ahmad [13]. In their work, the authors were able
to find the 3D position (three DOF) of a spherical model in
the scene. Safaee-Rad et al. [12] also provided a solution to
the problem of 3D position estimation of spherical features
in images. Most recently, Greenspan and Fraser [7] devel-
oped a method to obtain the five DOF pose of two spheres
connected by a fixed-distance rod, called a dipole. Their
method resolves the 3D position of the spheres in the form
of 3 translations, and partial orientation in the form of 2
rotations in real-time.

Our method is based on tracking colored dots on a non-
planar surface. A similar approach was taken by Guenter
et al. in an application to capture 3D geometry of facial
expressions [8]. In their work, 182 fluorescent circular fidu-
cials of different colors are manually glued to an actor’s face
to provide sampling points in a recorded video image. The
method to track the colored circles in an input image is
similar to ours, however Guenter et al. make use of six cam-
eras to recover the 3D geometry and position of the face,
where our system makes use of the geometric symmetry of a
sphere and can recover the 3D position and orientation using
a single camera. As well, our system resides in a different
application domain.

To our knowledge, our method is the first optical method to
resolve the full six DOF pose of a sphere in a scene, using
a single camera in real-time. Since our technique is also
capable of handling partial occlusions, it can be used as a
TUI to control the position and orientation of 3D objects in a
virtual environment or computer entertainment application.

3. SPHERE TRACKING
Our method to track a sphere consists of a number of stan-
dard computer vision techniques, followed by several ap-
plications of mathematics and 3D geometry. Tracking the
sphere is divided into two phases, computing the sphere lo-
cation and computing the sphere orientation.

3.1 Pre­Processing
The sphere used for tracking is a simple blue ball. In or-
der to determine the orientation of the sphere, special dots
were added to its surface for detection. The dots are made
from circular green and red stickers, distributed over the
surface at random. Sixteen green, and sixteen red point lo-
cations were generated in polar co-ordinates, such that no
two points were closer (along the sphere surface) than twice

the diameter of the stickers used for the dots. This restric-
tion prevents two dots from falsely merging into one dot in
the projection of the sphere on the image plane. To deter-
mine the arc distance between two dots, first the angle, θ,
between the two locations and the center of the sphere was
computed as

θ = cos−1(sin(lat1) · sin(lat2) +

cos(lat1) · cos(lat2) · cos(|lon1 − lon2|)), (1)

where (lat1, lon1) is the first dot location, and (lat2, lon2) is
the second dot location in polar co-ordinates, and then the
arc length, α, was calculated as

α = θ · M, (2)

where M is the number of millimeters per degree along the
circumference of the sphere (which is also the radius of the
sphere). A valid point location is one where α is larger than
twice the sticker diameter (26 millimeters to be exact) when
compared to each of the other points.

Once the thirty-two latitude and longitude locations were
generated, the next step was to measure out the locations of
the dots on the physical ball and place the stickers accord-
ingly. Figure 1 shows the ball with the stickers applied to
the random dot locations.

Figure 1: Sphere to be tracked in the video stream.

In addition to the dot locations, the tracking process also
requires knowledge of the angle between each unique pair of
points (through the center of the sphere). Equation 1 was
used to compute the angle for each of the 496 pairs, and the
angles were stored in a sorted list.

3.2 Computing Location
Locating the sphere in a frame from a real-time video stream
is a two step process. First, the perspective sphere projec-
tion is located on the image plane. Then, from the projec-
tion in pixel co-ordinates, the 3D location of the sphere in
world co-ordinates is computed using the intrinsic parame-
ters of the camera.

The projection of a sphere onto a 2D plane is always a circle.
Since the ball was chosen to be a single color, the problem
is to find a blue circle in the input image. To solve this
problem we convert the input image from the Red-Green-
Blue (RGB) color space to the Hue-Saturation-Value (HSV)
color space [5]. The use of HSV space allows sphere tracking
under varying illumination conditions. The image, I, is then
binarized using the pre-computed hue value of the blue ball

as a target value. The binary image is computed as follows;

Bi =

8

<

:

0 if Ii < (T − ǫ)
0 if Ii > (T + ǫ)
1 otherwise,

(3)

where T is the target hue, and ǫ is a small value to generate
an acceptable hue window. In the special case that T−ǫ < 0,
the computation for the binary image takes into account
the fact that hue values form a circle that wraps around at
zero. From the binary image, the set of all contours are
computed. Since there are many contours found, the next
step is to filter out the ones that are not likely to be a
projection of a sphere. The process searches for the contour
that most closely approximates a circle; so all contours are
tested for size and number of vertices. Testing the size of
the contours, computed as the pixel area Ai occupied by
contour i, removes unwanted noise in the image. A contour
must occupy 1500 pixels in order to be processed further.
It is then assumed that any circle will contain a minimum
number of vertices, in this case eight. For each contour that
passes the above tests, the minimum enclosing circle with
radius ri is found, and then the following ratio is computed;

Ri =
Ai

ri

. (4)

For a circle, this ratio is a maximum. Therefore the con-
tour that maximizes Ri is chosen as the projection of the
sphere on the image plane, since that contour most closely
represents a circle. Figure 2 illustrates these steps to find
the projection.

If the perspective projection of the sphere was found in the
input image, processing continues to the second step in lo-
cating the sphere, which is to calculate its 3D location in
world co-ordinates. The scene is a 3D co-ordinate system
with the camera at the origin. Assuming that the intrinsic
parameters of the camera are known in advance, namely the
focal length and principal point, the location of the sphere
can be computed from its perspective projection. Consider
the top-down view of the scene in Figure 3, showing the per-
spective projection of a single 3D point. The focal length
of the camera is f and the principal point is (px, py). If the

Figure 3: Perspective projection of a 3D point.

perspective projection of the point P = (X, Y, Z) in space
lies at pixel (u, v) on the image plane then

u − px

f
=

X

Z
(5)

X =
Z · (u − px)

f
, (6)

and similarly

Y =
Z · (v − py)

f
. (7)

So we have X and Y expressed in terms of the single un-
known value Z. For the case of the sphere, the point P
can be taken as the sphere center in world coordinates, and
then the problem is to find the value of Z for this point.
This is solved based on weak perspective projection, which
assumes that the sphere will always be far from the image
plane [7]. Consider a point Pj on the surface of the sphere
which maps to a pixel on the circumference of the sphere
projection. The weak perspective projection assumption en-
sures that the line connecting Pj with P is parallel to the
image plane. Figure 4 illustrates the scenario, where the
sphere of radius R projects to the circle of radius r. Now by

Figure 4: Computing the Z value for a sphere using
weak perspective projection.

similar triangles,

Z =
R · f

r
. (8)

Equation 8 is now used in conjunction with Equation 6 and
Equation 7 to find the 3D location of the sphere in the scene,
given the current center, (u, v), and the radius, r, of the
perspective projection.

3.3 Computing Orientation
The red and green dots on the surface of the sphere are
used to compute its three DOF orientation. The process to
compute the orientation is outlined as follows:

1. Locate the projections of the red and green dots on
the image plane.

2. Compute the polar coordinates of the dots, assuming
that the center of projection is the north pole.

3. Choose the two dots that are closest to the center
of projection and compute the angle between them
(through the center of the sphere).

(a) (b) (c)

(d) (e) (f)

Figure 2: Locating the perspective sphere projection. a) Input image; b) Binary image; c) Set of all contours;
d) Filtered contours; e) Minimum enclosing circles; f) Most circular contour (chosen to be the projection of
the sphere).

4. Use the sorted list of pairs to find a set of candidate
matches to the two chosen dots.

5. For each potential match, orient the virtual sphere to
align the two chosen dots and compute a score based
on how well all the dots align.

The projections of the green and red dots are located using
hue segmentation to binarize the input image, similar to
locating the projection of the sphere. Since we have already
computed the projection of the sphere, we can restrict the
search space to only the part of the input image that is
inside the projection. In this case, the contours retrieved
are expected to be ellipses. Therefore, an ellipse is fit to
each contour that is found and its center location in screen
coordinates is computed. Figure 5 illustrates the process of
locating the dots on the sphere surface.

Once the dots are located, the center of the sphere projec-
tion is considered to be the north pole of the sphere, with a
latitude value of −π/2 radians and longitude value of zero.
Then the relative polar coordinates of the projected dots are
computed. Let the center of the sphere projection on the
image plane be (uc, vc), the projection of dot i be (ui, vi),
and the point on the circumference of the sphere projec-
tion directly below (uc, vc) be (ub, vb). Figure 6 illustrates
the situation. Notice that uc = ub. The distance, A, be-
tween (ui, vi) and (uc, vc), and the distance, B, between

(ui, vi) and (ub, vb) are computed easily. The distance be-
tween (uc, vc) and (ub, vb) is the radius of the circle, r. Since
we assume the projection is a top down view of the sphere
with the north pole at the center of the circle, the relative
longitude, loni, of dot i is the angle b, which can be com-
puted by a direct application of the cosine rule;

loni = b = cos−1(
A2 + r2 − B2

2 · A · r
). (9)

Note that if ui < uc, then loni is negative. The calculation
for the relative latitude, lati, is then

lati = −cos−1(
A

r
). (10)

Each dot that was found in the input image now contains
polar coordinates relative to an imaginary north pole at the
center of the projection. The assumption of the north pole
location and the computation of the relative polar coordi-
nates was necessary in order to compute the arc length be-
tween point locations from the projection of the surface dots.
The next step is to choose the two dots that are closest to
the center of the sphere projection and compute the angle, θ,
between them using Equation 1. These dots are chosen be-
cause they will contain the lowest error in polar coordinate
location, since small variations in pixel location will result in
only small variations in the polar coordinate computation.
This angle θ is then used to find a set of possible matches for
the two chosen dots from the pre-computed sorted list of all

(a) (b)

(c) (d)

Figure 5: Locating the projections of the dots on
the sphere. a) Input image; b) Restricted input;
c) Ellipses found for the red (filled) and green (un-
filled) dots; d) Exact dot locations.

Figure 6: Computing relative polar coordinates.

pairs of dots. The set of possible matches is the set of pairs,
such that the angle between each pair is within a small con-
stant value, ǫ, of θ, and also such that the dot colors match
the two chosen dots. The need for two separate dot colors is
evident here, since too many matches are generated if only
a single color is used. Each candidate pair is then tested to
see how well that pair supports the two chosen dots. The
pair with the most support is chosen as the matching pair.
The original set of dot locations in polar coordinates can
be thought of as a virtual sphere in a standard orientation.
The process to test a candidate pair is to rotate the virtual
sphere in order to line up the two points of the pair with
the two chosen points in the projection on the image plane.
The rotation is accomplished in two steps. First, the virtual
sphere is rotated about an axis perpendicular to the plane
formed by the first point in the pair, the first chosen point
and the center of the sphere. This rotation aligns the first
point. Then, the virtual sphere is rotated about the vec-
tor connecting the center of the sphere to the first point in

order to align the second point. Once the virtual sphere is
aligned to the two chosen points, a score is computed for
this possible orientation. The validity of a given orienta-
tion is evaluated based on the number of visible dots in the
perspective projection that align to real dots of the correct
color on the virtual sphere, as well as how closely the dots
align. Visible dots that do not align to real dots decrease the
score, as do real dots that were not matched to visible dots.
All points are compared using their polar coordinates, and
scores are computed differently based on the latitude values
of the points, since points that are closer to the center of the
sphere projection should contain a smaller error than those
that are farther from the center. This is the case because
an error of one pixel in the input image results in a smaller
error in latitude value near the center of the sphere projec-
tion than near the edge. Two points, P1 and C1, are said to
match if the angle, θ, between them satisfies the following
inequality;

θ < (1 + latC1 ·
2

π
)(α − β) + β, (11)

where α is a high angle threshold for points that are farthest
from the center of projection, and β is a low angle thresh-
old for points that are at the center of projection. In our
experiments, values of α = 0.4 radians and β = 0.2 radians
produce good results. Using Equation 11, the number of
matched dots is calculated as Nm for a given orientation.
Let Nv be the number of visible dots that are not aligned
to real dots, let Nr be the number of real dots that are not
matched with visible dots (and yet should have been), and
let θi be the angle between the matching pair. Then the
score, σ, is computed as follows;

σ =
PNm

i=1

ˆ

(1 + lati ·
2

π
)(α − β) + β − θi

˜

−
PNv

i=1

ˆ

(1 + lati ·
2

π
)(α − β) + β

˜

−
PNr

i=1

ˆ

α − (1 + lati ·
2

π
)(α − β)

˜

.

(12)

In the case that the two chosen dots are the same color,
each pair is tested again, after switching the two positions.
The orientation that yields the highest score is chosen as the
matching orientation for the sphere in the scene.

4. RESULTS AND ANALYSIS
Results of the sphere tracking method show efficient detec-
tion of the sphere with six DOF from a real-time video
stream. Figure 7 shows a screenshot of the sphere in an
arbitrary orientation with the matching orientation of the
virtual sphere shown in the upper left corner.

4.1 Usability
Our sphere tracking TUI system operates at an average
frame-rate of 15 frames per second on a Pentium 4 processor
at 3.4Ghz using a color Point Grey Dragonfly camera with a
resolution of 640x480 pixels. This provides a fast interactive
method that can be used in many computer entertainment
applications. Although tracking errors do affect the usabil-
ity of our method, a brief analysis of the errors can lead
to a method for improving usability. As the video results
demonstrate, most tracking errors occur in the orientation
computation of the sphere, and they occur in a single frame
where numerous previous and following frames provide suc-
cessful tracking. By averaging the result of the sphere track-
ing over a few successive frames, individual tracking errors

Figure 7: Sphere with matched virtual orientation.

become negligible and the usability of our system is greatly
improved.

4.2 Occlusion Handling
One of the main benefits of our sphere tracking method is
that the tracking does not fail during partial occlusions. Oc-
clusion is when an object cannot be completely seen by the
camera. This normally results from another object com-
ing in between that object and the camera, blocking the
view. The sphere tracking method chooses the best-fit cir-
cle of the correct hue in the projection of the scene as the
location of the sphere. This means that objects can par-
tially occlude the sphere and yet it may still be chosen as
the best-approximated circle. Also, since the minimum en-
closing circle is computed from the contour, only the pixels
representing 180 degrees of the circumference plus one pixel
are required in order to determine the location of the sphere
with the correct radius. For this reason, up to half of the
sphere projection may be occluded and yet its 3D location
can still be computed correctly. Furthermore, the tracking
process does not require that all of the dots on the surface
of the sphere be visible in order to determine the orientation
of the sphere. Since the matched orientation with the best
score is chosen, it is possible to occlude a small number of
the dots and yet still track the orientation correctly. The
ability to correctly handle partial occlusions is very benefi-
cial in a sphere tracking process because it allows a person
to pick up the sphere and manipulate it with their hands.
Figure 8 shows how the sphere tracking does not fail under
partial occlusion. In this screenshot, the sphere is used in
an augmented reality application where a teapot is being
augmented at the location and orientation of the sphere in
the scene.

4.3 Orientation Error
The accuracy of our TUI system will now be analyzed. Lo-
cating the 3D position of a sphere in an image is not a new
idea, however the novelty of this paper lies in the method to
determine its 3D orientation. Therefore, we will study only
the results of the orientation computation.

In order to compute an error on the 3D orientation compu-
tation of our tracking method, the sphere must be manually
placed in the scene with a known orientation. This is a very
difficult task because the sphere is a physical object and it
is nearly impossible to determine its actual orientation in

(a) (b)

(c) (d)

Figure 8: Handling partial occlusions. a) Non-
occluded input; b) Non-occluded tracking; c) Oc-
cluded input; d) Occluded tracking.

the scene before performing the tracking. For this reason,
a virtual 3D model of the sphere was built with exact pre-
cision. Then the virtual sphere model was rendered on top
of live video images at chosen orientations, and the track-
ing procedure was applied. The actual orientation and the
tracked orientation were then compared each frame to de-
termine a tracking error. Specifically, 100000 video frames
were captured with the virtual sphere inserted at random
orientations. Since we assume weak perspective projection,
the virtual sphere was constrained to X and Y values of
zero, such that the perspective projection was always in the
center of the image plane. The Z value of the sphere was
chosen randomly to simulate different distances from the
camera. The question that remains is how can one 3D ori-
entation be compared to another? It was decided that a
particular orientation of the sphere would be defined by the
quaternion rotation that transformed the sphere from its
standard orientation. A quaternion is a 3D rotation about
a unit vector by a specific angle, defined by four parameters
(three for the vector and one for the angle). The actual ori-
entation of the inserted sphere and the result of the tracking
method were compared by analyzing the two corresponding
quaternion rotations. This produced two errors, one error
on the quaternion axis and one in the angle. The axis error
was computed as the distance between the end points of the
two unit vectors which define the quaternions, measured in
units of space. The angle error was simply the difference
between the two scalar angle values. So for each of the
100000 chosen orientations we have a six-dimensional vector
(four dimensions for the quaternion orientation and two for
the errors) to describe the tracking error. Visualizing the
error for analysis is a non-trivial task. Even if the errors
are analyzed separately, it is still difficult to visualize two
five-dimensional vectors. However, we realize that the re-

sults of the error analysis will indicate how well the tracking
method is able to determine the best match to the perspec-
tive projection of the dots on the surface of the sphere. This,
in turn, will give some feedback on how well the dots were
placed on the sphere and could indicate locations (in polar
coordinates) where the dots were not placed well. So instead
of visualizing all four dimensions of a quaternion, the polar
coordinates of the center of the perspective projection were
computed for each orientation. This assumes that a perspec-
tive projection of the sphere under any 2D rotation will yield
similar errors, which is a reasonable assumption. Now the
errors can be analyzed separately as two three-dimensional
vectors (two dimensions for the polar coordinates and one
for the error). Figure 9 is a graph of the average error in
the quaternion axis over all the polar coordinates, and Fig-
ure 10 is a similar graph of the average error in quaternion
angle. In both graphs, darker points indicate greater error
and white points indicate virtually no error. It is clear to

Figure 9: Analysis of error on quaternion axis.

Figure 10: Analysis of error on quaternion angle.

see from Figure 9 that the greatest error in quaternion axis
is concentrated around the latitude value of −π/2 radians,
that is to say, the north pole of the sphere. Figure 10 indi-
cates that the error in quaternion angle is relatively uniform
across the surface of the sphere. Additionally, the overall
average error in quaternion axis for a unit sphere is 0.034
units, and in quaternion angle is 0.021 radians. This analy-

sis shows that the sphere tracking method presented in this
paper has excellent accuracy.

5. APPLICATIONS
Resolving the six DOF pose of a sphere in a real-time video
sequence can lead to many interactive computer entertain-
ment applications. One application that was hinted at in the
previous section is in the field of augmented reality. Aug-
mented reality is the concept of adding virtual objects to
the real world. In order to do this, the virtual objects must
be properly aligned with the real world from the perspective
of the camera. The aligning process typically requires the
use of specific markers in the scene that can be tracked in
the video, for instance, a 2d pattern on a rigid planar ob-
ject. An alternate way to align the real world and the virtual
objects is to use the marked sphere and tracking method de-
scribed in this paper. Once the location and orientation of
the sphere is calculated, a virtual object can be augmented
into the scene with the same pose. The equivalent planar
pattern method would be to use a marked cube [4, 9]. Fig-
ure 11 shows an augmented reality application using both a
marked cube and our sphere method to augment a virtual
sword for an augmented reality video game. The main ad-
vantage of tracking the sphere over tracking the cube is that
the sphere is more robust under partial occlusions.

Figure 11: Augmented reality application of the
sphere tracking method.

Another TUI application of our sphere tracking method is
to use the sphere as an input device for an interactive 3D
application. In many applications, users must interactively
control 3D objects on a computer screen. Some systems re-
quire a combination of key presses and mouse movements to
rotate and translate the objects. This is often a complicated
task that requires a learning period for the users. Our TUI
sphere tracking method could be used to control a virtual
object, if the pose of the sphere were mapped directly to
the orientation of the object on the screen. Then the natu-
ral handling and rotating of the device would translate into
expected handling and rotating of the virtual object. In ad-
dition, our system can be used to control the movement of an
avatar or the user in a 3D game where six degree-of-freedom
movement is possible.

6. CONCLUSION AND DISCUSSION
We have presented a passive optical TUI method to provide
interaction with computer data using natural manipulation
of a physical object. Our system includes tracking the six

DOF position and orientation of a sphere from a real-time
video stream. The sphere is a simple blue ball with 32 ran-
domly placed green and red dots. Tracking consists of lo-
cating the perspective projection of the sphere on the image
plane using standard computer vision techniques, and then
using the projections of the dots to determine the sphere
orientation using 3D geometry.

Previous methods use a marked cube with planar patterns
on its six sides. However, the tracking accuracy is inconsis-
tent as the cube is manipulated because the accuracy de-
pends on the angle between the pattern normal vector and
the camera. Our sphere-based technique allows for more
consistent tracking independent of the orientation. Another
important advantage of our method is that partial occlu-
sions are handled correctly, allowing the sphere to be picked
up and manipulated by hand. This provides a more natural
interaction method for controlling virtual objects than the
cube-based technique.

Some drawbacks do exist with our tracking method, includ-
ing multiple or overlapping scene objects of the target color,
and errors due to manually placing the dots on the ball.
As well, two-handed interaction can cause tracking incon-
sistencies due to the irregular occlusion of the sphere. This
research has unveiled an interesting open problem; namely,
how can N dots be placed on the surface of a unit sphere
such that the perspective projection of the sphere in any ori-
entation is maximally unique. Solving this problem would
guarantee maximum performance for the TUI system de-
scribed in this paper. Our sphere tracking fails when the
projections of two different orientations appear too similar
on the image plane. Placing the surface dots in a way which
maximizes the uniqueness of any projection would optimize
the method to resolve the 3D orientation of the sphere.

7. ACKNOWLEDGEMENTS
This work was supported by the Natural Sciences and En-
gineering Research Council of Canada.

8. REFERENCES
[1] R. Aish. 3d input for caad systems. Computer-Aided

Design, 11(2):66–70, Mar. 1979.

[2] T.-C. Chen and K.-L. Chung. An efficient randomized
algorithm for detecting circles. Comput. Vis. Image
Underst., 83(2):172–191, 2001.

[3] R. O. Duda and P. E. Hart. Use of the hough
transformation to detect lines and curves in pictures.
Commun. ACM, 15(1):11–15, 1972.

[4] M. Fjeld and B. M. Voegtli. Augmented chemistry:
An interactive educational workbench. In IEEE and
ACM International Symposium on Mixed and
Augmented Reality (ISMAR 2002), pages 259–260,
September 2002. Darmstadt, Germany.

[5] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer graphics: principles and practice
(2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., 1990.

[6] J. Frazer, J. Frazer, and P. Frazer. Intelligent physical
three-dimensional modelling system. In Proceedings of

Computer Graphics 80, pages 359–370, 1980. Online
Publications.

[7] M. Greenspan and I. Fraser. Tracking a sphere dipole.
In 16th International Conference on Vision Interface,
June 2003. Halifax, Canada.

[8] B. Guenter, C. Grimm, D. Wood, H. Malvar, and
F. Pighin. Making faces. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages
55–66. ACM Press, 1998.

[9] C.-R. Huang, C.-S. Chen, and P.-C. Chung. Tangible
photorealistic virtual museum. IEEE Computer
Graphics and Applications, 25(1):15–17, 2005.

[10] E. Kim, M. Haseyame, and H. Kitajima. A new fast
and robust circle extraction algorithm. In 15th
International Conference on Vision Interface, May
2002. Calgary, Canada.

[11] G. Roth and M. D. Levine. Extracting geometric
primitives. CVGIP: Image Underst., 58(1):1–22, 1993.

[12] R. Safaee-Rad, I. Tchoukanov, K. C. Smith, and
B. Benhabib. Three-dimensional location estimation of
circular features for machine vision. Transactions on
Robotics and Automation, 8(5):624–640, 1992.

[13] Y. Shiu and S. Ahmad. 3d location of circular and
spherical features by monocular model-based vision.
In IEEE Intl. Conf. Systems, Man, and Cybernetics,
pages 567–581, 1989.

[14] B. Ullmer and H. Ishii. Emerging frameworks for
tangible user interfaces. IBM Systems Journal,
39(3-4):915–931, 2000.

[15] L. Xu, E. Oja, and P. Kultanen. A new curve
detection method: randomized hough transform (rht).
Pattern Recogn. Lett., 11(5):331–338, 1990.

[16] H. K. Yuen, J. Illingworth, and J. Kittler. Detecting
partially occluded ellipses using the hough transform.
Image Vision Comput., 7(1):31–37, 1989.

