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Abstract. This paper introduces cost curves, a graphical technique for visualizing
the performance (error rate or expected cost) of 2-class classifiers over the full range
of possible class distributions and misclassification costs. Cost curves are shown to be
superior to ROC curves for visualizing classifier performance for most purposes. This
is because they visually support several crucial types of performance assessment that
cannot be done easily with ROC curves, such as showing confidence intervals on a
classifier’s performance, and visualizing the statistical significance of the difference in
performance of two classifiers. A software tool supporting all the cost curve analysis
described in this paper is available from the authors.

Keywords: performance evaluation, classifiers, ROC curves, machine learning

1. Introduction

Performance evaluation is crucial at many stages in classifier devel-
opment. The process of designing a new classification algorithm, or
extracting a specific model from data, is typically iterative. Each iter-
ation will alter the classifier significantly, so it must be re-evaluated to
determine the impact on performance. At the end of the development
process, it is important to show that the final classifier achieves an
acceptable level of performance and that it represents a significant
improvement over existing classifiers.

To evaluate a classifier, we need an estimate of future performance. If
the work is motivated by a particular application, some idea of the clas-
sifier’s eventual use may suggest an application-specific measure. When
designing and testing new classifier algorithms in a research setting,
the appropriate measure of performance is not so clear. The machine
learning community has traditionally used error rate (or accuracy) as
its default performance measure. Recently, however, area under the
ROC curve (AUC) has been used in some studies (Bradley, 1997; Kar-
wath and King, 2002; Weiss and Provost, 2003; Yan et al., 2003).

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Drummond and Holte

In cost-sensitive learning, expected cost under a range of cost matri-
ces has been the preferred measure (Bradford et al., 1998; Domingos,
1999; Margineantu and Dietterich, 2000).

The shortcomings of using accuracy have been pointed out by others
(Hand, 1997; Provost et al., 1998). The most fundamental shortcoming
is the simple fact that a single, scalar performance measure cannot cap-
ture all aspects of the performance differences between two classifiers.
Even when there are only two classes, there are two different types
of errors that can occur in any combination. The performance of a
two-class classifier is therefore characterized by a pair of numbers. Any
single scalar measurement must lose some of this information, imposing
a one-dimensional ordering on what is fundamentally two dimensions
of performance. This criticism is not specific to error rate, it applies
equally strongly to AUC and to any other scalar performance measure.

A possible attraction of scalar measures is that, when comparing
classifiers, the number of wins, losses and draws can be easily counted
and tabulated. This often gives an apparently definitive answer to
which classifier is better, allowing authors to claim their algorithm is
the best overall. We feel however that a serious shortcoming of scalar
measures is that they fail to give any indication of the circumstances
under which one classifier outperforms another. Scalar performances
are totally ordered, leading to conclusions that one classifier is either
better or worse than another, or that there is no significant difference.
Yet it often happens that one classifier is superior to another in some
circumstances and inferior in others, and existing performance mea-
sures give no assistance in identifying the circumstances in which a
particular classifier is superior.

An important example of this failing occurs when the cost of mis-
classifying examples in one class is much different than the cost of
misclassifying examples in the other class, or when one class is much
rarer than the other (Japkowicz et al., 1995; Kubat et al., 1998; Ling
and Li, 1998). A scalar measure can give the expected performance
given a probability distribution over costs and class ratios, but it will
not indicate for which costs and class ratios one classifier outperforms
the other. Adams and Hand (1999) emphasize this point, and specif-
ically mention AUC as being no better than other scalar measures in
this regard:

“... AUC is not an ideal measure of performance. If the ROC curves
of two classifiers cross, then one classifier will be superior for some
values of the cost ratio and the other classifier will be superior for
other values. If it were known that the actual cost ratio for a problem
led to a classification threshold which lay to one side or the other
of the crossing point, even if one did not know the precise position
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Cost Curves 3

of the actual cost ratio, then a summary measure integrating over
all possible values of the cost ratio would be worthless.” (p. 1141)

An alternative to scalar measures which overcomes all these difficulties
when there are two classes has been known for decades: ROC plots.
An ROC plot is a two-dimensional plot, with the misclassification
rate of one class (“negative”) on the x-axis and the accuracy of the
other class (“positive”) on the y-axis. Not only does an ROC plot
preserve all performance-related information about a classifier, it also
allows key relationships between the performance of several classifiers
to be seen instantly by visual inspection. For example, if classifier C1
“dominates” classifier C2 (has better accuracy on both classes) C1’s
ROC plot will be above and to the left of C2’s. If C1 is superior
to C2 in some circumstances but inferior in others, their ROC plots
will cross. Interpreted correctly, ROC plots show the misclassification
costs of a classifier over all possible class distributions and all possible
assignments of misclassification costs1.

ROC analysis was introduced to the data mining and machine learn-
ing communities by Provost and Fawcett (1997). Despite its advantages,
it has not been adopted as the standard method of performance eval-
uation in either of these scientific communities even though two-class
classification is an extremely common task in the research literature.

We believe the reason for this is that, despite its strengths, ROC
analysis is inadequate for the needs of data mining and machine learn-
ing researchers in several crucial respects. It does not allow researchers
to do the kind of analysis they currently do with scalar measures. In
particular, ROC plots do not allow any of the following important
experimental questions to be answered by visual inspection:

− what is classifier C’s performance (expected cost) given specific
misclassification costs and class probabilities?

− for what misclassification costs and class probabilities does classi-
fier C outperform the trivial classifiers that assign all examples to
the same class?

− for what misclassification costs and class probabilities does classi-
fier C1 outperform classifier C2?

− what is the difference in performance between classifier C1 and
classifier C2?

− what is the average of performance results from several indepen-
dent evaluations of classifier C (e.g. from 10-fold cross-validation)?

1 “All” distributions and costs with certain standard restrictions. These are
discussed later in the paper.
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4 Drummond and Holte

− what is the 90% confidence interval for classifier C’s performance?

− for what misclassification costs and class probabilities is the dif-
ference in performance between classifier C1 and classifier C2 sta-
tistically significant?

In this paper we present a different way of visualizing classifier per-
formance, cost curves (Drummond and Holte, 2000a), that allows all of
these questions to be answered instantly by visual inspection, while re-
taining almost all the attractive features of ROC plots. A software tool
based on cost curves is freely available and provides touch-of-a-button
visualization for all these questions 2.

The paper is organized around these questions. After a brief review
of ROC curves (see Fawcett (2003) for a more in-depth tutorial), cost
curves are introduced. Then a section is devoted to each of the ques-
tions. The limitations of cost curves and the circumstances in which
ROC curves are more useful than cost curves are discussed in Section
6.

2. ROC Curves
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Figure 1. (a) Example Confusion Matrix — (b) TP, FP and other rates

The basis for any evaluation or visualization of a 2-class classifier’s
performance are the numbers in the confusion matrix, as illustrated in
Figure 1(a). The inner bold box is a 2 by 2 confusion matrix, where
the rows represent the actual class of an instance and the columns the
predicted class. Typically these numbers are obtained by applying the
classifier to a set of test examples and counting how many examples
fall into each cell. Dividing the entries in each row by the row total
gives an estimate of the predictive characteristics of the classifier – the

2 http://www.aicml.ca/research/demos/content/demo_template.php?num=4.
This tool goes far beyond the existing cost curve capabilities implemented in the
popular Weka tool set (Witten and Frank, 2005).
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Cost Curves 5

probability that the classifier will make a particular prediction given
an example from a particular class, as shown in Figure 1(b). These
characteristics are called the “true positive” rate (TP ), “false positive”
rate (FP ), “true negative” rate (TN) and “false negative” rate (FN).

ROC space has 2 dimensions, with TP on the y-axis and FP on
the x-axis. A single confusion matrix thus produces a single point in
ROC space. For example, the point labeled B in Figure 2 is the ROC
point for a classier with FP = 0.35 and TP = 0.7. An ROC curve
is formed from a set of such points, such as the points on the dashed
curve in Figure 2. A common assumption in traditional ROC analysis
is that these points are samples of a continuous curve in a specific
parametric family. Therefore standard curve fitting techniques can be
used as means of interpolating between known points (Swets, 1988).
In the machine learning literature it is more common to take a non-
parametric approach and join the ROC points by line segments, as was
done to create both ROC curves in Figure 2.
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Figure 2. Example ROC points (A, B, C) and ROC curves (dashed and solid). The
numbers are the slopes of the line segments they are beside.

The method used to generate the set of ROC points for a given clas-
sifier (or learning algorithm) depends on the classifier. Some classifiers
have parameters for which different settings produce different ROC
points. For example, with naive Bayes (Duda and Hart, 1973; Clark
and Niblett, 1989) an ROC curve is produced by varying its threshold
parameter. If such a parameter does not exist, algorithms such as de-
cision trees can be modified to include costs producing different trees
corresponding to different points (Breiman et al., 1984). The counts
at the leaves may also be modified, thus changing the leaf’s classi-
fication, allowing a single tree to produce multiple points (Bradford
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6 Drummond and Holte

et al., 1998; Ferri et al., 2002). Alternatively the class frequencies in
the training set can be changed by under- or oversampling to simulate
a change in class priors or misclassification costs (Domingos, 1999).

An ROC curve implicitly conveys information about performance
across “all” possible combinations of misclassification costs and class
distributions, with certain standard restrictions. For class distribu-
tions “all” means any prior probabilities for the classes while keeping
the class-conditional probabilities, or likelihoods, constant (Webb and
Ting, 2005). For costs “all” means all combinations of costs such that
a misclassification is more costly than a correct classification.

An “operating point” is a specific combination of misclassification
costs and class distributions. Knowing a classifier’s error rate across the
full range of possible operating points is important for two reasons. One
reason is that the class distribution and costs can change with time, or
with the location where the classifier is deployed. The second reason is
that the distribution in the datasets used for training and evaluating
the classifier may not reflect reality. For example, consider the two
credit application datasets in the UCI repository (Newman et al., 1998).
Positive examples in these datasets represent credit applications that
were approved. In the Japanese credit dataset 44.5% of the examples
are positive but in the German credit dataset 70% of the examples are
positive. This might reflect a true difference in the two countries, but
a plausible alternative explanation is that neither proportion reflects
reality. An extreme case of a dataset not representing the true class
distribution is the Splice dataset in the UCI repository. It has an equal
number of positive (classes I/E and E/I) and negative (class “neither”)
examples, whereas in actual DNA sequences the ratio is more like 1:20
(Saitta and Neri, 1998).

One point in ROC space dominates another if it is above and to the
left, i.e. has a higher true positive rate and a lower false positive rate. If
point A dominates point B, A will have a lower expected cost than B
for all operating points. One set of ROC points, A, dominates another
set, B, when each point in B is dominated by some point in A and no
point in A is dominated by a point in B.

ROC curves can be used to select the set of system parameters (or
the individual classifier) that gives the best performance for a partic-
ular operating point (Halpern et al., 1996). In advance of knowing the
operating point, one can compute the upper convex hull of the ROC
points defined by the system parameters (Provost and Fawcett, 1997).
The set of points on the convex hull dominates all the other points, and
therefore are the only classifiers that need be considered for any given
operating point.

cdrummond.tex; 23/11/2005; 16:54; p.6



Cost Curves 7

The slope of the segment of the convex hull connecting the two
vertices (FP1, TP1) and (FP2, TP2) is given by the left-hand side of
the following equation:

TP1 − TP2

FP1 − FP2
=

p(−) ∗ C(+|−)

p(+) ∗ C(−|+)
(1)

The right-hand side defines the set of operating points where (FP1, TP1)
and (FP2, TP2) have the same expected cost (Hilden and Glasziou,
1996; Provost and Fawcett, 1997). Here p(a) is the probability of a
given example being in class a, and C(a|b) is the cost incurred if an
example in class b is misclassified as being in class a. The slope of the
line joining the ROC points for two classifiers therefore fully charac-
terizes the operating points for which the two classifiers have the same
expected cost. If an operating point defines a slope different than this
slope, one of the classifiers will outperform the other at this operating
point. For example, consider the point labeled A on the dashed ROC
curve in Figure 2. The slopes of the line segments incident to A are
the numbers, 1.5 and 2.4, shown in the figure. If the right-hand side of
Equation 1 evaluates to a value between 1.5 and 2.4 classifier A will
give the best performance of any of the classifiers on this ROC curve.
But if it evaluates to a value outside this range, classifier A will perform
worse than one or more other classifiers on this curve.

The solid lines in Figure 2 are produced by joining the ROC point
for classifier B to the ROC points for the trivial classifiers: point (0,0)
represents classifying all examples as negative; point (1,1) represents
classifying all points as positive. The slopes of these lines define the
set of operating points for which classifier B is potentially useful, its
operating range. For operating points outside this set, classifier B will
be outperformed by one of the trivial classifiers.

ROC analysis does not directly commit to any particular measure
of performance. This is sometimes considered an advantageous feature
of ROC analysis. For example, Van Rijsbergen (1979) quotes Swets
(1967) who argues that this is useful because it measures “discrim-
ination power independent of any ‘acceptable criterion’ employed”.
Provost and Fawcett (1998) substantiate this argument by showing
that ROC dominance implies superior performance for a variety of
commonly-used performance measures. The ROC representation allows
an experimenter to see quickly if one classifier dominates another, and,
using the convex hull, to identify potentially optimal classifiers without
committing to a specific performance measure.
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8 Drummond and Holte

3. Cost Curves

Cost curves, unlike ROC curves, are specifically designed for a specific
performance measure – expected cost. To begin the discussion of cost
curves, we will assume C(−|+) = C(+|−), i.e. that misclassification
costs are equal and can therefore be set to 1. In this setting, expected
cost is simply error rate and an operating point is defined by p(+), the
probability of an example being from the positive class.

It is important to be perfectly clear about the exact meaning of
p(+), because in the lifetime of a classifier learned from training data
there are at least three distinct sets of examples that might each have
a different proportion of positive examples. ptrain(+) is the percentage
of positive examples in the dataset used to learn the classifier. ptest(+)
is the percentage of positive examples in the dataset used to build the
classifier’s confusion matrix. pdeploy(+) is the percentage of positive
examples when the classifier is deployed (put to use). It is pdeploy(+)
that should be used for p(+), because it is the performance during
deployment that we wish to estimate of a classifier. However, because
we do not necessarily know pdeploy(+) at the time we are learning
or evaluating the classifier we would like to visualize the classifier’s
performance across all possible values of pdeploy(+). Cost curves do
precisely that.

In the simplified setting where C(−|+) = C(+|−) = 1, a cost curve
plots error rate as a function of p(+). Error rate is the y-axis in the
plot, p(+) is the x-axis. The extreme values on the x-axis represent the
situations where all the examples to which the classifier will be applied
are in the same class. x=p(+)=0 means that all these examples are
negative, x=p(+)=1 means they are all positive. When x=0 a classifier’s
overall error rate is simply its error rate on the negatives, since no
positive examples will be presented to the classifier. When x=1 its
overall error rate is its error rate on the positives. Joining these two
points by a straight line plots its overall error rate as a function of
p(+).

The dashed line in Figure 3(a) is the estimated error rate of the
decision stump produced by 1R (Holte, 1993) for the Japanese credit
dataset over the full range of possible p(+) values. The solid line in
Figure 3(a) gives the same information for the decision tree C4.5 (Quin-
lan, 1993) learned from the same training data. In this plot, we can
instantly see the relation between 1R and C4.5’s error rate across the
full range of deployment situations. The vertical difference between
the two lines is the difference between their error rates at a specific
operating point. The intersection point of the two lines is the operating
point where 1R’s stump and C4.5’s tree perform identically. This occurs
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Figure 3. 1R (dashed) and C4.5 (solid) on the Japanese credit data. (a) Error Rate
as a function of p(+) — (b) Corresponding ROC points

at x = p(+) = 0.445. For larger values of p(+) 1R’s error rate is lower
than C4.5’s, for smaller values the opposite is true. It is much harder to
extract the same information from the corresponding ROC plot (Figure
3(b)).

Mathematically, ROC curves and cost curves are very closely related:
there is a bidirectional point/line duality3 between them. This means
that a point in ROC space is represented by a line in cost space, a line
in ROC space is represented by a point in cost space, and vice versa.

The point (FP, TP ) in ROC space is a line in cost space that has
y = FP when x = 0 and y = FN = 1− TP when x = 1. The equation
for this line is given by the following equation:

Y = error rate = (FN − FP ) ∗ p(+) + FP (2)

A line in ROC space with slope S and y-intercept TPo is converted
to a point in cost space using the following equation:

X = p(+) =
1

1 + S
(3)

Y = error rate = (1 − TPo) ∗ p(+)

Both these operations are invertible. Their inverses map points (lines)
in cost space to lines (points) in ROC space. Given a point (X,Y ) in
cost space, the corresponding line in ROC space is:

TP = (1/X − 1) ∗ FP + (1 − Y/X)

3 For an introduction to point/line duality see (Preparata and Shamos, 1988).
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10 Drummond and Holte

Given a line aX + b in cost space, the corresponding point in ROC
space is:

FP = b, TP = 1 − (b + a)

As discussed in Section 2, the slopes of lines in ROC space play
a crucial role in ROC analysis. Equation 3 shows that each slope, S,
in ROC space gets mapped to a distinct X value in cost space. The
awkward process of visualizing slopes in ROC space therefore becomes
the simple visual process of inspecting cost curves at a particular point
on the x-axis. Thus our representation exploits certain natural human
visual strengths; this is perhaps the main advantage of cost curves.

3.1. The Lower Envelope of Several Cost Lines

As we have just seen, a single classifier, or confusion matrix, which
would be a single point, (FP, TP ), in ROC space, is a straight line,
joining (0, FP ) to (1, FN), in cost space. A set of points in ROC space,
the basis for an ROC curve, is a set of cost lines, one for each ROC
point. For example, the bold curve in Figure 4(a) is an ROC curve
based on ten ROC points (including the two trivial points, (0,0) and
(1,1)). Each of those points becomes a cost line in Figure 4(b).
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Figure 4. (a) Ten ROC points and their ROC convex hull — (b) Corresponding set
of Cost lines and their Lower Envelope.

The notion of dominance in ROC space has an exact counterpart in
cost space. Cost curve C1 dominates cost curve C2 if C1 is below (or
equal to) C2 for all x values. This means there is no operating point
for which C2 outperforms C1.

The related ROC concept of upper convex hull also has an exact
counterpart for cost curves: the lower envelope. The lower envelope at
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Cost Curves 11

any given x value is defined as the lowest y value on any of the given
cost curves at that x. Because of the duality between ROC space and
cost space, the line segments making up the lower envelope precisely
correspond to the points on the ROC convex hull and the vertices of
the lower envelope correspond to the line segments on the ROC hull.
The bold line in Figure 4(b) is the lower envelope of the cost lines in the
figure. Visually, the lower envelope stands out very clearly, especially
when there are a large number of cost lines.

Just as an ROC curve is a curve constructed piecewise from a set of
ROC points, a cost curve is a curve constructed piecewise from a set
of cost lines. The lower envelope is one way to construct a cost curve
from a set of cost lines; other methods are described in Section 5.

3.2. Taking Costs Into Account

So far in this section, we have assumed that the cost of misclassifying
positive examples, C(−|+), is the same as the cost of misclassifying
negative examples, C(+|−). We will now eliminate this assumption
and explain how to draw cost curves in the general case of arbitrary
misclassification costs and class distributions. The only change needed
to take costs into account is to generalize the definitions of the x-axis
and y-axis.

To derive the general definition of the y-axis in our plots, we start
with the formula for expected cost based on the standard cost model
(see Appendix A). We assume that all costs are finite. We also assume
that the cost of correctly classifying an example is always less than
the cost of misclassifying it. We take this as the definition of correctly
classifying the example. Thus the costs we consider are always strictly
greater than zero. So the best possible classifier, which classifies every
example correctly, has an expected cost of 0:

E[Cost] = FN ∗ p(+) ∗ C(−|+) + FP ∗ p(−) ∗ C(+|−) (4)

where p(−) = 1 − p(+).
We apply one additional normalization, so that the maximum pos-

sible expected cost is 1. The maximum expected cost occurs when all
instances are incorrectly classified, i.e. when FP and FN are both one.
In this case Equation 4 simplifies to

max E[Cost] = p(+) ∗ C(−|+) + p(−) ∗ C(+|−)

We define normalized expected cost, Norm(E[Cost]), by dividing
the right hand side of Equation 4 by the maximum possible expected
cost, resulting in the following equation.

cdrummond.tex; 23/11/2005; 16:54; p.11



12 Drummond and Holte

Norm(E[Cost]) =
FN ∗ p(+) ∗ C(−|+) + FP ∗ p(−) ∗ C(+|−)

p(+) ∗ C(−|+) + p(−) ∗ C(+|−)
(5)

With this normalization, a classifier’s y-value indicates the frac-
tion of the difference between the maximum and minimum possible
costs that will be incurred if the classifier is used. This is the natural
extension of error rate to normalized costs.

The x-axis is also redefined to include misclassification costs. We
multiply p(+) by C(−|+) and normalize so that x ranges from 0 to 1.
We refer to the normalized version of p(+) ∗ C(−|+) as PC(+), “PC”
standing for “probability times cost”. The following equation is the
formal definition (here a is a class, either + or −):

PC(a) =
p(a) ∗ C(a|a)

p(+) ∗ C(−|+) + p(−) ∗ C(+|−)

By definition, PC(−) = 1 − PC(+). When misclassification costs are
equal PC(+) = p(+). In general, PC(+) = 0 corresponds to the cases
when p(+) = 0 or C(−|+) = 0. These are the extreme cases when cost
is only incurred by misclassifying negative examples - either because
positive examples never occur (p(+)=0) or because it costs nothing to
misclassify them. PC(+) = 1 corresponds to the other extreme, the
cases when p(−) = 0 or C(+|−) = 0.

Rewriting Equation 5 with PC(a) replacing the normalized version
of p(a) ∗ C(a|a) produces the following:

Norm(E[Cost]) = FN ∗ PC(+) + FP ∗ PC(−) (6)

which shows that normalized expected cost is a linear combination of
the false positive and false negative rates.

Because PC(+) + PC(−) = 1, we can rewrite Equation 6 into the
more common algebraic formula for a line. This results in

Norm(E[Cost]) = (FN − FP ) ∗ PC(+) + FP

which is the straight line representing the normalized expected cost for
a classifier. At the limits of the normal range of PC(+) this equation
simplifies to the following:

Norm(E[Cost]) =

{
FP, when PC(+) = 0
FN, when PC(+) = 1

To plot a classifier on the cost graph, we draw two points, y = FP
when x = 0 and y = FN when x = 1 and join them by a straight line.
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Note that this is exactly how we plotted the cost line for a classifier
in the simpler setting where costs were ignored. The new cost lines
therefore are identical to the ones in the previous sections. All that has
changed is the interpretation of the axes. For example, Figure 5 shows
the cost lines for 1R and C4.5 on the Japanese credit dataset taking
costs into account. It is identical to Figure 3(a) except for the labels on
the axes and the fact that each line now represents the expected cost
of the classifier over the full range of possible class distributions and
misclassification costs. We typically restrict the range of the y-axis to
0 to 0.5, as the lower half of the figure is typically the most interesting
part. Sometimes for clarity we rescale the y-axis to range from 0 to
1. We indicate this by adding “(Rescaled Y)” to the captions of the
relevant figures.
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Figure 5. Japanese credit - Cost Lines for 1R (dashed line) and C4.5 (solid line)

The conclusions we drew from Figure 3(a) about which classifier
was better for which operating points are therefore equally true, with
appropriate re-interpretation, when costs are taken into account. Those
conclusions would now read, with the changes in bold font, “In this plot
we can instantly see the relation between 1R and C4.5’s normalized

expected cost across the full range of deployment situations. The
vertical difference between the two lines is the difference between their
normalized expected costs at a specific operating point. The inter-
section point of the two lines is the value of PC(+) where 1R’s stump
and C4.5’s tree perform identically. This occurs at x=PC(+)=0.445.
For larger values of PC(+) 1R’s normalized expected cost is lower
than C4.5’s, for smaller values the opposite is true.”

Likewise, if we simply replace “error rate” and “p(+)” by “normal-
ized expected cost” and “PC(+)”, respectively, in equations 2 and 3,
we get fully general equations relating ROC space to cost space,

cdrummond.tex; 23/11/2005; 16:54; p.13



14 Drummond and Holte

3.3. Related Visualization Techniques

Some previously published visualization methods are closely related
to cost curves: the “regret graphs” (or “tent graphs”) of Hilden and
Glasziou (1996), the performance graphs used by Turney (1995), and
the “Loss Difference Plots” and “LC index” of Adams and Hand (1999).

In a regret graph, exact values for the misclassification costs, C(−|+)
and C(+|−), are assumed to be known. Operating points are therefore
defined by pdeploy(+), which serves as the x-axis for a regret graph.
Knowing C(−|+) and C(+|−) also allows the y-axis (performance) to
be expressed in absolute terms, rather than the relative cost that is used
for the y-axis in cost curves. The only cost normalization is to subtract
the minimum possible cost from all costs, so that zero is the minimum
possible cost in a regret graph. Thus, regret curves are identical to cost
curves with specific values for C(−|+) and C(+|−) substituted into the
definitions of Norm(E[Cost])and PC(+). If these values are not known
exactly, regret graphs cannot be used, but cost curves can.

Hilden and Glasziou (1996) point out that the exact costs of misclas-
sification, in their medical application, can vary from patient to patient,
and therefore each patient will have a different regret graph. What cost
curve analysis makes clear is that certain conclusions can be drawn
about classifiers before costs are known. For example, if classifier C1
dominates classifier C2, there are no costs for which C2 will outperform
C1, and the minimum vertical distance between the two cost curves is
a lower bound on the relative advantage of C1 over C2.

The clinical decision-making setting in which regret graphs are de-
scribed provides an interesting alternative interpretation that could
be applied to cost curves as well. For example, the x-axis in a regret
graph is interpreted as the decision-maker’s uncertainty about a binary
condition, and regret graphs can be used to assess the usefulness of tests
designed to reduce this uncertainty as well as of therapeutic actions.

Turney (1995) discusses the difficulties of using absolute cost in
comparative studies involving several datasets and proposes instead
to use a normalized cost he calls “standard cost”. This differs from
our normalized expected cost in a crucial way — “standard cost”
chooses as its reference worst-case classifier the trivial classifier that
makes the fewest errors, as opposed to the classifier that misclassifies
every example. It then multiplies this error rate by the worst possible
misclassification cost. We believe this is undesirable for two important
reasons. First, it does not simplify to error rate when misclassification
costs are equal. Second, it requires knowing which class is more fre-
quent, and knowing the maximum misclassification cost exactly. Like
“regret graphs”, Turney’s graphs do not represent performance across
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the full range of possible operating points. In Turney’s experiments
where C(−|+) and C(+|−) are different (Turney’s section 4.2.3), the
class probabilities are assumed to be exactly known and the x-axis is

simply the cost ratio, C(−|+)
C(+|−) , which is plotted on a logarithmic scale

to cope with the fact that this ratio can grow arbitrarily large (see
Turney’s Figure 5). In cost curves a logarithmic scale is unnecessary
because X = PC(+) is normalized to be between 0 and 1.

Adams and Hand (1999) sketch briefly, and then reject, a perfor-
mance visualization technique, loss difference plots, that differs from
cost curves in two respects. The first difference is that their discussion
focuses entirely on the misclassification costs, which Adams and Hand
denote c0 and c1. Class probabilities are never mentioned after the in-
troductory remarks. This difference can easily be eliminated by defining
c0 = p(+)∗C(−|+) and c1 = p(−)∗C(+|−) instead of the literal readings
c0 = C(−|+) and c1 = C(+|−). With these definitions the x-axis in a
loss difference plot, the normalized ratio of the misclassification costs,

c0
c0+c1

, is identical to the x-axis for cost curves.
The key difference between loss difference plots and cost curves is the

y-axis (performance). In loss difference plots it is on an absolute scale,
as it is in regret graphs. However, Adams and Hand do not assume
the exact values for c0 and c1 are known, they only assume their ratio
is known. Knowing only the ratio of the costs makes absolute cost
measurements impossible: c0 = 2 and c1 = 1 has the same ratio as
c0 = 20 and c1 = 10, but the absolute cost of the latter is ten times
that of the former. This leads Adams and Hand to reject loss difference
plots as meaningless.

The LC Index is the alternative Adams and Hand advocate instead
of a loss difference plot. This has the same x-axis as a loss difference
plot (and as a cost curve). The y-axis simply records which classifier
has the best performance for a given x-value. It is not a numerical axis,
the LC index gives no indication at all of the magnitude of difference
in performance.

We agree with Adams and Hand on two central points: (1) that
we want a visualization of performance that does not require exact
knowledge of C(−|+) and C(+|−), and (2) that it is impossible to com-
pute absolute performance measurements without knowing C(−|+) and
C(+|−) exactly. But we do not agree that one must abandon all quanti-
tative performance comparison. In cost curves, the y-axis is normalized
— cost is measured relative to the minimum and maximum possible
costs. This is a meaningful measure when the cost ratios are known
even if absolute costs are not known. For example, the normalized
cost when c0 = 2 and c1 = 1 is precisely the same as when c0 = 20
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16 Drummond and Holte

and c1 = 10 because scaling the costs also scales the minimum and
maximum possible costs and the scale factor cancels. In using cost
curves this normalization of costs must always be kept in mind. From
a cost curve no statement at all can be made about the absolute cost
that will be incurred if a certain classifier is used at a specific operating
point. To make such a statement requires knowledge of the magnitude
of the costs, and that cannot be extracted from the cost curve itself.

A valuable contribution by Adams and Hand (1999) is a method for
using approximate knowledge of PC(+) in selecting among classifiers.
They argue that domain experts can often put a rough probability
distribution, prob(x), over the set of possible operating points, the x-
axis. Then the expected performance of a classifier can be defined with
respect to prob(x). This technique applies to cost curves as well as to
LC indexes (Ting, 2002). The area under a cost curve is the expected
cost of the classifier assuming that all possible probability-cost values
are equally likely, i.e. that prob(x) is the uniform distribution4. More
generally, expected cost can be computed using the following equation:

TEC =

∫ 1

o
Norm(E[Cost(x)]) ∗ prob(x)dx

for any specific probability distribution prob(x). This also allows a
comparison of two classifiers when one does not strictly dominate the
other and some knowledge of prob(x) is available. The difference in
area under the two curves gives the expected advantage of using one
classifier over another.

4. Classifier Performance Analysis using ROC curves and

Cost curves

Machine learning researchers have certain requirements for the visual-
ization tool they use. Ideally, everything they currently do with scalar
performance measures, such as error rate or AUC, would be possible
by simple visual inspection of 2-d plots. In this section, we show that
the seven specific questions posed in the introduction can all be an-
swered readily by visual inspection of cost curves and not as readily
by inspecting ROC curves. Each question is discussed in a separate
subsection.

4 This is in contrast with the area under the ROC curve which does not measure
cost but is rather a ranking measure.
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4.1. Visualizing Classifier Performance

This subsection addresses the question: what is classifier C’s perfor-
mance (expected cost) given specific misclassification costs and class
probabilities?

Figure 6 shows a set of ROC points for C4.5 on the sonar data
set from the UCI collection. Each point corresponds to a classifier
trained using a different class distribution produced by undersampling
the training set. Even though ROC analysis does not commit to any
particular measure of performance it is still possible to read certain
performance-related information from this figure. For example, certain
ROC points are obviously dominated by others, and from the visually
obvious fact that all the ROC points are well above the chance line (the
diagonal joining (0,0) to (1,1)) one can easily see that this decision tree’s
overall performance is good.
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Figure 6. ROC Points for C4.5 on the Sonar dataset

Figure 7 illustrates two simple geometric constructions for reading
quantitative performance information from an ROC plot for specific
operating conditions. Both begin by drawing an iso-performance line
through the ROC point with a slope representing the operating con-
ditions (recall Equation 1). The construction shown on the left side of
Figure 7 then draws a line segment from the point (0, 1) that meets the
iso-performance line at a right angle. The length of this line segment
is proportional to normalized expected cost5. The construction shown
on the right, due to Peter Flach (2003, 2004), draws a horizontal line
segment from the y-axis to the point where the iso-performance line

5 Thanks to an anonymous referee for pointing out this construction.
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18 Drummond and Holte

intersects the diagonal line TP = 1 − FP . The length of this line seg-
ment is exactly equal to normalized expected cost. These constructions
have the disadvantage that neither the iso-performance line nor the line
segments added by the constructions are an intrinsic part of an ROC
curve. Moreover, they cannot be added easily by the naked eye upon
a casual inspection of an ROC curve. They also change depending on
the operating conditions. So the ROC curve cannot be augmented with
this information until a specific operating condition is defined.
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Figure 7. Two Methods for Obtaining Quantitative Performance Information from
an ROC Point

Figure 8 shows the cost lines for the classifiers whose ROC points
are shown in Figure 6. Each cost line in Figure 8 corresponds to one of
the individual ROC points in Figure 6. All the conclusions drawn from
the ROC plot, and more, can be made from a quick visual inspection
of this cost curve plot. The lower envelope is visually obvious. From
this one can quickly see that, with an appropriately chosen level of
undersampling, C4.5’s decision tree will never have a normalized ex-
pected cost higher than 25%. One can also see that there are many
choices of classification threshold that give near-optimal performance
when PC(+) is near 0.5.

4.2. Comparing a Classifier to the Trivial Classifiers

This subsection addresses the question: for what misclassification costs
and class probabilities does classifier C outperform the trivial classifiers
that assign all examples to the same class?

In an ROC plot, points (0,0) and (1,1) represent the trivial clas-
sifiers: (0,0) represents classifying all examples as negative, and (1,1)
represents classifying all points as positive. The diagonal line connect-
ing these points represents chance behavior. The cost curves for these
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Figure 8. Cost Curves Corresponding to Figure 6

classifiers are the diagonal lines from (0, 0) to (1, 1) (the always-negative
classifier) and from (0, 1) to (1, 0) (the always-positive classifier). The
operating range of a classifier is the set of operating points or PC(+)
values, for which the classifier outperforms both the trivial classifiers.

In an ROC curve the operating range of a classifier is defined by the
slopes of the lines connecting the classifier’s ROC point to (0,0) and
(1,1). Slopes are notoriously difficult to judge visually. In general, the
operating range cannot be read off an ROC curve precisely, but it can
be roughly estimated by the minimum FP value and the maximum
TP value of the non-trivial classifiers on the convex hull. For example,
the dotted lines in Figure 9(a) show the approximate operating range
for this set of classifiers to be 0.05 < PC(+) < 0.94.
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Figure 9. (a) Estimate of the Operating Range of an ROC Curve – (b) Exact
Operating Range of the Corresponding Cost Curve
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In a cost curve, the operating range is defined by the interval of
PC(+) values between the points where the cost curve intersects the
diagonal line for the always-positive classifier and the diagonal line for
the always-negative classifier. The vertical lines in Figure 9(b) show the
operating range for this classifier exactly, as opposed to the approxi-
mate method for ROC curves just described. We see that the actual
operating range is narrower, 0.14 < PC(+) < 0.85.

In Figure 8 the diagonals representing the trivial classifiers are shown
as bold lines. We can see exactly where the lower envelope, or any
individual classifier, intersects these diagonals, and directly read off
the precise operating range. For the lower envelope this is 0.17 <
PC(+) < 0.84. Moreover, the vertical distance below the diagonal at
a given PC(+) value within the operating range is the quantitative
performance advantage of the classifier over the trivial classifier at that
operating point.

Cost curves make it so easy to see a classifier’s operating range that
performances worse than the trivial classifiers cannot be overlooked.
ROC curves and other commonly used methods of presenting perfor-
mance results do not have this property, which might possibly result
in performances worse than the trivial classifiers being published with-
out being noticed. For example, Domingos (1999) compares MetaCost,
oversampling and undersampling on a variety of datasets for four cost
ratios — 1:1, 2:1, 5:1 and 10:1. In Figure 10 we have approximately
reproduced its oversampling and undersampling experiments on the
sonar dataset. Our purpose is not to single out these experiments or
to question their results but rather to show how easy it is to overlook
classifiers’ operating ranges with the performance evaluation methods
currently in use.

Each gray line in Figure 10(a) is a cost curve of the decision tree
created by C4.5 for a different oversampling ratio6. The arrows in
Figure 10 indicate the PC(+) values for the four cost ratios. They
are not exactly at the ratios themselves because p(+) in this domain
is 0.5337, not 0.5. As can be seen, the operating range for the lower
envelope of the classifiers produced by oversampling is rather narrow,
0.28 < PC(+) < 0.75 and does not include the two most extreme
cost ratios (5:1 and 10:1) used to evaluate the systems. Figure 10(b)
shows the same information but now the training set is produced by
undersampling instead of oversampling7. The operating range is slightly

6 To generate the training sets, instances are duplicated for one of the classes up
to the floor of the desired ratio. The remaining fraction is chosen randomly from the
training data for that class.

7 The difference in performance of the two sampling methods is vividly seen in
the cost curves. For further discussion see Drummond and Holte (2003)
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PC(+) − Probability Cost

Figure 10. (a) Cost Curves for various Oversampling Ratios — (b) Cost Curves for
various Undersampling Ratios

wider than for oversampling, 0.25 < PC(+) < 0.82, but still does not
include cost ratios 5:1 and 10:1. Although it makes sense to oversample
or undersample with these ratios, or even more extreme ones, for train-
ing purposes, it does not make sense to test these classifiers with cost
ratios this extreme, because none of these classifiers should be used for
these cost ratios.

4.3. Choosing Between Classifiers

This subsection addresses the question: for what misclassification costs
and class probabilities does classifier C1 outperform classifier C2 ?

If the ROC curves for two classifiers cross, each classifier is better
than the other for a certain range of operating points. Identifying this
range visually is not easy in an ROC diagram and, perhaps surprisingly,
the intersection point of the ROC curves has little to do with the
range8. Consider the ROC curves for two classifiers, the dotted and
dashed curves of Figure 11(a). The solid line is the iso-performance
line tangent to the two ROC curves. Its slope represents the operating
point at which the two classifiers have equal performance. For oper-
ating points corresponding to steeper slopes, the classifier with the

8 This point maps to a straight line in cost space that is not of any special
significance nor visually apparent. This ROC point’s only distinction in ROC space
is to be both a weighted average of two points, A1 and A2 (on opposite sides of
the intersection point), on one ROC curve and also to be a weighted average of two
points, B1 and B2, on the other ROC curve. In cost space, the line corresponding to
this point has the same distinction: it can be expressed as a weighted average of the
cost lines corresponding to A1 and A2, and it can also be expressed as a weighted
average of the cost lines corresponding to B1 and B2.
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dotted ROC curve performs better than the classifier with the dashed
ROC curve. The opposite is true for operating points corresponding to
shallower slopes. This information might be extracted from the graph
and tabulated (Provost et al., 1998, table 1)

Figure 11(b) shows the cost curves corresponding to the ROC curves
in Figure 11(a). The vertical line drawn down from the intersection
point of the two cost curves indicates the operating point where the
two curves have equal performance. This PC(+) value exactly cor-
responds to the slope of the iso-performance line in Figure 11(a). It
can immediately be seen that the dotted line has a lower expected
cost and therefore outperforms the dashed line when PC(+) < 0.5
(approximately) and vice versa. Overall, cost curves show for what
range of values one classifier outperforms another much more clearly
than ROC curves. For the latter, one has to either add iso-performance
lines or look up the values in a table.
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Figure 11. (a) Two ROC Curves That Cross — (b) Corresponding Cost Curves

4.4. Comparing Classifier Performance

This subsection addresses the question: what is the difference in per-
formance between classifier C1 and classifier C2?

Figures 12(a) and 12(b) illustrate how much more difficult it is to
compare classifiers with ROC curves than with cost curves. Although it
is obvious in the ROC diagram that the dashed curve is better than the
solid one, it is not easy, visually, to determine by how much. One might
be tempted to take the Euclidean distance normal to the lower curve to
measure the difference. But this would be wrong on two counts. First,
the difference in expected cost is the weighted Manhattan distance
between two classifiers not the Euclidean distance. Equation 7 gives
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Figure 12. (a) Two ROC Curves Whose Performance is to be Compared — (b)
Corresponding Cost Curves

the difference, each cost calculated using Equation 4 with TP replacing
(1 − FN). One can interpret this graphically as the distance between
the two points traveling first in the X direction and second in the Y
direction. The distances must be “weighted” to account for the relevant
prior probabilities and misclassification costs.

E[Cost1] − E[Cost2] = (TP2 − TP1) ∗p(+) ∗ C(−|+)
︸ ︷︷ ︸

w+

(7)

+ (FP1 − FP2) ∗p(−) ∗ C(+|−)
︸ ︷︷ ︸

w
−

Second, the performance difference should be measured between the
appropriate classifiers on each ROC curve – the classifiers out of the set
of possibilities on each curve that would be used at each given operating
point. This is a crucial point that will be discussed in Section 5. To
illustrate how intricate this is, suppose the two classes are equiprobable
but that the ratio of the misclassification costs might vary. In Figure
12(a) for a cost ratio of 2.1 the classifier marked A on the dashed curve
should be compared to the one marked B on the solid curve. But if the
ratio was 2.3, A should be compared to the trivial classifier marked C
on the solid curve at the origin.

The dashed and solid cost curves in Figure 12(b) correspond to
the dashed and solid ROC curves in Figure 12(a). The horizontal line
atop the solid cost curve corresponds to classifier B. Classifier C is
the trivial “always negative” classifier, the diagonal cost curve rising
from (0,0) towards (1,1). The vertical distance between the cost curves
for the dashed and solid classifiers directly indicates the performance
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difference between them. The dashed classifier outperforms the solid
one – has a lower or equal expected cost – for all values of PC(+).
The maximum difference is about 20% (0.25 compared to 0.3), which
occurs when PC(+) is about 0.3 or 0.7. Their performance difference
is negligible when PC(+) is near 0.5, less than 0.2 or greater than 0.8.
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Figure 13. Various C4.5 Splitting Criteria on the Sonar Dataset (a) ROC Curves
— (b) Corresponding Cost Curves

The difficulty of comparison is even worse with data from real ex-
periments. The ROC curves in Figure 13(a) show the performance of
the decision trees built on the Sonar dataset by C4.5 with different
splitting criteria (Drummond and Holte, 2000b). The ROC curves are
close together and somewhat tangled, making visual analysis difficult.
These are typical of the comparative experiments in machine learning.
While it is clear that the DKM splitting criterion dominates the others,
there is no indication of how much better DKM is than them or how
much their performances differ from one another.

Figure 13(b) shows the corresponding cost curves. The tangled ROC
curves are now cleanly separated. Although DKM dominates, it can
now be seen that its performance differs little from ENT’s over a fairly
broad range, 0.3 < PC(+) < 0.6. These two splitting criteria have
similar operating ranges and are clearly superior to the other two. It
can also be clearly seen that GINI dominates ACC over most of their
operating range.

4.5. Averaging Cost Curves

This subsection addresses the question: what is the average of perfor-
mance results from several independent evaluations of classifier C (e.g.
the results of 10-fold cross-validation)?
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Figure 14. Vertical and Horizontal Averages of two ROC curves

Each solid line in Figure 14 is an ROC curve based on a single non-
trivial classifier. One is based on the point (FP1, TP1) = (0.04, 0.4),
the other is based on the point (FP2, TP2) = (0.3, 0.8). We assume
that they are the result of learning or testing from different random
samples, or some other cause of random fluctuation in performance,
and therefore their average can be used as an estimate of expected
performance. The question is, how exactly shall the “average” of the
two curves be calculated?

There is no universally agreed-upon method of averaging ROC curves.
Swets and Pickett (1982) suggest two methods, pooling and “aver-
aging”, and Provost et al. (1998) propose an alternative averaging
method. The Provost et al. method is to regard y, here the true positive
rate, as a function of x, here the false positive rate, and to compute
the average y value for each x value. We call this method “vertical
averaging”. In Figure 14 the vertical average is one of the dotted lines
in between the two ROC curves. The other dotted line is the “hori-
zontal” average - the average false positive rate (x) for each different
true positive rate (y). As the figure illustrates, these two averages are
intrinsically different.

An important shortcoming of these methods of averaging is that the
performance (error rate, or cost) of the average curve is not the average
performance of the two given curves. The easiest way to see this is to
consider the iso-performance line that connects the central vertices of
the two ROC curves in Figure 14. The vertical and horizontal averages
do not touch this line; they are well below it.

Now consider what vertical averaging would do in cost space, where
each x value is an operating point and y is performance (normalized
expected cost). The vertical average of two cost curves is the aver-
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Figure 15. (a) Vertical Average of the Cost Curves corresponding to the ROC curves
in Figure 14 — (b) Corresponding ROC Curve.

age performance at each operating point – precisely what we wish to
estimate. The solid lines in Figure 15(a) are the ROC curves from
Figure 14 translated into cost curve lower envelopes. The expected
performance based on these two cost curves is given by the bold dotted
line. Translating this average cost curve into ROC space produces the
dashed line in Figure 15(b). Note that its central vertex is on the iso-
performance line joining the vertices of the two given ROC curves (in
fact, midway between them on this line, by definition).

The reason these different averaging methods do not produce the
same result is that they differ in how points on one curve are put into
correspondence with points on the other curve. With vertical averaging
of ROC curves, points correspond if they have the same FP value. With
vertical averaging of cost curves, points correspond if they have the
same operating point. Other methods of averaging ROC curves, such as
horizontal averaging, put points on the two curves into correspondence
in yet other ways. Only the cost curve method of averaging has the
property that the expected cost of the average of the given curves is
the average of the curves’ expected costs.

4.6. Confidence Intervals on Cost Lines

This subsection addresses the question: what is the 90% confidence
interval for classifier C’s performance?

Although there has been considerable investigation of confidence
intervals for ROC curves, none of it directly addresses this question.
The vast majority of the ROC literature on confidence intervals in-
vestigates confidence intervals on the ROC curve itself, constructed in
either a point-wise manner (Dukic and Gatsonis, 2003; McNeil and
Hanley, 1984; Platt et al., 2000; Tilbury et al., 2000; Zou et al., 1997)
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or as a global confidence band (Dukic and Gatsonis, 2003; Jensen et al.,
2000; Ma and Hall, 1993). Macskassy et al. (2005) give a good review of
this work accessible to a machine learning audience. These confidence
intervals provide bounds within which a classifier’s TP and FP are
expected to co-vary, they do not directly provide bounds on the clas-
sifier’s performance9. The confidence intervals in the ROC literature
most closely related to performance are the confidence intervals placed
on scalar, aggregate performance measures such as AUC (Agarwal
et al., 2005; Bradley, 1997; Cortes and Mohri, 2005). As discussed in
the introduction, these give little indication of expected performance
under specific operating conditions.

Because cost curves plot performance as a function of operating
conditions, confidence intervals in cost space will naturally indicate
the bounds within which performance is expected to vary for every
operating condition. In this subsection, and the next, we will restrict
our attention to cost lines. Section 5 will address the general case of cost
curves, such as lower envelopes, created by the piecewise construction
of a single, hybrid classifier out of several classifiers.

The measure of classifier performance is derived from a confusion
matrix produced from a sample of the data. As there is likely to be vari-
ation between samples, the measure itself is a random variable and some
estimate of its variance is useful. This is typically done through a confi-
dence interval calculated assuming that the distribution of the measure
belongs to, or is closely approximated by, some parametric family such
as Gaussian or Student’s t. An alternative is to use computationally
intense, non-parametric methods. Margineantu and Dietterich (2000)
described how one such non-parametric approach, the bootstrap (Efron
and Tibshirani, 1993), can be used to generate confidence intervals for
predefined cost values. We use a similar technique, but for the complete
range of class frequencies and misclassification costs.

The bootstrap method is based on the idea that subsamples gen-
erated from the available data are related to those data in the same
way that the available data relate to the original population. Thus
the variance of an estimate based on subsamples should be a good
approximation to its true variance. A confidence interval is produced
from new confusion matrices generated by resampling from the original
matrix. The exact way bootstrapping is carried out depends on the
source of the variation. As we have argued throughout this paper, we
do not expect that the training set frequency represents the deployment
frequency. So to generate confidence intervals, we assume the deploy-
ment frequency is fixed, but unknown, and will be determined at the

9 This was first observed by Provost et al. (1998)
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time the classifier is used. We therefore do not need to account for any
variance in the class frequency and can draw samples as if they come
from two binomial distributions. This is often termed conditioning on
the row marginals of the confusion matrix. This manner of generating
new matrices is analogous to stratified cross validation as the class
frequency is guaranteed to be identical in every sample.

To illustrate the sampling, suppose we have the confusion matrix
of Figure 16(a). There are 30 instances, 20 of which are positive and
10 negative. The classifier correctly labels 16 out of 20 of the positive
class, but only 6 out of 10 of the negative class. We can normalize
the rows by the row totals, 20 and 10, the number of positive and the
number of negative instances respectively, resulting in two independent
binomials with probabilities P1 and P2. New matrices are produced by
randomly sampling according to these binomial distributions until the
number of positive and negative instances equal the corresponding row
totals, producing a new confusion matrix with the same row totals as
the original.

For each new confusion matrix, a gray line is plotted representing the
new estimate of classifier performance, as shown in Figure 16(b). For
ease of exposition, we generated 100 new confusion matrices (typically
at least 500 are used for an accurate estimate of variance). To find
the 90% confidence limits, if we had values just for one specific x-
value, the fifth lowest and fifth highest value could be found. A simple,
but inefficient way to do this is to find the fifth lowest and highest
line segment for many different PC(+) values. A more sophisticated
algorithm, which runs in O(n2) time (n is the number of lines) is given
in (Miller et al., 2001). It is noticeable in Figure 16(b) that there are
only a limited number of FP and FN values achieved. As there are
ten negatives, the values on the y-axis at the left hand side must be
multiples of 1/10. As there are twenty positives, those on the right hand
side are multiples of 1/20.

The confidence interval, the bold dashed lines in Figure 16(b), tends
to be broad at each end and narrower near the class distribution of the
test set, the vertical solid line. The explanation for this is as follows.
The standard deviation of the error rate, or normalized expected cost,
is given by the following equation:

σNEC = (p(+)2 ∗ σ2
FN + (1 − p(+))2 ∗ σ2

FP )
1

2 (8)

As Equation 8 is quadratic in p(+) (our x-axis, if costs are equal)
it has a single minimum. We can find that minimum by differentiating
over p(+), and setting the value to zero, as in the following equation:
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Figure 16. (a) Binomial Sampling resamples each row of the confusion matrix
independently — (b) Resulting Cost Curve Confidence Intervals (Rescaled Y)

0 = p(+) ∗ σ2
FN + (p(+) − 1) ∗ σ2

FP

The variance of FN and FP are dependent on the variance of the
binomial distributions and are given by the following equation:

σ2
FN =

P1 ∗ (1 − P1)

m
,σ2

FP =
P2 ∗ (1 − P2)

n

In this equation m is the number of positive examples in the test set
and n is the number of negative examples.

If the two binomial proportions are equal, P1 = P2 = P , then the
minimum occurs at the p(+) value given in the following equation:

0 = p(+)
P ∗ (1 − P )

m
+ (p(+) − 1)

P ∗ (1 − P )

n

0 =
p(+)

m
+

p(+) − 1

n

p(+) =
m

m + n

This is just the number of positives over the total number of in-
stances, in other words the class distribution of the test set. If the
proportions are different, P1 6= P2, the minimum occurs between the
class distribution and whichever one of FN and FP has the smaller
variance.
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4.7. Testing if Performance Differences are Significant

This subsection addresses the question: for what misclassification costs
and class probabilities is the difference in performance between classifier
C1 and classifier C2 statistically significant?

Although it is useful to have a confidence interval around the per-
formance estimate of a single classifier, often we want to compare two
classifiers and determine if the difference in their performance is sta-
tistically significant. For example, consider the two classifiers whose
cost curves are shown as thick dashed lines in Figure 17(a). The lower
line dominates the upper one, but is the difference in performance
significant? The shaded area around the upper line indicates the 90%
confidence interval for this classifier’s performance. The confidence in-
terval includes the lower line for PC(+) values less than 0.5, suggesting
that, at least for these PC(+) values, the difference is not significant.
In Figure 17(b) the dark shaded region is the intersection of the 90%
confidence intervals for the two classifiers. Clearly they overlap for every
possible PC(+) value.
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Figure 17. (a) Confidence Interval for the Upper Cost Curve (Rescaled Y)— (b)
Union (light shade) and Intersection (dark shade) of the Confidence Intervals for
Both Cost Curves (Rescaled Y)

We might conclude that there is not a statistically significant differ-
ence between the classifiers, but this would not be a sound conclusion.
The confidence interval of the difference between these two classifiers’
performances depends not only on the standard deviations of the two
classifiers but also on their correlation. Equation 9 gives the standard
deviation σZ of the difference, Z, of two random variables, X and Y ,
where ρ is the correlation.
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Z = X − Y (9)

σZ = (σ2
X + σ2

Y − 2σX ∗ σY ∗ ρ)
1

2

σZ =







|σX − σY |, when ρ = 1

(σ2
X + σ2

Y )
1

2 , when ρ = 0
σX + σY , when ρ = −1

(10)

As Equation 10 shows, if X and Y are perfectly positively correlated
(ρ = 1) then the standard deviation of Z, their difference, depends
on the absolute difference of their standard deviations. If they are
uncorrelated (ρ = 0) Z’s standard deviation is the Euclidean sum of X
and Y ’s standard deviations. If they are perfectly negatively correlated
(ρ = −1), Z’s standard deviation is the sum of X and Y ’s standard
deviations. Determining statistical significance, or lack thereof, by the
overlap of two confidence intervals is equivalent to making the worst
case assumption that they are perfectly negatively correlated.

Fortunately, a slight extension of the approach of Margineantu and
Dietterich (2000) enables us to take the correlation of the classifiers cor-
rectly into account. The process is similar to that for a single classifier,
but now a 3-dimensional matrix is used. This matrix is shown in the
middle of Figure 18. The matrix is split into two layers: the upper layer
is for examples from the positive class, the lower layer is for examples
from the negative class. In each layer, the columns represent how the
first classifier labels instances and the rows represent how the second
classifier labels the same instances. If the matrix is projected down
to two dimensions, by summing over the other classifier, a confusion
matrix for each classifier is produced.

We fix the number of examples in each class and then sample each
layer as if it were a 4-valued multinomial until we have the requisite
number of instances for each class. This is similar to the sampling
used for a single classifier, except we now sample two multinomials
rather than two binomials. Sampling in this way faithfully captures
the correlation of the two classifiers, i.e. how they jointly classify par-
ticular instances, without having to explicitly measure the correlation
coefficient ρ. After a new matrix is created by this resampling method,
it is projected down to create a confusion matrix for each classifier,
resulting in a cost line representing the performance of each classifier.
These two lines are subtracted to create a single cost line representing
the performance difference between the two classifiers. This process is
then repeated many times to create a large set of performance-difference
lines, from which a confidence interval for the difference is calculated.
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Figure 18. 3-Dimensional Confusion Matrix for Significance Testing

The thick continuous line at the bottom of Figure 19(a) represents
the difference between the means of the two classifiers, which is the
same as the mean difference. The shaded area represents the confidence
interval of the difference, computed in the manner just described. As
the difference can be negative, the y-axis has been extended downwards.
Here we see that the confidence interval does not contain zero. So the
difference between the classifiers is statistically significant for all pos-
sible operating points. Figure 19(b) shows the same two classifiers but
with the classifications less correlated. Notably, the confidence interval
is much wider and includes zero, so the difference is not statistically
significant. Thus cost curves give a nice visual representation of the
significance of the difference in expected cost between two classifiers
across the full range of misclassification costs and class frequencies.
The cost curve representation also makes it clear that performance dif-
ferences might be significant for some range of operating points but not
others. An example of this is shown in Figure 20, where the difference
is significant only if PC(+) > 0.7.

As with confidence intervals, significance testing for ROC curves
has focused on properties other than performance. Metz and Kronman
(1980) show how to test if the parameters defining two ROC curves
in the binormal model are significantly different. Metz et al. (1983)
describe a more general approach for significance testing of properties
of ROC curves and applies it in three ways: (1) to test if the binormal
parameters that define two ROC curves are different; (2) to test if two
ROC curves have different TP values for a given FP ; and (3) to test if
the AUC of two ROC curves are different. By contrast, the significance
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Figure 19. Confidence Interval Around The Difference in Two Classifiers’ Perfor-
mance (a) High Correlation — (b) Low Correlation
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Figure 20. Confidence Interval for the Difference, Medium Correlation

test, just described for cost curves, determines if the performance of two
classifiers is significantly different for each possible operating point.

5. Selection Criteria For Choosing A Classifier Given

Specific Operating Conditions

As noted in Section 3.1, it is often easy, by varying a parameter such
as a classification threshold or cost matrix, or by varying the class
distribution in the training set, to create a whole set of classifiers.
These are visualized as a set of points in ROC space and as a set of
lines in cost space. Provost and Fawcett (2001) observed that a hybrid
classifier could be created out of a set of such classifiers by selecting
among them based on the current operating conditions. For example,
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classifier A might be selected if PC(+) < 0.5, but classifier B selected
if PC(+) ≥ 0.5.

The criterion used to determine which classifiers are selected, given
the current operating conditions, we refer to as the selection criterion.
The first issue discussed in this section is how well the different selec-
tion criteria currently in use can be visualized in ROC space and cost
space. The second issue addressed is how the methods defined above for
computing confidence intervals and determining statistical significance
for cost lines can be applied to hybrid classifiers.

5.1. Alternative Selection Criteria

This section discusses some commonly used selection procedures.

5.1.1. Performance-Independent Selection Criteria

One commonly used selection criterion is to select the classifier whose
parameter settings and training conditions most closely agree with the
current operating conditions (Ting, 2004). This is most clearly seen in
studies of cost-sensitive learning, where the cost matrix used to train
the classifier is the same as the cost matrix used to test it (Domingos,
1999; Kukar and Kononenko, 1998; Margineantu, 2002; Pazzani et al.,
1994; Ting, 2000; Turney, 1995; Webb, 1996). Likewise, Zadrozny et al.
(2003) and Radivojac et al. (2003) adjust the training set distributions
in precise accordance with the costs used in testing the resulting classi-
fiers. We call this kind of selection criterion “performance independent”
because a classifier is selected without considering how well it will
perform in the current operating conditions.

In cost space this criterion is easy to visualize, as seen in Figure
21(a). The gray lines are the classifiers available for selection. Each line
has a bold portion indicating the operating conditions in which it will be
used as determined by the selection criterion defined above. Collectively
these bold lines are a hybrid cost curve, an unbiased estimate of the
hybrid classifier’s performance.

This selection criterion can also be visualized in ROC space by
drawing two line segments through each ROC point, with the slopes
of the line segments representing the range of operating conditions for
which that point would be selected. This is illustrated with the solid
line segments in Figure 21(b). It gives rise to the ROC convex hull (the
dashed curve in Figure 21(b)) only if this selection criterion happens
to make cost-minimizing selections, which in general it will not do.
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Figure 21. (a) Hybrid Cost Curves formed by two different selection procedures
(solid: performance-independent selection; dashed: cost-minimizing selection). (b)
The corresponding ROC visualization of the two selection procedures.

5.1.2. Cost-Minimizing Selection Criterion

Although the preceding criterion, which matches training conditions to
testing conditions, is widely thought to produce superior performance,
it is not guaranteed to produce optimal performance. This can be seen
by the fact that the solid line produced by this criterion in Figure 21(a)
is well above the lower envelope (the dashed line) for almost all possible
operating points. The suboptimality of the performance-independent
selection criterion arises in actual practice. The only large-scale study
of this fact is by Weiss and Provost (2003). It is illustrated in Figure
22, which shows the performance of Naive Bayes on the UCI Sonar
dataset. The different classifiers are produced by varying Naive Bayes’s
threshold. The performance-independent criterion, in this case, is to set
the threshold to correspond to the operating conditions. For example,
if PC(+) = 0.2. the Naive Bayes threshold is set to 0.2. The solid line
in Figure 22 is the performance of the hybrid created by this selection
procedure. It is clearly suboptimal for all operating conditions except
in a narrow range around PC(+) = 0.45, and performs considerably
worse than the trivial classifiers for PC(+) < 0.2 and PC(+) > 0.7.

An alternative criterion, implicitly suggested by the ROC convex
hull (Provost and Fawcett, 2001), is to choose the classifier that per-
forms best for each operating point regardless of its training conditions
or parameter settings. There are few examples of the practical appli-
cation of this technique. One example is (Fawcett and Provost, 1997),
in which the decision threshold parameter was tuned to be optimal,
empirically, for the test distribution. This criterion is visualized very
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Figure 22. Naive Bayes on the Sonar dataset: Hybrid Cost Curves formed by two dif-
ferent selection procedures (Rescaled Y) (solid: performance-independent selection;
dashed: cost-minimizing selection).

well in both ROC space (the ROC convex hull) and cost space (the
lower envelope).

5.1.3. Neyman-Pearson Criterion

The Neyman-Pearson criterion comes from statistical hypothesis test-
ing and minimizes the probability of a type two error for a maximum
allowable probability of a type one error. For our purposes, this means
fixing the maximum acceptable false positive rate and then finding the
classifier with the largest true positive rate. ROC curves are ideally
suited for this purpose because the x-axis of ROC space is precisely
the quantity (false positive rate) constrained by the Neyman-Pearson
criterion. The optimal classifier can found by drawing a vertical line
for the particular value of FP until it intersects with the ROC convex
hull, as shown by the dashed line in Figure 23(a).

The procedure is equally easy in cost space. Remembering that the
intersection of a classifier with the y-axis at PC(+) = 0 gives its false
positive rate, a point can be placed on the y-axis representing the
criterion. This is marked FP in Figure 23(b). Immediately on either
side of this point are the endpoints of two of the classifiers forming
sides of the lower envelope. Connecting the new point to where those
two classifiers intersect creates the classifier optimizing the Neyman-
Pearson criterion. Extending it to where it crosses the line at x = 1
gives its TP value.
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Figure 23. Neyman-Pearson Criterion (a) ROC Curve – (b) Cost Curve (Rescaled
Y)

5.1.4. Workforce Utilization

The workforce utilization criterion is based on the idea that a workforce
can handle a fixed number of cases, factor W in Equation 11. To keep
the workforce maximally busy we want to select the best W cases. This
is realized by the inequality condition of Equation 11 and is the line
given by Equation 12.

TP ∗ P + FP ∗ N ≤ W (11)

TP = −
N

P
∗ FP +

W

P
(12)

Because Equation 12 is a linear relation between the two axes defin-
ing ROC space, the workforce utilization criterion is as easily visualized
in ROC space as the Neyman-Pearson criterion. It is a negatively sloped
line in ROC space, such as the dashed line in Figure 24(a), and the
optimal classifier is the point where this line intersects the ROC convex
hull.

Like all lines in ROC space, the workforce utilization criterion can
be transformed into a point in cost space using Equation 3 – the dashed
line in Figure 24(a) is transformed into the point shown as a circle on
the left hand side of Figure 24(b). Because the line’s slope is negative,
the transformation results in a negative PC(+) value. A process similar
to the one for the Neyman-Pearson criterion can now be applied –
extend the cost curve lines for the classifiers until they have the same
PC(+) value as this point, indicated by the vertical dashed line. Then
pick the nearest classifiers above and below the point at that PC(+)
value, and draw a line from the point through the intersection point of
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Figure 24. Workforce Utilization (a) ROC Curve — (b) Cost Curve

those two classifiers. This, the bold line in Figure 24(b), represents the
classifier that optimizes workforce utilization. Unfortunately the point
representing the workforce utilization criterion can be arbitrarily far
outside the normal range for PC(+), which can reduce the ease and
effectiveness of visualizing this criterion. ROC curves are much better
than cost curves for visualizing workforce utilization.

5.2. Analyzing Hybrid Classifiers

It is important to realize that the cost curve (or ROC curve) for a
hybrid classifier built piecewise from the cost curves for the individual
classifiers that make up the hybrid is not an unbiased estimate of per-
formance except when a performance-independent selection criterion is
used. The reason is that the other criteria use the FP and TP values
of the underlying classifiers to create the hybrid, and therefore the
data used to estimate these FP and TP values is part of the training
set for the hybrid classifier, even if it was not used in training the
base classifiers. To emphasize this difference we refer to these criteria
as empirical selection criteria, in contrast to performance-independent
criteria. To obtain unbiased estimates of the performance of a hybrid
classifier constructed by empirical selection criteria, it is necessary to
subject the hybrid to a new round of testing with fresh data (Bengio
and Mariéthoz, 2004).

If one adopts an empirical selection criterion, it radically changes
the way in which comparative machine learning experiments are con-
ducted. The present practice is to compare learning algorithms on the
same training set. This is correct if a performance-independent selection
criterion is used to construct a hybrid, but is not correct if an empirical
selection criterion is used. For the latter, one must attempt to find
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the optimal training sets and parameter settings for each operating
point separately for each learning algorithm, and then compare the
lower envelopes that result. This is necessary because, in general, the
training set which produces the best performance for a given operating
point will be different for the two learning algorithms and this method
of comparison will therefore produce different (and more appropriate)
results than present practice.

Having now reached an understanding that there are different se-
lection procedures for constructing hybrids, and new methods required
to estimate their performance, it is now straightforward to extend the
methods of the preceding sections for computing confidence intervals
and significance of difference from cost lines to hybrids. The cost curve
for a hybrid classifier is piecewise linear and it is merely a matter of
applying the previous techniques on a piecewise basis to construct a
confidence interval for a hybrid classifier, or the significance of the
difference between two hybrids.

6. Limitations of Cost Curves

In this section we summarize the main limitations of cost curves. We
first discuss limitations that cost curves share with ROC curves and
then discuss circumstances in which ROC curves are preferable to cost
curves.

This paper has focused on classification problems in which there
are only two classes. This is because of our emphasis on visual per-
formance analysis. High-dimensional functions are notoriously difficult
to visualize and the number of dimensions increases quadratically with
the number of classes. Perhaps the best way to use cost curves, or
ROC curves, to visualize performance with multiple classes is to project
the high-dimensional space into a set of 2-dimensional spaces, such as
1-class-versus-all-others for each class.

It is important to note that the mathematics underlying cost curve
techniques, the methods for averaging curves and computing operating
ranges, and the bootstrap methods for computing confidence intervals
and statistical significance all extend trivially to any number of classes,
although the bootstrap methods will suffer from sparsity of data if
the number of classes is large. A number of researchers have looked
at extensions to ROC curves for more than two classes (Srinivasan,
1999; Ferri et al., 2003). As the duality between the two representations,
ROC and Cost curves, also holds for higher dimensions (Pottmann,
2001), we expect that these extensions can be easily applied to our
representation.
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A second limitation shared by ROC analysis is the cost model used
(see Appendix A). We have assumed that the cost of a misclassification
is associated with a class, not an individual example (Zadrozny et al.,
2003), and that costs are additive. Furthermore, the claim that cost
curves (and ROC curves) represent performance for “all” class distri-
butions is restricted to changes in class priors that leave the within-class
distributions, or likelihoods, unchanged (Webb and Ting, 2005).

We are also tied to one particular, albeit very general, loss function.
It is an interesting question if other loss functions might be used while
still maintaining most of the benefits of cost curves. A new represen-
tation called “Expected Performance Curves” (Bengio et al., 2005)
could be regarded as a generalization of cost curves using different
loss functions. Cost curves are produced in their framework by setting
α = PC(+), V 1 = FN , V 2 = FP and C = V = α∗FN +(1−α)∗FP .
But the generalization comes at a cost, losing much of the power and
intuitive feel of our representation. It is worth exploring if there is a
middle ground where the flexibility of Expected Performance Curves is
combined with the strengths of cost curves.

Another limitation that ROC analysis and cost curves share is the
lack of any effective way to show, in a single plot, the performance
results obtained on several different datasets. This difficulty follows
from the fact that these techniques use two dimensions to present the
performance on a single dataset. By contrast, scalar measures are one-
dimensional leaving the second dimension free to be used creatively for
comparing performance on multiple datasets (for example, see Figure
3 in (Cohen, 1995)).

This paper has primarily been concerned to demonstrate that cost
curves overcome several deficiencies of ROC curves while retaining most
of their desirable properties. However, there are certain circumstances
in which ROC curves are superior to cost curves for visualizing perfor-
mance. One of these was mentioned earlier - Section 5.1.4 showed that
ROC curves are very well suited to visualizing the workforce utilization
criterion. Visualization of this criterion is possible with cost curves but
not as conveniently.

Figure 25 shows the ROC curve and corresponding cost lines for
Naive Bayes on the Sonar dataset. There are many distinct classifica-
tion thresholds, and therefore many ROC points and cost lines. With
such a large number of classifiers it is not easy to see the entirety of
an individual classifier’s cost line across the entire PC(+) range. By
contrast, a single ROC point can be seen equally easily no matter how
many other points are displayed along with it. This weakness of cost
curves can be remedied simply by highlighting individual classifiers that
are of interest.
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Figure 25. (a) ROC Curve for Naive Bayes on the Sonar dataset — (b) Correspond-
ing Cost Lines (Rescaled Y)

The final advantage of ROC curves over cost curves is that ROC
curves can be used when the task is to rank alternatives, instead of
classifying them. Cost curves are only applicable to classification sys-
tems10.

7. Conclusions

This paper has presented cost curves, an alternative to ROC curves for
visualizing the performance of 2-class classifiers in which performance
(error rate or expected cost) is plotted as a function of the operating
conditions – misclassification costs and class distributions summarized
in a single number, PC(+). Cost curves share many of ROC curves’
desirable properties, but also visually support several crucial types of
performance assessment that cannot be done easily with ROC curves,
such as showing confidence intervals on a classifier’s performance, and
visualizing the statistical significance of the difference in performance
of two classifiers. A software tool based on cost curves is freely avail-
able and provides touch-of-a-button visualization for all the analyses
described in this paper.

10 This is the reason certain well-known visualization techniques have not been
discussed in this paper, most notably precision-recall curves and lift curves. These
techniques are for visualizing the performance of ranking systems, not classification
systems. This paper is exclusively concerned with classification.
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Appendix

A. The Cost Model

We adopt in this paper the conventional cost model in which the cost
associated with the classification of an example depends only on the
example’s class, and that the aggregate cost over a set of examples is
the sum of their individual costs.

In the most general setting for two class problems, the cost matrix
has four values and expected cost given by the following equation:

E[Cost] = C(+|+)

TP
︷ ︸︸ ︷

∗P (+|+) ∗P (+) + C(−|−)

TN
︷ ︸︸ ︷

∗P (−|−) ∗P (−)

+ C(+|−) ∗P (+|−)
︸ ︷︷ ︸

FP

∗P (−) + C(−|+) ∗P (−|+)
︸ ︷︷ ︸

FN

∗P (+)

Substituting 1 − FN = TP and 1 − FP = TN and gathering the
terms for FP and FN results in the following equation:

E[Cost] = C(+|+) ∗ P (+) + C(−|−) ∗ P (−)

+ (C(−|+) − C(+|+)) ∗ FN ∗ P (+)

+ (C(+|−) − C(−|−)) ∗ FP ∗ P (−)

The first two terms on the right hand side are independent of the
classifier and represent the cost incurred when every example is cor-
rectly classified, i.e. when FP and FN are both zero. Since this cost-
per-example is unavoidable, cost is usually taken to be the additional
cost incurred above it. We can simplify further, by replacing the cost
differences with single terms, resulting in the equation:

E[Cost] = C(−|+) ∗ FN ∗ P (+)

+ C(+|−) ∗ FP ∗ P (−)
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