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Abstract

Accurate probability estimation generated by learning

models is desirable in some practical applications, such as

medical diagnosis. In this paper, we empirically study tra-

ditional decision-tree learning models and their variants in

terms of probability estimation, measured by Conditional

Log Likelihood (CLL). Furthermore, we also compare deci-

sion tree learning with other kinds of representative learn-

ing: naı̈ve Bayes, Naı̈ve Bayes Tree, Bayesian Network,

K-Nearest Neighbors and Support Vector Machine with re-

spect to probability estimation. From our experiments, we

have several interesting observations. First, among various

decision-tree learning models, C4.4 is the best in yielding

precise probability estimation measured by CLL, although

its performance is not good in terms of other evaluation

criteria, such as accuracy and ranking. We provide an ex-

planation for this and reveal the nature of CLL. Second,

compared with other popular models, C4.4 achieves the

best CLL. Finally, CLL does not dominate another well-

established relevant measurement AUC (the Area Under

the Curve of Receiver Operating Characteristics), which

suggests that different decision-tree learning models should

be used for different objectives. Our experiments are con-

ducted on the basis of 36 UCI sample sets that cover a wide

range of domains and data characteristics. We run all the

models within a machine learning platform - Weka.

1. Introduction

In the areas of machine learning and data mining, clas-

sification accuracy has been established as the major crite-

rion to evaluate learning models. However, it completely

ignores probability estimation generated by models as long

as misclassification does not occur. In many real applica-

tions, accurate probability estimation is crucial compared

with merely classifying unlabeled samples into a fixed num-

ber of categories. For instance, in cost-sensitive learning,

the optimal prediction for an unlabeled sample st is the

class cj that minimizes [3]

h(st) = arg min
cj∈C

∑

ci∈C−cj

p̂(ci|st)C(cj , ci), (1)

where C(cj , ci) indicates the cost of misclassifying st into

ci in a cost matrix C. One can observe that the metric func-

tion directly relies on accurate probabilities.

In practice, however, the true probability of unlabeled

samples is often unknown given a sample set with class la-

bels. Is there any way to measure the probability estimation

yielded by a model when the true probability is unknown?

Fortunately, the answer is yes. Recently, Conditional Log

Likelihood (CLL) has been proposed and used for this pur-

pose [4, 5, 6]. In Equation 2, a formal CLL definition is

given.

CLL(Γ|S) =

n∑

t=1

log PΓ(C|st), (2)

where Γ is a learning model and S is a sample set with

n samples. [4] described that maximizing Equation 2

amounts to best approximate the conditional probability of

C given each unlabeled sample st, and is equivalent to min-

imizing the conditional cross-entropy.

Another recently widely-used alternative is the Area Un-

der the ROC Curve, or simply AUC [16]. Assume that a

learning model Γ produces the probability p̂(c|st) for each

unlabeled sample st, and that all the unlabeled samples are

ranked based on p̂(c|st). For binary classification, AUC can

be easily computed as follows [7].

AUC(Γ|S) =
S+ − n+(n+ + 1)/2

n+n−

, (3)

where n+ and n− are the numbers of positive and nega-

tive samples respectively, and S+ =
∑

ri, where ri is the

rank of ith positive sample in the ranking. It can be ob-

served that AUC essentially measures the quality of a rank.

More precisely, the more negative samples that are listed



preceding positive samples, the larger AUC value we will

get. Note that ranking is based on probability estimation,

and it would be accurate if the probabilities are accurate.

Thus, AUC can be also used to evaluate the probability es-

timation of a learning model. However, it seems that AUC

is only an indirect evaluation metric.

The liaison between the above two metrics is demon-

strated by two instances. Assume that s+ and s− are a pos-

itive and a negative sample respectively, and their true class

probabilities are p(+|s+) = 0.6 and p(−|s−) = 0.5. A

learning model Γ, which yields class probability estimates

p̂(+|s+) = 0.5 and p̂(+|s−) = 0.2, gives a correct order of

s+ and s− in the ranking that results in a good AUC value.

Notice that the probability estimation for s− is far inaccu-

rate. However, obtaining a relatively better probability esti-

mate could not guarantee a good AUC result. Suppose that

another model Θ outputs probability estimates for s+ and

s− as p̂(+|s+) = 0.6 and p̂(+|s−) = 0.6. As we can see

Θ works better than Γ in terms of CLL, but it will generate

a worse AUC result since s+ and s− share the same posi-

tive probability and will be ordered randomly, which could

greatly aggravate the AUC value.

Decision trees are well known as a typical learning

model for classification accuracy, although it has been ob-

served that traditional decision trees produce poor probabil-

ity estimation [18]. A variety of methods have been pro-

posed to learn decision trees for accurate probability esti-

mation [17, 14, 12], and AUC is often used as the measure-

ment. Huang and Ling [9] empirically studied the perfor-

mance of various learning models in terms of AUC. As we

notice, it seems that CLL is a more straightforward mea-

surement to evaluate learning models with respect to prob-

ability estimation. How about the performance of learning

models in terms of CLL? What is the relation between CLL

and AUC? These are the key motivations of the paper. We

primarily focus on decision tree learning. We first system-

atically investigate the use of CLL as the performance met-

ric to evaluate tree-related models. In particular, as a case

study, we compare C4.4 (the improvement version of C4.5

for better probability estimation) and its variants, with C4.5

( traditional decision tree) and its variants in terms of CLL

performance. Second, we also experimentally study sev-

eral commonly-used models, such as TAN and SVM, with

the purpose of which model is currently best in generating

accurate probability estimation. The paper concludes with

several observations. (1) Among tree-related models, C4.4

is best in yielding accurate probability estimation. (2) In

the domain of classic learning models, C4.4 is also the best

in terms of accurate probability estimation. (3) The induc-

tive associations between AUC and CLL under decision tree

learning paradigms are as well introduced.

This paper is outlined as follows: Section 2 reviews re-

cent work on improving decision trees for better probability

estimation. Section 3 introduces the experiment configura-

tion and methodology. In Section 4 empirical results are

analyzed and discussed, and we will close our paper in Sec-

tion 5 by drawing our inclusions and presenting the further

work.

2. Optimizing Probability Estimation

In a decision boundary-based theory, an explicit decision

boundary is induced from a set of labeled samples, and an

unlabeled sample st is categorized into class cj if st falls

into the decision area corresponding to cj . However, tradi-

tional decision trees, such as C4.5 [20] and ID3 [19], have

been observed to produce poor probability estimation [18].

Normally, decision trees produce probabilities by comput-

ing the class frequencies from the sample sets at leaves.

For example, assuming there are 30 samples at a leaf, 20

of which are in the positive class and others belong to the

negative class. Therefore, each unlabeled sample that falls

into that leaf will be assigned the same probability estimates

(p̂+(+|st) = 0.67 (20/30) and p̂−(−|st) = 0.33(10/30)).

Equation 4 gives a formal expression.

p̂(cj |st) =
ncj

n
, (4)

here, ncj
is the number of samples that belong to class

cj and n is the total number of samples at this leaf. Due

to using Information Gain or Gain Ratio as splitting met-

rics, traditional tree inductive algorithms prefer a small tree

with a substantial amount of samples at leaves and try to

make leaves pure. This will incur two major problems. (1)

Many unlabeled samples will share the same probability es-

timates, which definitely biases against producing accurate

probability estimation. In addition, the resulting probabili-

ties will be systematically shifted towards zero or one. (2)

Decision trees adopt some pruning techniques, such as ex-

pected error pruning or pessimistic error pruning, for high

classification accuracy. However, some branches, which

make no sense of improving accuracy but contribute to get

accurate probability estimation, will be removed.

Because of this, learning decision trees that accurately

estimate the probability of class membership, called Prob-

ability Estimation Trees (PETs), has attracted much atten-

tion. Provost and Domingos [17] presented a few of such

techniques to modify C4.5 for better probability estimation.

First, using Laplace correction at leaves, probability esti-

mates can be smoothed towards the prior probability distri-

bution. Second, by turning off pruning and collapsing in

C4.5, decision trees can generate larger trees to give more

precise probability estimation. The final version is called

C4.4. They also pointed out that bagging, an ensemble

method that most of the improvement is due to aggregation

of probabilities of a suite of trees, could greatly calibrate

probability estimation of decision trees.



Ferri et al. [14] introduced another approach, call m-

Branch, to tune probability estimates at leaves. m-Branch is

a recursive root-to-leaf extension of the m probability esti-

mation, in which, for each leaf, the probability estimates are

generated by propagating the probability estimates of each

of its parent nodes from the root down to itself. Equation 5

is the formal expression of m-Branch method:

p̂child(cj |st) =
ncj

+ m ∗ p̂parent(cj |st)∑
cj∈C ncj

+ m
, (5)

where parameter m is adjusted by the depth and cardinality

of the node, and ncj
is the number of samples that belong

to class cj within the node.

Ling and Yan [12] presented their work to augment de-

cision trees with respect to better AUC. They described a

novel algorithm, in which, for any given unlabeled sample

st, instead of using the labeled samples at the leaf where

st falls into, the probability estimates are the averages of

probability estimates from all the leaves of this tree. The

contribution of each leaf is decided by the number of un-

equal parent attribute values (parent attributes are defined

as the attributes on the path from the root to a leaf) that the

leaf has, compared to st.

Deploying a kernel model at each leaf to produce distinct

probability estimates is also an alternative solution to over-

come the deficiencies of decision trees. Kohavi [10] pro-

posed a hybrid model, called Naı̈ve Bayes Tree (NBTree),

which uses decision tree as the general structure and de-

ploys naı̈ve Bayes at the leaves. The intuition behind it is

that: in comparison with decision trees, naı̈ve Bayes works

relatively better when the sample set is small. [10] proved

that NBTree greatly improves the classification accuracy,

but it didn’t mention the probability estimation performance

of NBTree. Based on the labeled samples at a leaf, NBTree

denotes p̂(cj |st) as below:

p̂(cj |A(L)) = αp̂(Al(L)|cj ,Ap(L))p̂(cj |Ap(L)), (6)

where α is a normalization factor. A(L) is the com-

bined set of leaf attributes Al(L) and path attributes

Ap(L). All decomposed terms are conditional probabili-

ties of Ap(L). p̂(cj |Ap(L)) is the conditional probability

on path attributes. p̂(Al(L)|cj ,Ap(L)) is the naı̈ve Bayes

deployed at this leaf. From the conditional independence

assumption of naı̈ve Bayes, the following equation stands:

p̂(Al(L)|cj ,Ap(L)) =
∏n

i=1
p̂(Ali(L)|cj ,Ap(L)) where

Ali(L) is an individual leaf attribute and n represents the

number of leaf attributes.

Another related work involves Bayesian networks [15].

Bayesian networks are directed acyclic graphs that encode

conditional independence among a set of random variables.

Each variable is independent of its non-descendants in the

graph given the state of its parents. Tree Augmented Naı̈ve

Bayes (TAN), proposed by [4], approximates the interaction

between attributes by using a tree structure imposed on the

naı̈ve Bayesian framework. Indeed, decision trees divide

a sample space into multiple subspaces and local condi-

tional probabilities are independent among those subspaces.

Therefore, attributes in decision trees can repeatedly ap-

pear, while TAN describes the joint probabilities among at-

tributes, so each attribute appears only once.

3. Experiments

3.1. Model Introduction and Organization

Most methods for improving decision trees aim at ob-

taining their probability estimation measured by AUC.

However, can they also produce better results in CLL? And

how about other classical models work with reference to

CLL? We conducted an empirical study to answer a series

of relevant questions.

The details of models compared in our experiments are

depicted as follows.

C4.5-L: C4.5 (traditional decision tree [20]) with

Laplace correction at leaves. Here, we use Laplace cor-

rection at leaves to avoid the zero-frequency problem.

C4.5-L&B: C4.5 with bagging and Laplace correction

at leaves.

C4.4: an improved decision tree model for better proba-

bility estimation [17].

C4.4-B: C4.4 with bagging.

C4.5-M: C4.5 with m-Branch [14] applied.

C4.4-M: C4.4 with m-Branch applied.

C4.5-LY: C4.5 with the Ling&Yan’s algorithm [12] ap-

plied.

C4.4-LY: C4.5 with the Ling&Yan’s algorithm applied.

NB: naı̈ve Bayes.

TAN: an extended tree-like naı̈ve Bayes [4]. The im-

proved ChowLiu algorithm is used to learn the structure.

NBTree: the hybrid model of decision tree and naı̈ve

Bayes [10].

KNN-5: a typical lazy model that finds k nearest labeled

samples as the neighbors of an unlabeled sample st. KNN

generates probability estimation via simply voting among

the class labels in the neighborhood, described in Equa-

tion 7.

p̂(cj |st) =
1 +

∑n

i=1
I{ci = cj}ẃi

o +
∑n

i=1
ẃi

, (7)

where ci is the class label of a neighbor with index i, the

indicator function I{x = y} is one if x = y and zero other-

wise, ẃi is the weight for the neighbor (the default value is

one) and o represents the number of class values. We assign

k = 5 in our experiments.



SVM: with the help of linear kernels, the sequential min-

imal optimization algorithm has been used to train a SVM

model. We use logistic regression models to improve the

yielded probabilities. [8] and [21] have introduced in par-

ticular the procedure of generating multi-class probability

estimation for SVM.

We conducted two groups of experiments. First, we sys-

tematically studied the performances of tree-related models

in producing accurate probability estimation. In this group,

C4.5, C4.4 and their PET variants (C4.5-L, C4.5-M, C4.5-

LY, C4.5-L&B, C4.4-M, C4.4-LY and C4.4-B) were com-

pared. Then, we empirically learned the efficacy of several

popular learning models for probability estimation. C4.4,

NBTree, NB, TAN, KNN-5 and SVM had been considered

in the second group. Furthermore, we also analyzed the be-

haviors of these classical models provided that the sample

set is a large or binary-class one.

3.2. Experiment Setup and Methodology

For the purpose of our study, we used 36 well-recognized

sample sets recommended by Weka [22]. Table 1 is a brief

description of these sample sets. All sample sets came from

the UCI repository [1]. The preprocessing stages of sam-

ple sets were carried out within the Weka platform, mainly

including four steps:

1. Applying the filter of ReplaceMissingValues in Weka

to replace the missing values of attributes.

2. Applying the filter of Discretize in Weka to discretize

numeric attributes. Therefore, all the attributes are

treated as nominal.

3. It is well known that, if the number of values of an

attribute is almost equal to the number of samples in

a sample set, this attribute does not contribute any in-

formation to classification. So we used the filter of Re-

move in Weka to delete these attributes. Three occurred

within the 36 sample sets, namely Hospital Number in

sample set Horse-colic.ORIG, Instance Name in sam-

ple set Splice and Animal in sample set Zoo.

4. Due to the relatively high time complexity of KNN and

SVM, we apply the filter of unsupervised Resample in

Weka to re-select sample set Letter and generate a new

sample set named Letter-2000. The selection rate is

10%.

Besides, in our experiments, Laplace correction was ap-

plied as one of the following forms. Assuming that there are

ncj
samples that have the class label as cj , t total samples

and k class values in a sample set. The frequency-based

probability estimation calculates the estimated probability

by p̂(cj) =
ncj

t
. The Laplace estimation calculates it as

Table 1. Description of sample sets used for
the experiments. We downloaded these sam-
ple sets in the format of arff from the main

web page of Weka.

Data Set Size Attr. Classes Missing Numeric

anneal 898 39 6 Y Y

anneal.ORIG 898 39 6 Y Y

audiology 226 70 24 Y N

autos 205 26 7 Y Y

balance 625 5 3 N Y

breast ⋄ 286 10 2 Y N

breast-w ⋄ 699 10 2 Y N

colic ⋄ 368 23 2 Y Y

colic.ORIG ⋄ 368 28 2 Y Y

credit-a ⋄ 690 16 2 Y Y

credit-g ⋆ ⋄ 1000 21 2 N Y

diabetes ⋄ 768 9 2 N Y

glass 214 10 7 N Y

heart-c 303 14 5 Y Y

heart-h 294 14 5 Y Y

heart-s ⋄ 270 14 2 N Y

hepatitis ⋄ 155 20 2 Y Y

hypoth. ⋆ 3772 30 4 Y Y

ionosphere ⋄ 351 35 2 N Y

iris 150 5 3 N Y

kr-vs-kp ⋆ ⋄ 3196 37 2 N N

labor ⋄ 57 17 2 Y Y

letter-2000 ⋆ 2000 17 26 N Y

lymph 148 19 4 N Y

mushroom ⋆ ⋄ 8124 23 2 Y N

p.-tumor 339 18 21 Y N

segment ⋆ 2310 20 7 N Y

sick ⋆ ⋄ 3772 30 2 Y Y

sonar ⋄ 208 61 2 N Y

soybean 683 36 19 Y N

splice ⋆ 3190 62 3 N N

vehicle 846 19 4 N Y

vote ⋄ 435 17 2 Y N

vowel ⋆ 990 14 11 N Y

waveform-5000 ⋆ 5000 41 3 N Y

zoo 101 18 7 N Y

⋆ indicates a large sample set; ⋄ indicates a binary-class sample set

p̂(cj) =
ncj

+1

t+k
. In the Laplace estimation, p̂(ai|cj) is cal-

culated by p̂(ai|cj) =
nicj

+1

ncj
+vi

, where vi is the number of

values of attribute Ai and nicj
is the number of samples in

class cj with Ai = ai.

We implemented AUC metric, CLL metric, m-Branch

method, Ling&Yan’s algorithm within Weka, and used the

current versions of learning models and bagging method in

Weka. We learned that using the percentage of the subset

as the confusion factor in Ling&Yan’s algorithm was bet-

ter than the proposed optimal parameter 0.3. Therefore,

we used a new confusion factor in our experiments. Multi-

class AUC has been calculated by M-measure [7]. In all ex-

periments, the AUC and CLL results for each model were

measured via a 10-fold cross validation 10 times. Runs

with various models were carried out on the same train

sets and evaluated on the same test sets. In particular, the

cross-validation folds were the same for all the experiments

on each sample set. Finally, we conducted two-tailed t-

test [13] with a significantly different probability of 0.95,



which means that we speak of two results as being “signifi-

cantly different” only if the difference is statistically signif-

icant at the 0.05 level according to the corrected two-tailed

t-test. Also, each entry w/t/l in all t-test tables indicates

that the model in the corresponding row wins w sample sets,

ties in t sample sets, and loses l sample sets, in contrast with

the model in the corresponding column.

4. Result Analysis and Discussion

In Table 2 and its t-test summary Table 3, C4.4 is the

optimal option among decision tree families when ac-

curate probability estimation is desired. Compared with

traditional decision trees, C4.4 wins C4.5-L in 10 sample

sets, ties in 21 sample sets and loses 5 sample sets. Note

that C4.4 adopts both Laplace correction at leaves and turn-

ing off pruning, therefore, we learned that stopping pruning

could significantly improve the quality of probability esti-

mation. Compared with bagged decision trees, C4.4 wins

C4.5-L&B in 16 sample sets and loses 9 samples sets; C4.4

wins C4.4-B in 20 sample sets and loses 8 sample sets.

Bagging is a voting strategy among a group of candidate

trees. [17] has proved that bagging is useful in improv-

ing probability-based ranking. However, according to our

observation of the empirical results of C4.4 and C4.4-B,

bagging is not profitable in producing precise probability

estimation. In addition, the comparison results of C4.5-L

and C4.5-L&B are also persuadable: C4.5-L wins C4.5-

L&B in 16 sample sets and loses 8 sample sets. Compared

to decision trees with m-Branch, C4.4 outperforms C4.5-M

and C4.4-M in 15 sample sets and 13 sample sets respec-

tively, and loses 6 sample sets for both of them. For apply-

ing Ling&Yan’s algorithm on decision trees, C4.4 is signif-

icantly better than C4.5-LY and C4.4-LY in 33 sample sets

and loses no sample set. Thus, we can learn that neither m-

Branch method nor Ling&Yan’s algorithm could calibrate

decision trees for accurate probabilities.

Most methods mentioned in Section 2 are intended to im-

prove probability-based ranking measured by AUC. AUC

is a relative evaluation standard. In other words, the cor-

rectness of ranking, which depends on the relative position

of a sample among a set of others, determines the final re-

sult. CLL is directly calculated via adding up log values

of probability estimates generated by a learning model for

unlabeled samples (see Equation 2). Therefore, in the dia-

gram of decision tree learning, CLL and AUC represent

two aspects of probability estimation: reliability and res-

olution. Dawid [2] described these two conceptual criteria

for studying how effective probability predictions are. Re-

liability describes the probability estimation should be reli-

able and accurate, that is, when we assign a positive class

probability p̂(+|e) to an event e, there should be roughly

1 − p̂(+|e) of the negative class probability for the event

not occurring. Resolution presents that events should be

easily ranked in terms of their probabilities. As a result,

for decision tree learning, CLL can be employed as evalu-

ating the reliability of probability estimation, and AUC will

be applied for scaling its resolution performance. In our ex-

periments, we also obtained the AUC values of all decision

tree models. Table 6 shows the t-test results. We have two

valuable observations as follows.

1. Although C4.4 performs best in terms of CLL, all

the variants of C4.4 and C4.5 proposed for improving

AUC outperforms C4.4 in terms of AUC (see Table 6),

which repeated the research results reported by other

researchers.

2. Among all the models, C4.4-B achieves the best per-

formance on AUC. This means bagging is an effective

technique in terms of improving AUC. However, as we

noticed before, bagging is not effective in improving

CLL.

Now we re-exam CLL in Equation 2. So far, we use the

real-world sample sets for our empirical study, i.e. we do

not know the real sample distributions. Equation 2 shows

that if one model gives higher estimation of p̂(cj |st) than

another, its CLL will be higher. Therefore, CLL favors

a model that gives higher probability estimation no mat-

ter what the true probability is, since the true probability

does not even appear in CLL. Indeed, when using CLL, we

imply the assumption that sample st in class cj has prob-

ability p(cj |st) = 1 and p(¬cj |st) = 0, thus, there is no

surprise that CLL favors a model giving higher probabil-

ity estimation. This can explain why C4.4 has better CLL

performance than C4.4-B because C4.4 tends to have pure

nodes, which means high probability estimation. but bag-

ging or other smoothing techniques that tend to smooth the

probabilities to avoid high variance. Therefore, CLL is just

an indirect evaluation to true probabilities. We can also con-

clude that neither CLL nor AUC dominates each other.

In Table 4 and Table 5, we compare C4.4 with non-tree

models in terms of CLL. C4.4 achieves significant improve-

ment over NB in 17 sample sets and loses 5 sample sets. As

an extension of NB in presenting more joint probability dis-

tribution, TAN still works poorly compared with C4.4 in

10 sample sets and loses 7 sample sets. Furthermore, t-test

results in Table 5 indicates that extending the structure of

NB to explicitly represent attribute dependencies (in order

to relax the conditional independence assumption of NB)

is a good way to improve the performance of probability

estimation for NB. TAN achieves substantial progress over

NB in 16 sample sets and loses only 3 sample sets. For

lazy learning models, C4.4 is better than KNN with k=5

in 12 sample sets. We also conducted a group of compar-

isons between C4.4 and KNN with k=10, 30 and 50. Ex-

periment results suggested that the bigger k is, the worse



KNN performs in terms of CLL. Due to lack of space, we

didn’t show the results of other KNN models with differ-

ent values of k. NBTree is proven to be efficient in clas-

sification accuracy, but from the results of t-test, it doesn’t

work very well compared with other typical models, and

is just competitively with NB. Some work [11] has been

done to ameliorate NBTree for precise probability estima-

tion, where CLL is used as the splitting metric to direct the

tree growth process. Although SVM doesn’t work better

than C4.4 (wins 7 sample sets and loses 12 sample sets), it

is still better than other models, such as NBTree and KNN-

5, and competitive with TAN (wins 7 sample sets and loses

8 sample sets). Besides, in AUC comparisons (Table 7),

SVM and TAN achieve better results than others.

Empirical results on large sample sets in form of CLL

absolute values have been demonstrated in Figure 1. We

are especially interested in seeing the actual CLL values on

large sample sets, because these data sets demonstrate prac-

tical cases we can meet. We choose ten sample sets from

UCI repository on the condition that the number of sam-

ples in each set is above 900. In Figure 1, From No1 to

No10 respectively denote the sample sets as German-credit,

Hypothyroid, Kr-vs-kp, Letter-2000, Mushroom, Segment,

Sick, Splice, Vowel, Waveform-5000. The plot explored the
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Figure 1. CLL performance curve on large
sample sets

behaviors of classic models when a substantial amount of

data is supplied. As we can observe that C4.4 works consis-

tently better than others (the lowest learning curve), which

stands that C4.4 is the optimal candidate for real-world do-

main problems. One valuable observation is that TAN and

SVM also work well based on these sample sets. Therefore,

TAN and SVM are good options for the cases where classi-

fication accuracy plays an important role as well in practice.

Experiments on binary-class sample sets have been

also conducted by use of sixteen UCI sample sets: Breast-

cancer, Wisconsin-breast, Horse-colic, Colic.ORIG, Credit-

rating, German-credit, Diabetes, Heart-statlog, Hepatitis,

Ionosphere, Kr-vs-kp, Labor, Mushroom, Sick, Sonar, Vote

(listed from No1 to No16 in Figure 2). Binary-class sample

sets are interesting for us because AUC can be easily calcu-

lated for these cases and we can verify results by observing

the probability assignments. Figure 2 investigated the per-
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Figure 2. CLL performance curve on binary-

class sample sets

formances of the same models measured by CLL absolute

values, and showed that C4.4 is the best option for binary

classification problems. In addition, as the plot shows, NB

works poorly in some sample sets, such as No11 and No13,

where the conditional independence assumption is heavily

violated. NBTree and TAN have both relaxed this assump-

tion in two different ways (encoding conditional indepen-

dence within tree structure or augmenting the representa-

tion ability of joint distribution), and the curves support that

NBTree and TAN work better compared with NB.

5. Conclusions and Future Work

Precise probability estimation provided by learning mod-

els is crucial in many real-world applications. In this pa-

per, we conduct a systematically experimental study on the

probability estimation performances of a group of decision

tree variants and other state-of-the-art models, such as SVM

and TAN, by use of a newly proposed model quality mea-

surement – CLL. Experiments convince us that C4.4 is the

best model for CLL among all other models. We point out

that CLL is an indirect evaluation of probability estimation

and it could work for the real world cases when the true



probability distribution is unknown, however, it favors mod-

els which give high probability estimation. We analyze the

relationship between AUC and CLL for learning tasks. We

include that neither of them dominates the other. For further

research, we are going to make similar analyses on artificial

data sets with known probability distribution. This will en-

able us to theoretically analyze the properties of CLL in de-

tail and make a comprehensive contrast between CLL and

AUC.
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Table 2. Experiment results for C4.4 versus decision tree variants: CLL & standard deviation.

Sample Set C4.4 C4.5-L C4.5-M C4.5-LY C4.5-L&B C4.4-M C4.4-LY C4.4-B

anneal -7.84±2.58 -8.49±3.22 -8.99±4.98 -73.17±2.11• -12.24±1.85 • -8.55±4.96 -74.37±2.16• -13.74±1.78•

anneal.ORIG -22.17±3.74 -25.19±3.95 • -25.24±5.74 • -86.49±2.66• -34.24±4.07 • -22.97±5.44 -87.94±1.47• -40.13±4.44•

audiology -15.37±3.39 -17.23±3.63 • -24.38±9.27 • -63.11±1.70• -32.89±3.24 • -23.23±8.82 • -63.14±1.59• -35.95±3.02•

autos -13.14±2.31 -14.36±2.58 • -15.84±2.87 • -33.58±1.11• -23.60±2.27 • -15.46±2.61 • -33.76±1.09• -24.35±2.13•

balance-scale -52.78±4.03 -56.05±3.74 • -56.36±3.47 • -55.36±0.65 -45.34±2.74 ◦ -53.26±3.37 -54.50±0.66 -46.71±2.46◦

breast-cancer -18.56±2.70 -16.27±1.84 ◦ -16.20±1.74 ◦ -17.33±0.60 -16.31±1.82 ◦ -17.59±2.57 ◦ -17.25±0.61 -17.07±2.13◦

breast-w -11.17±3.39 -12.10±4.64 -13.06±4.34 -43.80±2.38• -9.78±3.12 -12.42±3.92 -44.06±1.81• -10.13±2.50

colic -17.80±4.31 -15.53±3.98 ◦ -15.32±3.85 ◦ -21.42±0.69• -14.88±3.75 ◦ -16.59±5.80 -21.39±0.69• -15.18±3.36◦

colic.ORIG -17.66±3.19 -16.25±2.83 -16.06±2.38 ◦ -22.60±0.45• -15.26±2.39 ◦ -16.71±2.75 ◦ -22.60±0.45• -16.09±2.26◦

credit-a -28.06±4.92 -25.88±5.08 -25.46±5.01 ◦ -39.36±1.46• -24.26±5.01 ◦ -25.75±6.40 ◦ -38.58±1.06• -26.58±4.14

credit-g -61.03±5.85 -56.37±4.20 ◦ -55.20±3.66 ◦ -62.07±0.62 -52.63±4.04 ◦ -57.22±5.97 ◦ -61.95±0.62 -53.68±3.87◦

diabetes -43.05±4.79 -41.09±5.25 -40.67±4.71 -49.91±0.51• -39.20±4.83 ◦ -40.71±4.77 ◦ -49.36±0.45• -40.19±4.08◦

glass -21.02±2.70 -21.71±2.64 -22.77±3.18 -34.26±0.96• -27.26±1.99 • -22.45±3.27 -34.16±0.99• -29.77±1.98•

heart-c -15.85±3.68 -15.16±3.21 -15.28±3.15 -30.30±0.84• -18.68±2.85 • -15.46±4.16 -30.54±0.77• -25.93±2.79•

heart-h -14.78±3.16 -14.66±3.27 -14.57±3.32 -30.23±1.08• -16.03±3.20 -14.00±4.10 -30.15±1.03• -24.12±3.09•

heart-statlog -14.00±3.33 -13.09±3.49 -12.94±3.37 -16.63±0.39• -12.37±2.50 -13.09±3.76 -16.63±0.37• -12.61±2.15◦

hepatitis -6.81±2.51 -7.22±2.02 -7.08±1.81 -8.99±0.59• -6.39±1.81 -6.87±2.78 -8.58±0.59• -6.20±1.64

hypothyroid -90.14±5.73 -107.41±6.68 • -108.42±6.69 • -264.34±9.67• -98.88±7.46 • -92.18±13.03 -229.80±4.85• -104.87±5.70•

ionosphere -10.77±3.04 -11.42±3.04 -11.96±2.77 -21.71±0.39• -9.58±2.42 -11.17±3.31 -21.61±0.37• -9.42±2.08◦

iris -3.63±1.35 -3.59±1.38 -3.97±1.29 • -15.21±0.27• -3.70±1.26 -4.12±1.29 • -15.40±0.25• -4.01±1.23•

kr-vs-kp -8.65±3.50 -10.00±3.93 -11.21±3.95 • -182.92±2.13• -9.01±3.15 -9.82±3.55 • -182.42±1.80• -7.92±2.75

labor -2.22±1.28 -2.20±1.29 -2.43±1.17 -3.18±0.45• -2.26±1.20 -2.32±1.34 -3.16±0.44• -2.13±0.95

letter-2000 -193.65±10.88 -221.99±10.86• -299.86±18.93• -627.84±0.90• -434.10±10.82• -296.32±18.62• -627.85±0.90• -454.15±9.78•

lymph -7.75±2.64 -7.69±2.80 -8.13±2.90 -13.78±0.91• -8.79±2.12 -7.91±2.85 -13.91±0.88• -9.85±1.85•

mushroom -2.10±0.19 -2.10±0.19 -3.13±0.45 • -432.76±1.84• -2.18±0.20 • -3.13±0.45 • -432.76±1.84• -2.18±0.20•

primary-tumor -50.98±3.70 -55.94±4.41 • -76.43±10.23• -94.81±1.26• -79.81±3.67 • -75.42±9.65 • -95.96±1.11• -82.41±3.45•

segment -48.76±7.07 -55.68±7.96 • -58.87±9.17 • -405.57±2.21• -85.44±6.63 • -55.80±8.75 • -406.77±1.96• -97.61±6.49•

sick -21.10±5.56 -26.75±8.37 • -26.40±8.41 • -152.85±4.45• -25.91±8.29 • -19.38±6.43 ◦ -152.99±3.69• -19.66±4.67

sonar -11.91±2.45 -12.54±2.48 -12.20±2.15 -13.87±0.38• -10.92±1.72 -11.50±2.28 -13.88±0.39• -10.76±1.50

soybean -18.39±3.31 -19.28±3.53 -21.01±4.12 • -163.56±1.85• -56.99±4.32 • -20.72±4.13 • -164.86±1.71• -61.37±4.69•

splice -66.48±8.24 -66.02±10.77 -70.25±11.45 -249.68±1.73• -68.80±8.25 -70.78±10.83• -250.19±1.64• -78.71±6.91•

vehicle -55.24±4.50 -57.28±4.96 -61.25±5.29 • -108.01±1.04• -64.57±3.42 • -62.53±5.14 • -107.69±1.08• -70.21±3.09•

vote -6.90±3.56 -6.09±3.41 ◦ -6.11±3.37 -18.28±1.29• -6.09±3.22 ◦ -6.67±4.10 -19.30±0.78• -6.10±3.25

vowel -71.55±6.18 -81.10±6.40 • -96.68±8.20 • -226.42±0.65• -144.03±5.32 • -95.45±8.10 • -226.45±0.63• -152.25±4.88•

waveform-5000 -318.55±12.98 -306.45±14.10◦ -308.21±14.19◦ -509.37±1.08• -307.92±12.02◦ -329.01±13.84• -509.67±1.04• -351.30±9.38•

zoo -2.74±1.28 -2.90±1.30 -3.35±1.68 -13.35±0.68• -4.55±1.02 • -3.18±1.65 -13.76±0.59• -4.59±1.00•

average -38.13±4.11 -39.81±4.37 -43.76±5.09 -116.84±1.44 -50.69±3.83 -43.33±5.41 -116.04±1.18 -54.66±3.38

•, ◦ statistically significant degradation or improvement compared with C4.4

Table 3. Summary on t-test of CLL experiment results on decision tree variants.

Models C4.5-L C4.5-M C4.5-LY C4.5-L&B C4.4-M C4.4-LY C4.4-B

C4.5-M 2/18/16

C4.5-LY 0/2/34 0/1/35

C4.5-L&B 8/12/16 9/14/13 36/0/0

C4.4-M 4/21/11 7/27/2 34/2/0 13/14/9

C4.4-LY 0/2/34 0/1/35 9/18/9 0/1/35 0/3/33

C4.4-B 6/11/19 7/13/16 35/1/0 2/13/21 6/12/18 35/1/0

C4.4 10/21/5 15/15/6 33/3/0 16/11/9 13/17/6 33/3/0 20/8/8



Table 4. Experiment results for C4.4 versus several classical models: CLL & standard deviation.

Sample Set C4.4 NBTree NB TAN KNN-5 SVM

anneal -7.84±2.58 -18.46±17.63 -14.22±6.16 • -6.29±5.36 -8.22±2.80 -3.52±5.32 ◦

anneal.ORIG -22.17±3.74 -33.33±16.32• -23.58±5.60 -19.55±6.90 -27.40±5.44 • -23.25±6.33

audiology -15.37±3.39 -95.28±41.89• -65.91±24.28• -67.19±24.11• -31.61±7.73 • -39.12±24.07•

autos -13.14±2.31 -34.94±16.81• -45.57±18.12• -33.91±17.06• -19.82±6.45 • -23.74±11.09•

balance-scale -52.78±4.03 -31.75±1.51 ◦ -31.75±1.51 ◦ -34.78±3.10 ◦ -67.11±2.71 • -14.04±3.99 ◦

breast-cancer -18.56±2.70 -20.47±5.23 -18.37±4.49 -18.17±3.60 -18.75±3.97 -17.47±2.83

breast-w -11.17±3.39 -17.47±13.63 -18.28±14.16 -12.14±6.76 -9.75±5.08 -11.87±7.79

colic -17.80±4.31 -34.42±17.34• -30.63±11.38• -26.22±9.35 • -19.04±6.30 -22.49±8.02 •

colic.ORIG -17.66±3.19 -38.50±17.60• -21.24±5.74 -22.36±6.24 • -25.19±6.18 • -30.58±11.15•

credit-a -28.06±4.92 -34.52±11.89 -28.79±8.10 -28.07±7.06 -29.82±7.91 -27.17±5.66

credit-g -61.03±5.85 -62.44±23.22 -52.79±6.35 ◦ -56.16±8.09 -63.26±9.89 -52.16±5.68 ◦

diabetes -43.05±4.79 -42.70±9.11 -40.78±7.49 -42.51±8.23 -45.44±7.22 -39.88±6.09

glass -21.02±2.70 -31.06±9.62 • -24.08±5.42 -26.15±6.27 • -23.54±5.89 -25.14±7.38

heart-c -15.85±3.68 -15.70±7.49 -13.91±6.71 -14.01±6.09 -13.97±5.46 -13.45±5.45

heart-h -14.78±3.16 -14.73±5.94 -13.49±5.37 -12.96±4.06 -13.41±4.57 -13.21±4.59

heart-statlog -14.00±3.33 -16.31±9.29 -12.25±4.96 -14.60±5.39 -11.68±3.61 -12.76±5.10

hepatitis -6.81±2.51 -9.18±5.78 -8.53±5.98 -8.16±4.72 -7.20±3.69 -10.74±8.22

hypothyroid -90.14±5.73 -98.23±14.58 -97.14±13.29 -93.72±12.69 -131.25±20.97• -94.62±13.50

ionosphere -10.77±3.04 -35.54±20.03• -34.79±19.94• -18.17±13.24 -13.45±7.42 -171.50±96.25•

iris -3.63±1.35 -2.69±2.90 -2.56±2.35 -3.12±2.30 -3.04±2.25 -2.59±2.88

kr-vs-kp -8.65±3.50 -28.01±18.07• -93.48±7.65 • -60.27±7.38 • -58.41±6.49 • -37.71±8.08 •

labor -2.22±1.28 -1.03±2.27 -0.71±0.99 ◦ -2.23±3.43 -1.61±0.90 -6.43±9.89

letter-2000 -193.65±10.88 -382.03±50.64• -299.04±29.19• -260.71±33.34• -297.17±32.04• -221.59±27.54

lymph -7.75±2.64 -8.48±5.51 -6.22±3.96 -7.15±5.24 -6.90±3.21 -9.10±5.67

mushroom -2.10±0.19 -0.14±0.14 ◦ -105.77±23.25• -0.19±0.45 ◦ -0.05±0.34 ◦ -0.00±0.00 ◦

primary-tumor -50.98±3.70 -74.19±14.56• -65.56±8.27 • -69.75±8.85 • -93.51±12.35• -81.10±16.98•

segment -48.76±7.07 -111.94±45.14• -124.32±33.74• -40.15±13.46◦ -58.30±12.72• -37.99±12.83◦

sick -21.10±5.56 -45.55±19.82• -46.05±11.99• -28.91±8.80 • -27.64±8.62 • -33.45±10.45•

sonar -11.91±2.45 -38.85±19.05• -22.67±11.47• -28.73±13.48• -8.90±2.89 ◦ -178.12±92.92•

soybean -18.39±3.31 -28.63±15.19• -26.25±11.03• -8.06±3.84 ◦ -16.67±5.16 -15.44±6.18

splice -66.48±8.24 -47.11±13.57◦ -46.53±12.85◦ -46.89±11.95◦ -181.79±19.56• -126.34±54.97•

vehicle -55.24±4.50 -137.97±32.69• -172.12±27.55• -57.52±10.16 -61.21±9.89 -68.11±11.51•

vote -6.90±3.56 -7.35±5.41 -27.25±13.85• -7.91±5.39 -10.94±7.44 -5.55±3.89

vowel -71.55±6.18 -45.93±16.44◦ -89.80±11.38• -21.87±8.84 ◦ -62.71±7.64 ◦ -55.20±16.88◦

waveform-5000 -318.55±12.98 -309.13±43.99 -378.00±32.64• -254.80±23.42◦ -305.25±18.78 -232.69±24.93◦

zoo -2.74±1.28 -1.29±1.68 ◦ -1.22±1.06 ◦ -1.07±1.44 ◦ -1.64±0.95 ◦ -2.29±3.41

average -38.13±4.11 -54.32±15.89 -58.43±11.62 -40.40±8.89 -49.32±7.63 -48.90±15.21

•, ◦ statistically significant degradation or improvement compared with C4.4

Table 5. Summary on t-test of experiment results: CLL comparisons on classic models.

Models SVM KNN-5 TAN NB NBTree

KNN-5 3/20/13

TAN 8/21/7 10/22/4

NB 5/16/15 7/13/16 3/19/16

NBTree 3/19/14 6/18/12 2/22/12 6/24/6

C4.4 12/17/7 12/20/4 10/19/7 17/14/5 15/16/5

Table 6. Summary on t-test of experiment results: AUC comparisons on decision tree variants.

Models C4.5-L C4.5-M C4.5-LY C4.5-L&B C4.4-M C4.4-LY C4.4-B

C4.5-M 8/28/0

C4.5-LY 14/18/4 11/17/8

C4.5-L&B 22/14/0 18/18/0 10/23/3

C4.4-M 15/21/0 9/26/1 10/19/7 3/26/7

C4.4-LY 16/16/4 13/15/8 1/33/2 3/23/10 9/18/9

C4.4-B 22/14/0 18/18/0 11/23/2 5/28/3 9/26/1 11/23/2

C4.4 6/29/1 5/25/6 6/18/12 2/16/18 1/19/16 5/16/15 0/16/20

Table 7. Summary on t-test of experiment results: AUC comparisons on classic models.

Models SVM KNN-5 TAN NB NBTree

KNN-5 2/21/13

TAN 7/23/6 17/16/3

NB 4/21/11 10/19/7 4/21/11

NBTree 1/29/6 9/25/2 3/27/5 7/27/2

C4.4 2/16/18 3/18/15 2/14/20 5/10/21 2/14/20


