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ABSTRACT 

Despite being nominated as a key potential interaction 

technique for supporting today’s mobile technology user, the 

widespread commercialisation of speech-based input is 

currently being impeded by unacceptable recognition error 

rates.  Developing effective speech-based solutions for use in 

mobile contexts, given the varying extent of background noise, 

is challenging.  The research presented in this paper is part of 

an ongoing investigation into how best to incorporate speech-

based input within mobile data collection applications.  

Specifically, this paper reports on a comparison of three 

different commercially available microphones in terms of their 

efficacy to facilitate mobile, speech-based data entry.  We 

describe, in detail, our novel evaluation design as well as the 

results we obtained. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: 

User Interfaces – Evaluation/methodology; Voice I/O.  

General Terms 

Human Factors, Performance, Experimentation, Measurement. 

Keywords 

Speech input, microphone efficacy, mobile technology, 

evaluation. 

1. INTRODUCTION 
Speech-based input has been nominated as a key potential 

interaction technique for supporting today’s nomadic or mobile 

users of technology [17, 20, 24, 28].  Offering a relatively 

hands-free means of interaction, it is argued that speech-based 

input has the capacity to heighten the functionality of mobile 

technologies across a broader spectrum of usage contexts [20].  

Compared with other input techniques, speech has been shown 

to enhance mobile users’ ability to be cognizant of their 

physical environment while interacting with mobile devices [9].  

Given the typical multitasking nature of mobile users’ 

behaviour – where an ability to monitor their surroundings is 

often essential to their safety – this increased capacity, in itself, 

suggests there is considerable merit to further investigating and 

improving speech as an input mechanism for use with mobile 

technologies. 

To date, “the Achilles’ heel limiting widespread 

commercialisation of [speech technology] is the rate of errors 

and lack of graceful error handling” [14, pg. 46].  It is 

estimated that a drop in recognition rates in the range of 20%-

50% can occur when speech is used in a natural field setting as 

opposed to a controlled environment [9, 14, 24, 28].  Given that 

accuracy is a significant determinant of users’ perception of 

speech recognition usability and acceptability [15, 20], 

developing effective speech-based solutions for use in mobile 

contexts – where users are typically subjected to a variety of 

additional stresses, such as variable noise levels, a need to 

multitask, and increased cognitive load [14] – is challenging 

[16, 20].  Karat et al [7] suggest that errors encountered with 

speech recognition technology are fundamentally different to 

errors that arise with other interaction techniques, and that 

speech-based interaction will evolve as we identify, and strive 

to address, the problems encountered by users of current mobile 

application designs.  

Acknowledging that recognition errors are problematic, 

researchers argue that much can be done to increase recognition 

accuracy and/or the ease with which users can correct errors in 

order to render speech-based interaction more reliable and 

functional [5, 9, 14, 20, 23].  Approaches taken include 

supporting the use of complementary input modes to achieve 

mutual disambiguation of input under mobile conditions [5, 6, 

13, 14], investigating mechanisms to predict and counter 

speaker hyperarticulation [15, 18, 22], undertaking empirically-

based context-specific selection of speech recognition engines 

to maximise accuracy [25, 27], investigating the effect of the 

enrolment (recogniser training) environment [20, 22] and 

variances in microphone between enrolment and actual use [1], 

and identifying the effect of background noise [9, 14, 20] and 

mobility [9, 20] on speech recognition accuracy and usability.   

To develop effective and efficient speech-based user interfaces 

for mobile technologies, it is essential that mechanisms are 

found to decrease the recognition error rate; only then will the 

perceived usability of such systems be increased and user 

frustration decreased [20].  The research presented in this paper 

is part of an ongoing investigation into how best to incorporate 

speech-based input within mobile data collection applications. 

Specifically, we report on a comparison of different 

microphones in terms of their efficacy to facilitate mobile, 

speech-based data entry.  Section 2 outlines relevant related 

work.  Sections 3 and 4 then describe our experimental design 
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and discuss our results, respectively.  We conclude, in Section 

5, with a discussion of further work. 

2. RELATED WORK 
Two main problems are recognised as contributing to the 

degradation of speech recognition accuracy in mobile contexts 

[14]: 

• people speak differently in noisy conditions; and  

• background noise contaminates the speech signal. 

In noisy environments, speakers exhibit a reflexive response 

known as the Lombard Effect which results in targeted speech 

modifications [14, 15, 18, 22].  These modifications are not 

limited to increase in volume, but instead include changes in 

pronunciation (hyperarticulation) which vary between speakers 

and based on the amount and type of noise [15, 18, 22, 28].  

Studies suggest that the Lombard response is primarily 

automatic, and is not typically under volitional control [14, 18]; 

it has even been suggested that speech variation caused by 

ambient noise can be more degrading in terms of speech 

recognition accuracy than the noise itself [6].  Research has, 

consequently, demonstrated that it is not possible to eliminate 

or selectively suppress the effect of Lombard speech [14, 18].  

As such, it is argued that traditional algorithmic approaches to 

speech recognition need to be adapted to accommodate 

dynamic stylistic changes in speech signals that are brought 

about by mobile speech input under noisy conditions [6, 14, 

15].  The fundamental implication for speech recognition 

systems in the future is that they will have to be capable of 

handling variation in speech signals that come with mobile 

speech input [15].   

As previously noted, under mobile conditions background noise 

can confuse, contaminate, or even drown out a speech signal; as 

a result, speech recognition accuracy has been shown to steeply 

decline in even moderate noise [14, 28].  Speech signals are 

picked up and delivered to speech recognition systems via 

microphones.  Even under stationary conditions, variations in 

microphone type, placement, and quality have been shown to 

lead to different levels of user performance [1]; when the 

complexities of user mobility and non-static usage 

environments are introduced, the influence of the microphone 

itself becomes even more pronounced [4, 14, 23, 25, 27]. 

McCormick states that “a quality microphone and quiet 

workplace are key to acceptable speech recognition” [10, pg. 

1]. Clearly, a quiet workplace is unlikely for mobile users.  On 

the supposition that appropriate evolution of speech recognition 

algorithms is being addressed within the speech recognition 

research community, we focused our attention on how best to 

accommodate the combined effect of user mobility and 

background noise in order to make speech-based input on 

mobile devices a truly viable option.  More specifically, the 

study presented in this paper focuses on the efficacy of 

different microphones – under different levels of background 

noise – to support mobile speech-based input.  To situate our 

research study within the broader field, the remainder of this 

section outlines previous research that has been conducted to 

investigate (a) the impact of mobility and background noise on 

speech recognition, and (b) the influence of microphone type 

on speech recognition.    

Price et al [20] investigated the effectiveness of speech-based 

input while walking.  In particular, they assessed the effect of 

motion and enrolment condition (seated v. walking) on speech 

recognition accuracy for a speaker-dependent recognition 

engine coupled with an acoustic boom microphone; their 

primary concern was the effect on speech recognition accuracy 

when the enrolment condition differed to the actual use 

condition.  They incorporated mobility by means of a treadmill, 

and negated possible effects of noise introduced by the 

treadmill by playing a recording of the treadmill noise during 

seated tasks.  They found that recognition accuracy was 

significantly higher for seated tasks, but that there is potential 

to mitigate the effect of walking if enrolment is conducted 

under mobile (i.e., more demanding) rather than seated 

conditions.  Their study stresses the importance of 

encompassing mobility in the design and testing of mobile 

speech-based input and, in particular, in enrolment (training) 

strategies; it was, however, limited to a single microphone and 

a speaker-dependent recognition engine.  Furthermore, it 

utilised a fairly artificial environment in which little was done 

to incorporate environmental stress beyond the need to be 

mobile. 

As part of a study considering the ability of multimodal 

interaction to support disambiguation of, and recovery from,  

speech recognition errors, Oviatt [14] compared a close-talking 

microphone incorporating noise-cancellation with the 

microphone built into the handheld PC which lacked noise-

cancellation; the study also compared the effect of mobility 

(stationary v. walking) and background noise (42dB in a quiet 

room v. 40-60dB in a moderately noisy public cafeteria).  They 

found mutual disambiguation led to a substantial improvement 

in recognition robustness, and that recognition rates were 

significantly less when users were mobile in a noisy 

environment than when they completed their tasks under 

stationary, quiet conditions.  The advantage of mutual 

disambiguation was more pronounced under mobile conditions, 

but the extent of this advantage was dictated by the microphone 

being used.  The comparison of the two microphones would not 

appear to have been Oviatt’s primary concern and, as a result, 

limited detail is provided specific to the impact of the 

microphones themselves.  Furthermore, at worst case the noise 

level introduced into the noisy condition reflects standard 

conversational speech (60dB) [11] and so this does not help 

determine the potential effect of, and microphone ability to 

handle, considerably higher background noise such as a noisy 

restaurant or highway traffic (70dB) or city traffic (90dB) [11]. 

In a previous study [9], we compared the use of speech input to 

stylus-based input for data entry in a mobile application 

designed for use on a construction site.  We tested both input 

techniques for mobile data entry under three different levels of 

background noise – 70dB-80dB, 80dB-90dB, and 90dB-100dB 

– typical of a construction site.  Our results showed that noise 

level significantly affected data entry precision when using 

speech and suggested that there may even be a threshold of 

approximately 80dB beyond which the accuracy achievable 

with speech input may prove unacceptable or indeed unusable 

[9].  Participants were significantly more satisfied with their 

own performance when using a stylus to enter data than using 

speech.  Like other studies [14], we too found speech input to 

be the less stable input mode. 

Sebastian [25] compared several commercial microphones in 

terms of their suitability for use with a mobile, voice activated 

ultrasound device.  Six people participated in this study; their 

speech was recorded under static conditions in an acoustic 

chamber, and the resulting signal was fed (together with a 

separate feed of moderate background noise) to laptops running 

continuous speech recognition software.  Sebastian determined 

that, for her specific context of use, whilst other microphones 



showed some promise, the most appropriate microphone was a 

standard acoustic microphone.  Unfortunately, because 

Sebastian restricted her voice capture to an acoustic chamber 

under static conditions, and only considered a very restricted 

set of commands specific to the ultrasound equipment, it is 

impossible to generalise her findings beyond the limited 

context of her study. 

Vinciguerra [27] investigated which combination of speech 

recogniser and microphone would work best to support speech-

based interaction with applications within a police car.  

Vinciguerra relied on a software application to test speech 

recognition and microphone combinations; the system played 

recorded speech files together with recorded (appropriate) 

background noise files to simulate a police officer issuing 

commands to the system within a police car.  This study 

focused on three array microphones and one desktop 

microphone, all of which could be mounted on the dash of the 

police car.  Although this study showed that each microphone 

performed differently depending on the recognition engine with 

which it was paired, none of the microphones tested are suitable 

(on the basis of physical form and function) for situations 

where the user is mobile and must physically carry the 

microphone. 

Chang [1] sought to determine the effect of microphone 

variation. She noted that speaker, environment, and microphone 

can all contribute to variations in input signal to a speech 

recognition system, and that the position of the microphone 

relative to the speaker can cause distortion.  To achieve the 

lowest error rates possible, most speech recognisers are trained 

and tested using high quality, head mounted, close-talking, 

noise cancelling microphones; Chang set out to determine what 

happens when the actual use microphone is substantially 

different to the training and testing microphone.  She 

determined that most speech recognisers lack robustness to 

microphone variations and cannot, therefore, be used 

satisfactorily with microphones that do not match the 

microphone used in training.   

Finally, Huerta [4] found that by making improvements in the 

speech codec used on GSM cellular networks, speech 

recognition error rates could be significantly reduced.  This 

suggests that, by improving the quality of the signal reaching a 

speech recogniser, recognition accuracy may be improved. 

Motivated by the results of our previous study [9], together 

with the research outlined here, we aimed to empirically 

compare the ability of three different microphones (appropriate 

in terms of form and function) to support accurate speech-based 

input under realistic mobile, noisy conditions.  In doing this, we 

drew together into one novel evaluation, many of the 

constituent – and previously unconnected – elements of 

previous studies.  The remainder of this paper discusses the 

design and findings of our evaluation. 

3. EVALUATION DESIGN & PROCESS 
Mobile computing generally relies on condenser microphones 

which operate on acoustic principles, picking up any sound 

waves with which they come in contact.   The goal of our study 

was to compare the efficacy of two commercially available 

condenser microphones (each with different noise cancelling 

properties) with a commercially available bone-conduction 

microphone – see Figure 1 – in terms of their efficacy to 

facilitate mobile speech input. 

 

Figure 1.  Microphones evaluated (from left to right): 

NextLink Invisio Mobile (Bone Conduction) [12]; Shure 

QuietSpot QSHI3 [26]; and Plantronics DSP-500 [19]. 

The most novel of all three microphones, the bone-conduction 

microphone fits in the outer ear and detects audio signals 

conducted through bone vibration as a person speaks; this 

theoretically reduces the amount of background noise picked up 

since acoustic (environmental) vibrations are not detected.  

With all three microphones, we used an external USB audio 

interface to eliminate electrical interference from surrounding 

electronic components on the mobile computer. 

To avoid testing the microphones relative to a specific 

application (or application domain), we developed a very 

simple data input application which allowed us to evaluate 

speech-based input of different data types (numbers without 

decimal points, decimal numbers, sequences of independent 

digits, and dates) and selection of drop-down list box items and 

radio buttons.  The application was designed to run on a tablet 

PC running Windows XP.  We used IBM’s ViaVoice speaker-

independent speech recognition engine on the basis that 

speaker-independent recognition systems have been shown to 

be more robust to noisy environments, and less susceptible to 

Lombard speech, than speaker-dependent systems [6, 15].  

Furthermore, we adopted a push-to-talk strategy since, in noisy 

environments it is generally considered more appropriate as it 

enables users to explicitly direct speech to the system (or, 

conversely, deactivate recognition altogether) [24, 25].  

Figure 2. A screen dump of the evaluation application. 

Figure 2 shows an annotated screen dump of the evaluation 

application.  Whenever participants pressed and held the push-

to-talk button (1) on the tablet PC, a large “on air” logo (2) was 

displayed in the centre of the screen to reinforce the fact that 

the system was ready to receive input.  Participants were shown 

a data item (in terms of what they were to physically say) on 

screen (3) and were required to input that item using speech.  

The results of their speech input were reflected in an 

appropriate input field (4).  Participants were required to 

achieve an accurate entry; upon an accurate entry, the system 

1
2 

3

4 

5



automatically moved them on to the next data entry item.  In 

the interests of time (and to mitigate against potentially fuelling 

high user frustration), we restricted participants to three 

attempts per item (the number of available attempts was always 

shown in the top left corner of the screen (5)); if, on their third 

attempt, participants still failed to achieve a correct entry, the 

system automatically moved onto the next item and the 

attempts counter was reset. Participants were given training on 

how to use speech to enter/select each data type prior to 

commencing the study tasks.  They were trained in conditions 

identical in all aspects (including microphone type) to those 

used in the study sessions themselves (see below). 

Appropriately designed lab-based studies, which incorporate 

user mobility, have proven to be a viable means by which to 

meaningfully assess the usability of mobile applications under 

controlled experimental conditions [8, 9].  We therefore 

designed our study to reflect (albeit, abstractly) realistic 

environmental conditions in which mobile technologies are 

typically used, and required that our users were mobile within 

this environment.  Our study adopted a counterbalanced 

between-groups design, with groups partitioned on the basis of 

microphone type.  Using the application described above, 

participants were required to enter a series of simple data input 

tasks using speech while mobile.  They were required to do this 

once in a quiet environment, to provide us with a baseline 

measurement of microphone efficacy, and once in an 

environment designed to represent a typical city street (a 

common use-case scenario of mobile technologies).  The order 

in which these sessions were completed was counterbalanced 

across participants to mitigate against potential learning effect.   

To establish the city street condition, we used the 7.1 surround 

sound system in our lab to deliver recorded city street sounds 

(at 70dB) around the participants.  When a person is using 

mobile technology while walking down a city street, for 

instance, he must remain cognizant of his physical surroundings 

to avoid potential hazards.  To ensure the results of our study 

would be meaningful, we therefore incorporated environmental 

awareness into participants’ mobile data entry activities.  To do 

this, we made use of an abstract (safe) “hazard avoidance” 

system which we developed for use in our lab.  More detail on 

this novel experimental technique for abstractly recreating 

mobile real-world situations in the lab is provided in a 

companion paper in these conference proceedings [2]. 

In essence, participants were required to walk from one end of 

a grid (approx. 12m long) of coloured mats (typically used in 

children’s play areas) to the other – see Figure 3. 

 

Figure 3. Grid of mats and colour projections. 

As they were doing this, we projected a sequence of blocks of 

colours (corresponding to the colours of the floor mats) on the 

walls facing them.  Occasionally, we projected a colour block 

with the word “Avoid” written on it.  This represented a 

“hazard”.  While this was being projected, participants were to 

avoid stepping on any floor mats which matched that specific 

colour (see Figure 4).  Participants were given training on, and 

a chance to try out, the hazard avoidance system before they 

began the study tasks to make sure they were comfortable with 

the process.  This technique required participants to be 

cognizant of their physical environment in a manner similar to 

the real world.  We effectively incorporated a dynamically 

changing route based on hazard avoidance to ensure meaningful 

experimental results, without exposing participants to the risks 

associated with field-based trials (and allowing us to maintain 

control of the experimental environment). 

  

Figure 4. Participant using the tablet PC to enter data via 

speech whilst avoiding “hazards”. 

Participants were assigned one of the three microphones.  They 

were required to enter 10 data items per audio condition (silent 

v. noisy).  We established two data sets, each with a unique set 

of 10 data entry items.  We took care to balance the breakdown 

of data types and complexity across the two data sets as far as 

possible; the order in which data types were presented differed 

between the two sets to again mitigate against the learning 

effect, but the order in which participants were exposed to the 

data sets themselves remained constant to eliminate any 

potential bias that may have arisen due to some data elements 

being perceived as ‘easier’ than others.  During the experiment, 

a range of measures was taken to assess the efficacy of the 

three microphones.  We recorded the length of time participants 

took to complete their data entry tasks and the details of the 

data they entered.  We also recorded their walking speed – both 

natural (when not completing data entry tasks) and when 

performing the study tasks – to allow us to determine the 

impact on walking speed of interaction with the technology.  

Additionally, after each session (silent v. noisy) we asked 

participants to indicate their subjective experience of workload 

(using the NASA TLX scales [3]).   

Studies have shown that speech recognition is significantly 

affected by native speaker status [13]; speech recognition rates 

are typically much lower for accented speakers [14].  

Additionally, the Lombard speech of female speakers has been 

shown to be more intelligible than the Lombard speech of male 

speakers and that, surprisingly, the opposite holds for normal 

speech [6].  In order to reduce the number of extraneous factors 

that may have impacted on our results, and in so doing focus on 

the effects of the microphones rather than the speakers, we 

therefore restricted our recruitment to participants who were 

native English speakers with a Canadian accent.  We recruited 

an equal number of male and female participants but restricted 

our age range to 18 – 35 year olds (young adults) to limit 

speaker variation that comes with age.  Finally, due to the 

colour-centric nature of our hazard avoidance system, we were 

not able to include colour blind participants.  Twenty four 

people participated in our experiment, 8 per microphone/group. 



We hypothesised that, in line with previous research, 

participants would take longer and achieve less satisfactory 

data entry (in terms of both subjective participant response and 

actual data input accuracy) under the noisy condition than the 

quiet condition.  As a consequence of the theoretical reduction 

in the extent of background noise picked up by the bone 

conduction microphone, we hypothesised that it would return 

better accuracy and user satisfaction results than the two 

condenser microphones.  As already noted, female Lombard 

speech has been shown to be more intelligible than male 

Lombard speech, so we hypothesised that female participants 

would return higher accuracy rates under the noisy condition 

than male participants; we anticipated seeing the reverse for the 

quiet condition. 

4. RESULTS & DISCUSSION 
The following sections reflect on analysis of the measures we 

took to assess the efficacy of the three microphones. 

4.1 Accuracy 
Our primary accuracy measure was calculated as a ratio of the 

total number of correct entries divided by the total number of 

attempts, expressed as a percentage.  Data entries were awarded 

a correctness score of 1 if correct (irrespective of number of 

attempts) and 0 if incorrect (after three attempts).  A multiple 

factor ANOVA showed that microphone (F2,468=67.22, p<0.001), 

gender (F1,468=3.91, p=0.04), and the combination of 

microphone and gender (F2,468=19.29, p<0.001) had a 

significant affect on accuracy.  Tukey HSD tests showed that 

the accuracy was significantly less for participants using the 

Invisio (bone conduction) microphone (avg.=36%) than for the 

QSHI3 (avg.= 76%, p<0.001) and DSP-500 (avg.=78%, 

p<0.001) microphones; the difference in accuracy for the 

QSHI3 and DSP-500 microphones was not statistically 

significant (see Figure 5).   

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

110.0%

Invisio QSHI3 DSP-500

Microphone

A
v

g
. 
A

c
c

u
ra

c
y

R
a

ti
o

 

Figure 5. Accuracy according to microphone type. 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

110.0%

Invisio QSHI3 DSP-500

Microphone

A
v

g
. 
A

c
c

u
ra

c
y

R
a

ti
o

Male

Female

 

Figure 6. Accuracy according to gender and microphone. 

Although not separated by a large margin, the average accuracy 

achieved by male participants (67%) was significantly higher 

(p=0.04) than for female participants (60%).  Also, on average, 

females using the Invisio microphone returned significantly 

lower accuracy results (19%) than not only males using the 

same microphone (54%, p<0.001) but also all other gender-

microphone pairings (see Figure 6).  Likewise, on average, 

males using the Invisio microphone returned significantly lower 

accuracy results than either gender using either of the other 

microphones. 

We included a second measure of accuracy based on the 

confidence value attributed to each entry – this measure (which 

reflects the recogniser’s level of confidence that an utterance 

matches the item it selects from its grammar) was provided 

directly by the speech recognition engine, and is again 

represented as a percentage.  A multiple factor ANOVA revealed 

similar results to those for accuracy itself, as one might expect.  

Specifically, microphones were shown to significantly differ 

(F2,468=72.76, p<0.001) in terms of confidence measures 

returned by the speech recognition engine: the Invisio 

microphone resulted in significantly lower average confidence 

measures (66%) than both the QSHI3 (avg.=95%, p<0.001) and 

DSP-500 (avg.=92%, p<0.001) microphones; the difference in 

confidence measures for the latter two microphones was not 

statistically significant.  Gender was shown to have a 

significant impact on confidence measures (F1,468=15.73, 

p<0.001) – see Figure 7 – with males returning a significantly 

higher confidence rating (89%) than females (80%).  The 

combination of gender and microphone was also shown to be 

significant (F2,468=37.45, p<0.001) and, in essence, reflected the 

same pairing differences as the accuracy rates. 
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Figure 7. Confidence ratings according to gender. 
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Figure 8.  Accuracy and confidence ratings according to 

microphone and audio condition. 



Our analysis highlighted a lack of demonstrable effect of audio 

condition.  Both accuracy rates and confidence ratios appear to 

have been unaffected by the introduction of background noise 

(despite that noise being substantial, at 70dB) – see Figure 8 

and overall values in Figure 9. 

Given our initial hypothesis that accuracy rates would be less 

under noisy conditions, we were surprised that, and unsure as to 

why, we did not see a noticeable effect of background noise.  

As previously noted, female Lombard speech is considered 

more intelligible than male Lombard speech, but the opposite is 

true for normal speech [6] and it was on this basis that we had 

hypothesised that females would return higher accuracy ratings 

under noisy conditions and males would return higher ratings 

under quiet conditions.       

Figure 9 shows that, across both audio conditions, accuracy and 

confidence measures reflect higher values for males than 

females.  The higher values for males in the silent audio 

condition reinforces (albeit without statistical significance) the 

intelligibility observation for normal speech; the fact that the 

opposite is not demonstrated for noisy speech would suggest 

that Lombard speech might not have been a major factor in this 

study (although further tests/analysis would be required to 

confirm this). 
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Figure 9. Accuracy and confidence ratings according to 

gender and audio condition. 

An alternative conclusion might be that all three microphones 

were sufficiently able to mitigate against background noise, 

albeit some were clearly better than others.  On the basis of 

participant accuracy and speech recogniser confidence, there is 

little to differentiate the QSHI3 and DSP-500 microphones, 

both of which are condenser microphones.  Conversely, the 

bone conduction (Invisio) microphone performed consistently 

worse than the others.  Furthermore, on the basis of this study, 

it would appear to be more susceptible to gender differences 

across speakers than both condenser microphones, which do not 

appear to be substantially affected by gender.  These findings 

contradict our initial hypothesis that, as a result of the 

theoretical reduction in pick-up of background noise, the 

Invisio (bone conduction) microphone would return 

significantly better data entry accuracy than the other two 

microphones.  This raises the question, therefore, as to whether 

or not the poor accuracy is a result of the mobility itself – that 

skeletal vibration brought about by physical motion was, in 

some way, distorting the signal for this microphone.  

Alternatively, it may be the case that the Invisio microphone 

has been optimised for the pitch of male speakers and is 

fundamentally less effective for female speakers.  Further 

investigation will be required to determine the precise cause of 

the poor accuracy returned by this microphone. 

4.1.1 Data Entry Type 
Although it was not the primary focus of our study, we did 

consider the effect of data entry type in terms of accuracy and 

confidence ratings.  Unfortunately, on the basis of our high 

level data, we were unable to draw any meaningful conclusions 

in this regard.  To determine a clearer picture of the effect of 

data entry type, we propose to conduct further analysis of the 

data in order to look at the specific nature of errors but, for the 

time being, we assign this to future work. 

4.2 Walking Speed 
Prior to participants beginning their experimental sessions we 

timed them each walking, at a pace that was comfortable, 10 

laps of the grid of mats while avoiding hazards (as described 

previously) and carrying, but not using, the mobile technology.  

We used this to calculate a baseline average preferred walking 

speed (PWS).   

For each participant, for each experimental condition (silent v. 

noisy), we recorded the time it took them to complete their 10 

data entry tasks as well as the number of laps they walked.  We 

used this to calculate the percentage of their preferred walking 

speed (PPWS) at which participants walked under each audio 

condition.  A multiple factor ANOVA analysis of these results 

showed that only the combination of microphone and gender 

had a significant effect on PPWS (F2,36=5.37, p=0.009); 

microphone by itself did not seem to significantly affect the 

PPWS nor did audio condition.   
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Figure 10. PPWS according to microphone and gender. 

Figure 10 shows the average PPWS achieved by participants 

according to microphone and gender.  Tukey HSD tests showed 

that females using the QSHI3 microphone (avg. PPWS=99%) 

were able to maintain a significantly higher walking speed than 

males using the same microphone (avg.=88%, p=0.04) and than 

females using the DSP-500 microphone (avg.=88%, p=0.04).  

No other comparisons were statistically significant.  As seen 

from the accuracy rates shown in Figure 6, the ability of 

females using the QSHI3 to maintain a walking speed so close 

to their preferred walking speed would not appear to be at the 

expense of accuracy; using this microphone, both genders 

returned comparable accuracy rates but it would appear that 

males had to significantly slow down to achieve an accuracy 



rate comparable to females.  Females achieved the highest 

accuracy rates overall using the DSP-500 microphone, but this 

would appear to have been at the expense of walking speed as 

on this microphone, they returned the lowest PPWS.  Use of the 

Invisio microphone would seem to equally affect males and 

females in terms of their walking speed. 

When we ran a multiple factor ANOVA over the average number 

of laps taken by participants to complete their data entry tasks, 

we discovered that only microphone had a significant affect  

(F2,36=8.68, p=0.001).  Tukey HSD tests revealed that 

participants using the Invisio microphone walked significantly 

more laps (avg.=9.1) than participants using the QSHI3 

microphone (avg.=7.1, p=0.018) and participants using the 

DSP-500 microphone (avg.=6.3, p<0.001).  The difference in 

average number of laps walked by participants using the 

condenser microphones was not significant.  We also analysed, 

using a multiple factor ANOVA, the total time taken by 

participants to complete their data entry tasks.  Only 

microphone was shown to have a significant impact on total 

task duration (F2,36=6.65, p=0.003).  Participants using the 

Invisio microphone (avg.=122.6secs) took significantly longer 

to complete their tasks than participants using the QSHI3 

(avg.=97.6secs, p=0.044) and participants using the DSP-500 

microphone (avg.=87.1secs, p=0.003).  Once again, there was 

no significant difference between the two condenser 

microphones.  In accord with the results shown in Figure 10, 

when combined, these results suggest that participants using the 

Invisio microphone walked more laps and took longer but, on 

average, walked at a pace that was not significantly different to 

that recorded for participants using the other two microphones.  

This implies, therefore, that completing the tasks themselves 

was a more onerous undertaking for participants using the 

Invisio microphone – i.e., it simply took longer. 

Once again, we see that audio condition did not seem to 

significantly affect our results.  As noted previously, we had 

hypothesised that participants would take longer to complete 

their data entry tasks under noisy conditions.  Since accuracy 

itself did not appear to have been directly influenced by audio 

condition, it is perhaps unsurprising that participants’ task 

speed was also unaffected. 

4.3 Task Load Ratings 
The NASA Task Load Index (TLX) assesses subjective 

workload according to six independent dimensions, namely: 

mental demand; physical demand; temporal demand; effort; 

frustration; and performance.  These can be considered 

individually, or in combination as a measure of overall 

workload.  Each dimension is rated on a 20 point scale: in each 

case – barring performance – the lower the rating, the better; 

the inverse holds for performance, since a higher rating reflects 

increased participant satisfaction in their own performance.   
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Figure 11. TLX ratings according to gender. 

A multiple factor ANOVA revealed that ratings for overall 

workload were significantly affected by participant gender 

(F1,36=27.83, p<0.001).  On average, as can be seen from Figure 

11, males rated overall workload significantly lower than 

females (7.4 v. 11.0 respectively).  Neither audio condition nor 

microphone was shown to exert significant influence on the 

overall measure of workload. 
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Figure 12.  TLX ratings according to microphone. 

When we looked at the individual factors contributing to 

overall workload, we saw some interesting results.  For mental 

demand, a multiple factor ANOVA showed that both gender 

(F1,36=8.46, p=0.006) and microphone (F2,36=8.10, p=0.001) 

significantly effected participant ratings.  On average, males  

found the mental demand (12.5) significantly less than females 

(15.1) – see Figure 11.  Participants, irrespective of gender, 

generally found the Invisio microphone significantly more 

mentally demanding (15.9) than the QSHI3 microphone (11.5) 

– see Figure 12; there were no other statistically significant 

differences in terms of mental demand.  These findings seem to 

reflect the accuracy differences identified between males and 

females as well as the lower accuracy ratings returned for the 

Invisio microphone. 

A similar analysis of physical demand revealed that only 

gender had a significant impact on average physical demands 

(F1,36=11.18, p=0.002), with females (6.3) finding the tasks 

significantly more physically demanding than males (2.5).  

Participants, as previously discussed, were required to carry 

and interact with a tablet PC whilst walking and, as noted in 

section 4.2, females – at least for one microphone – maintained 

a walking speed more consistent with their normal speed (i.e., 

faster); it is, therefore, perhaps unsurprising, that females rated 

the physical demands of the task higher than males. 

Analysis of average temporal demand ratings is the one and 

only point at which we saw a significant impact of audio 

condition.  A multiple factor ANOVA showed that both audio 

condition (F1,36=4.62, p=0.038) and gender (F1,36=14.53, 

p=0.001) had a significant affect on temporal demand. 
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Figure 13. Temporal demand according to audio condition. 

Figure 13 shows the average temporal ratings returned 

according to level of background noise.  Under noisy 

conditions, participants clearly felt that they were under 

significantly more time pressure (9.6) to complete their tasks 



than when performing the same data entry activities in the 

silent environment (7.0).  Females also felt significantly more 

time pressure (10.6) than males (6.0) – see Figure 11.  Research 

shows that humans exhibit a stress reaction to noise, and 

suggests that women may be more sensitive to noise stress than 

men [21].  At the level of conjecture, across all participants, it 

may be that the background noise induced a stress reaction that 

materialised as a feeling of time pressure.  This reaction may 

have been heightened in female participants, and when added to 

the higher workload females reported experiencing across the 

board, it may account for the fact that the largest difference 

between the average ratings by gender was seen for temporal 

demand. 

Gender was also found to significantly affect average ratings 

for effort (F1,36=8.20, p=0.007) and frustration (F1,36=8.67, 

p=0.006); once again (see Figure 11) female ratings were 

significantly higher than male ratings for both dimensions.  

Frustration levels were also found to be significantly affected 

by microphone (F2,36=4.24, p=0.022) – see Figure 12.  

Participants using the Invisio microphone reported significantly 

higher levels of frustration (11.5) than participants using the 

DSP-500 microphone (avg.=6.6, p=0.019); frustration levels for 

the QSHI3 microphone (9.9) did not differ significantly from 

either of the other microphones. 

Finally, consider participants’ ratings of their own performance.  

In line with other ratings, participants’ performance ratings 

were significantly affected by gender (F1,36=6.39, p=0.016) 

with females rating their performance significantly lower (11.6) 

than males (14.7).  Males’ confidence in their own performance 

would seem justified given their significantly higher accuracy 

rates and lower workload experience – i.e., they generally 

found the tasks to be less demanding and were able to achieve 

more accurate results.  In contrast, females achieved a lower 

accuracy rate – a fact of which they would seem to have been 

aware, given their lower self-assessment of performance – and 

they generally found the task to be harder than males. 

In summary, therefore, we had hypothesised that participants 

would return significantly higher workload ratings when 

completing their data entry tasks under noisy conditions.  In 

reality, it would appear that, with the exception of temporal 

demand, audio condition did not affect the tasks per se, and so 

did not, in turn, affect participants’ perception of workload.  

Having hypothesised that the Invisio microphone would 

perform significantly better than the other two microphones, we 

had anticipated that participants would experience considerably 

less workload using this microphone.  Unsurprisingly, given its 

poor performance in terms of accuracy, the Invisio microphone 

was actually found to increase workload (specifically, mental 

demand and frustration). 

5. CONCLUSIONS & FUTURE WORK 
Contrary to expectation, we found audio condition to have little 

impact on our results.  Surprised by this, we measured the 

average audio level in our lab (corresponding to the level which 

we called “silent”, respecting the fact that no natural 

environment is truly silent).  Our lab is situated in the basement 

of our building and, to the casual observer, seems a very quiet 

environ.  We were surprised, therefore, to find that the lab 

registered an average of 60dB, based largely on the background 

audio emitted from the (new) air conditioning.  Referring back 

to Oviatt’s study [11], the maximum audio level to which 

participants were exposed in her study was 60dB (although this 

seems questionable given that it was supposedly in a 

moderately busy public cafeteria).  Oviatt compared this to a 

quiet condition at a reported 42dB and found increased 

background noise to have a significant impact on speech-based 

data entry.  The question then arises as to whether – albeit our 

two audio conditions were realistic – a 10dB difference in 

audio level (or, more specifically, the precise difference 

between 60dB and 70dB) is perhaps not sufficient to identify 

statistically significant differences based on audio level.  

Alternatively, it may be the precise types of noise (i.e., air 

conditioning v. recorded city traffic) that have failed to support 

appropriate comparison.  We would, therefore, propose to 

investigate this further. 

As previously mentioned, we had expected females to return 

higher accuracy under noisy conditions than males, with the 

inverse expected for silent conditions.  On the basis that audio 

condition was not found to impact our results at all, we did not 

observe this in our data.  We previously concluded that perhaps 

Lombard speech was not a major factor in our study.  If it does 

turn out that a 10dB difference specifically between 60dB and 

70dB and/or for our particular audio types is insufficient to 

observe the impact of background noise, then it may be that 

either Lombard speech was in effect across both or neither of 

our audio conditions, irrespective of gender.  Alternatively, 

akin to the Hawthorne Effect, it may have been that the 

introduction of the technology itself (i.e., the requirement to 

speak into a microphone per se) caused all participants to alter 

their natural speech, irrespective of background noise.  

Furthermore, it may be that, for experimental studies of speech 

recognition, it is impossible to avoid Lombard speech since 

users will naturally alter their speech until such time as they are 

comfortable/confident that the speech recognition technology 

will correctly interpret their input every time.  Once again, we 

would propose to investigate this further. 

Finally, we intend to examine the affect of the Invisio 

microphone in greater detail.  Theoretically, it should have 

worked far better than the other two microphones and so we are 

intrigued to determine why we did not find this to be the case. 

Although, as a result of our study, we have been forced to reject 

all of our hypotheses (all of which were based on theory and/or 

preceding work of others) we feel that we have contributed 

substantially to the corpus of knowledge in this field.  In 

essence, as they currently stand, there is little to differentiate 

the two condenser microphones, and they have been 

empirically shown to out perform the newest (bone conduction) 

microphone technology.  Interestingly, of the three 

microphones, the QSHI3 was by far the least expensive making 

it a realistic or viable yet potentially effective option for 

facilitating mobile speech-based data entry.  
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