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ABSTRACT

Databases and data warehouses contain an overwhelming
volume of information that users must wade through in or-
der to extract valuable and actionable knowledge to support
the decision-making process. This contribution addresses
the problem of automatically analyzing large multidimen-
sional tables to get a concise representation of data, identify
patterns and provide approximate answers to queries.

Since data cubes are nothing but multi-way tables, we
propose to analyze the potential of a probabilistic model-
ing technique, called non-negative multi-way array factor-
ization, for approximating aggregate and multidimensional
values. Using such a technique, we compute the set of com-
ponents (clusters) that best fit the initial data set and whose
superposition approximates the original data. The gener-
ated components can then be exploited for approximately
answering OLAP queries such as roll-up, slice and dice oper-
ations. The proposed modeling technique will then be com-
pared against the log-linear modeling technique which has
already been used in the literature for compression and out-
lier detection in data cubes. Finally, three data sets will be
used to discuss the potential benefits of non-negative multi-
way array factorization.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Applications—
data mining ; H.4.2 [Information Systems]: Types of Sys-
tems—decision support
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General Terms

Algorithms, experimentation

1. INTRODUCTION
In many database and data warehouse applications, users

tend to (1) be drowned in data and even in knowledge dis-
covered from data, (2) use more dimensions (variables) than
necessary to explain a set of phenomena and check prede-
fined hypotheses, and (3) analyze a generally heterogeneous
population of observations/individuals. In order to reduce
their memory overload and working space induced by their
tendency for over-dimensioning and the inherent heterogene-
ity and huge volume of data, we propose to use a probabilis-
tic modeling technique, called non-negative multi-way array
factorization (NMF), to identify patterns and approximate
data and query answers. Such a technique will then be com-
pared to log-linear modeling (LLM).

Many topics have attracted researchers in the area of
data warehousing: data warehouse design and multidimen-
sional modeling, materialized view selection, efficient cube
computation, query optimization, discovery-driven explo-
ration of cubes, cube reorganization, cube mining, and so
on. Recently, there has been an increasing interest for ap-
plying/adapting data mining techniques and advanced sta-
tistical analysis (e.g., cluster analysis, principal component
analysis, log-linear modeling) for knowledge discovery [21,
19, 24, 18] and data compression in data cubes [3, 4, 5, 13].
In [24], an approach based on log-linear modeling is used
to identify exceptions in data cubes by comparing antici-
pated cell values against actual values. In [4, 5], log-linear
modeling is used for data compression.

Approximate query answering in data warehouses has been
used in order to accelerate aggregate computation and query
execution at the expense of some information loss. Existing
work has been conducted based mainly on sampling [3,
13], clustering [29], wavelets [7] or maximum entropy prin-
ciple [23]. Palpanas et al. [23] propose an approach based
on information entropy to (i) detect deviations, and (ii) es-
timate the original multidimensional data from aggregates
for approximate query answering purposes. A wavelet-based



approach is used in [7] to approximate query answering, and
proves to be more effective than sampling techniques. In a
similar spirit, [26] uses the probability density distribution of
data in order to propose a compressed representation of data
cubes which reduces data storage and leads to approximate
answers to aggregate queries. Wavelet based techniques have
been used either for progressive evaluation of some specific
OLAP queries [2, 7] or as a sampling technique. As in [26],
Vitter et al. [27] use wavelets for compressing sparse data
cubes and getting approximate answers of aggregate queries.
In [22], an approach towards the approximation of the an-
swer to OLAP queries and the identification of classification
and characteristic rules is proposed using the rough set the-
ory. It allows the user to get an approximate answer to
his query either in a restricted mode using a cube lower
approximation or in a relaxed mode using cube upper ap-
proximation.

The NMF approach was initially developed for analyzing
two-dimensional data [20], and generalizes easily to higher
dimensional data [28]. It has been applied to analyze vari-
ous data such as image, music, text or medical signals (see
Section 6 of [15] for further references). To the best of our
knowledge, NMF has never been applied to the analysis and
exploration of data cubes.

The paper is organized as follows. First, we describe a
real-life running example in Section 2 and provide in Sec-
tion 3 some background about probabilistic modeling using
NMF or LLM. Section 4 aims to show the potential of the se-
lected modeling technique for cube approximation, compres-
sion and OLAP querying. Section 5 provides a discussion
of the two modeling techniques while Section 6 summarizes
our findings and future work.

2. AN ILLUSTRATIVE EXAMPLE
We now introduce the running example that will be used

in the sequel to illustrate the use of NMF for cube modeling
and approximation. It is based on a study conducted on a
sample of 214 Canadian firms listed on the Stock Market
and aimed at establishing links between corporate gover-
nance practices and other variables such as the shareholding
structure [6, 15]. Governance is defined as the means, prac-
tices and mechanisms put in place by organizations to ensure
that managers are acting in shareholders’ interests. Gover-
nance practices include, but are not limited to, the size and
the composition of the Board of Directors, the number of in-
dependent directors and women sitting on the Board as well
as the duality between the position of CEO and the position
of Chairman of the Board. Based on the collected data, a
data warehouse has been constructed with sixteen dimen-
sions and an initial set of fact tables for data cube mining
and exploration. Table 1 is a fact table which provides the
number of firms according to four dimensions: USSX, Du-

ality, Size, and QI. USSX∈ {Yes, No} indicates whether
the firm is listed or not on a US Stock Exchange. Du-

ality ∈ {Yes, No} indicates whether the CEO is also the
Chairman of the Board. Size ∈ {1, 2, 3, 4} represents the
size of the firms in terms of the log of their assets. The
values are 1 (< 2), 2 (≥ 2 and < 3), 3 (≥ 3 and < 4) and
4 (≥ 4). QI expresses the index of corporate governance
quality and takes one of the following values (from worst to
best quality): Low (< 40%), Medium (≥ 40 and < 70%),
and High (≥ 70%).

Duality: No Yes
USSX Size QI:Low Med High Low Med High

1 0 7 0 4 3 0
No 2 7 21 12 6 12 4

3 11 13 11 4 4 2
4 0 3 1 0 2 0

1 0 1 2 0 0 0
Yes 2 4 12 0 7 10 1

3 4 4 14 5 8 2
4 0 3 7 0 2 1

Table 1: Data cube for the Governance example.

3. PROBABILISTIC DATA CUBE MODELS
Consider a n-dimensional data cube X, and assume that

the measure in each cell is a frequency xi1i2...in ∈ N.1 With-
out loss of generality and to simplify notation, we will use
n = 3 from now on. The three dimensions are denoted A,
B and C, with respective modalities {ai}i=1...I , {bj}j=1...J ,
and {ck}k=1...K . Each cell xijk of the 3-dimensional cube
X = [xijk] therefore contains the count of the number of
observations of the three modalities (ai, bj , ck).

Information contained in a high dimensional data cube
may be difficult to access or visualize. For example, it may
be hard to identify which dimensions interact, or which parts
of the cube display consistent patterns. Probabilistic mod-
els such as NMF and log-linear models can discover such in-
teractions and patterns, by finding a concise representation
that provides a faithful approximation of the data. The use
of a concise model reduces both storage space and processing
time, while a good approximation ensures that queries per-
formed on the model return reasonably accurate answers. A
probabilistic model assigns a probability P (i, j, k) to the ob-
servation of the tuple of modalities (ai, bj , ck). The fit of the
model to the observations is measured by the log-likelihood:

L = − log P (X|θ) = −
X

ijk

xijk log P (i, j, k), (1)

The most flexible, or saturated, model estimates each P (i, j, k)

based on the data, i.e., bP (i, j, k) = xijk/N , with N =
P

ijk xijk. This model essentially reproduces the data with-
out modeling any interesting or systematic effect. In our ex-
ample, this means that it is not possible to discover that the
quality of the governance QI is strongly dependent on the
duality. On the other hand, the independence model assumes

that all variables are independent: bP (i, j, k) = bP (i) bP (j) bP (k),

with Maximum Likelihood estimates: bP (i) =
P

jk xijk/N ,

(and similarly for j and k). This model is parsimonious (i.e.,
has a small number of parameters) but too simple (and of-
ten unrealistic) since it does not model interactions between
variables. In our example, it means that the independence
model will ignore the strong interaction between QI and Du-

ality, i.e., it yields similar probability for high governance
quality, regardless of the value of Duality.

Useful models usually fall somewhere in between these two
extremes: they strike a balance between expressive power
(good approximation) and parsimony (few parameters).

1This assumption can be easily relaxed to take into account
values other than frequencies.



3.1 Nonnegative Multiway Array
Factorization

The model associated with NMF is a mixture of condi-
tionally independent multinomial distributions. It general-
izes Probabilistic Latent Semantic Analysis [17], commonly
used for text applications, to more than two dimensions:

P (i, j, k) =
M

X

m=1

P (m)P (i|m)P (j|m)P (k|m) (2)

=
M

X

m=1

Wm⊗Hm⊗Am,

where m is a given component and M the number of com-
ponents. The latter controls the flexibility of the model.
More components allow more free parameters and a better
approximation of the data, but too much flexibility yields
over-training, i.e., a model that over-represents artifacts of
the data at the expense of the underlying phenomenon. The
parameters Wm, Hm and Am are the m-th columns of
the I × M matrix W = [P (m)P (i|m)], the J × M matrix
H = [P (j|m)] and K × M matrix A = [P (k|m)] respec-
tively. As P (i, j, k) ≈ 1

N
X, matrices W, H and A are a fac-

torization of cube X. Since they contain probabilities, the
factors are also non-negative. The mixture model in Equa-
tion 2 is therefore an instance of Non-negative Multi-way

array Factorization [28], a generalization of Non-negative
Matrix Factorization [20]. Parameters are estimated by
Maximum Likelihood, which is conveniently done using the
Expectation-Maximization (EM, [11]) algorithm. Several al-
ternative algorithms exist for NMF in 2D [12], but algo-
rithms currently proposed for n > 2 minimize either the
Kullback-Leibler divergence (equivalent to Maximum Like-
lihood, see [14]) or squared error [28]. The parameter esti-
mation procedure is as follows:

• Initialize mixture weights P (m) and profiles P (i|m),
P (j|m), etc. to uniform distributions plus small ran-
dom perturbation.

• Iterate over t = 0 . . . :

P t+1(m)← P t(m)
X

ijk

“ xijk

N

” P t(i|m)P t(j|m)P t(k|m)

P t(i, j, k)

P t+1(i|m)←
P t(i|m)P t(m)

P t+1(m)

X

jk

“ xijk

N

” P t(j|m)P t(k|m)

P t(i, j, k)

and similarly for P (t+1)(j|m) and P (t+1)(k|m) [15].

• until the increase in likelihood is smaller than a small
threshold (e.g., 10−6).

The main modeling issue is therefore to select the correct
number of components. Although the NMF literature of-
ten ignores this issue, the probabilistic modeling framework
offers tools for selecting the appropriate model complexity.
One solution is to rely on information criteria such as AIC [1]
or BIC [25]. Defining the (log) likelihood ratio as twice the
difference in log-likelihood between the fitted model and the

saturated model, G2 = 2
P

ijk
xijk log

bxijk

xijk
, and df the num-

ber of degrees of freedom, i.e., the difference in the number
of free parameters between the fitted model and the satu-
rated model, df = IJK − (I + J + K − 2) × M , we have:

AIC = G2 − 2df and BIC = G2 − df × log N (3)

The number M of components with the lowest AIC (or BIC)
is then selected.

As components are represented by profiles along the var-
ious dimensions, P (i|m), P (j|m) and P (k|m), each com-
ponent may select a subset of modalities, by setting other
probabilities to zero. One key feature of NMF is its ability to
identify dense sub-cubes (expressed by components) inside
the original, possibly sparse, data cube. Such a feature can
then be exploited to approximate query answers using ap-
propriate components (see Subsection 4.3) or to conduct fur-
ther analysis on components using, for example, log-linear
modeling.

3.2 LogLinear Modeling
As indicated earlier, log-linear modeling has been used in

the field of data warehousing for data approximation and
outlier detection. The principle of this modeling technique
[9] is to decompose the log-probability of given cell value
as an additive sum of terms involving all combinations of
subsets of dimensions:

log P (i, j, k) = λ+λA
i +λB

j +λC
k +λAB

ij +λAC
ik +λBC

jk +λABC
ijk

(4)
where λ is the overall mean (in the log domain) and all other
parameters model the effect of a subset of the dimensions,
e.g. λBC

jk models the joint effect of observing B = bj and C =
ck, regardless of variable A. In order to have an identifiable
model, the marginals of the parameters are constrained to
zero:

P

i λA
i =

P

j λB
j =

P

k λC
k = 0,

P

i λAB
ij =

P

j λAB
ij =

0, etc.
When all terms are present in Equation 4, this corresponds

to the saturated model. The complexity of the model may be
controlled by removing some parameters (or setting them to
zero), which adds the corresponding degrees of freedom. Of
course, as parameters are removed, the model deviates pro-
gressively from data. Therefore, selecting the appropriate
model is again a compromise between parsimony and ap-
proximation. This may conveniently be done using iterative
model selection methods such as forward selection or back-
ward elimination. In backward elimination, one starts with
a large model, for example the saturated model, and itera-
tively eliminates interactions (from higher to lower order),
as long as the associated increase in G2 is not significant
at a pre-specified level (usually 95%), until none of the re-
maining interactions may be eliminated. Forward selection

proceeds the opposite way by starting with a small model
(generally the independence model) and then adding inter-
actions of increasing order. The parameters of the model
may be obtained either by directly optimizing the likeli-
hood with a Newton-Raphson algorithm [16], or by using
the Iterative Proportional Fitting (IPF) procedure [10], a
dedicated method for modeling multi-way frequency tables.
These techniques may also be used together with informa-
tion theoretic criteria such as the AIC or BIC (see Equation
3). Note that in the context of LLM, AIC seems to be pre-
ferred [9].

The most popular log-linear models are hierarchical mod-
els: all lower-order effects within higher-order ones are nec-
essarily included. A common notation for hierarchical log-
linear models is therefore to specify only terms with the
highest order interaction. For example, {A ∗ B, A ∗ C} de-
notes the hierarchical model containing A ∗ B and A ∗ C as
well as first order terms A, B and C.



3.3 Rates of compression and approximation
The goal of probabilistic modeling is to produce an ap-

proximation of the data cube that uses as few parameters as
possible. We will therefore be interested in measuring the
compression rate and the approximation quality for each
model. The compression rate is linked to the ratio of the
number of free parameters f in the model and the total
number of cells in the cube, Nc, and is defined as:

Rc = 1 −
f

Nc

=
df

Nc

(5)

With df the number of degrees of freedom defined above.
By definition, the saturated model has a compression rate
of 0% since f = Nc.

Typical probabilistic models offer a direct way to control
the compression rate by tuning the model complexity. For
NMF, the compression decreases linearly as the number of
components grows. In our three dimensional example, Nc =
I×J×K and, with M components, f = (I +J +K−2)∗M ,
such that:

RNMF
c = 1 − M

I + J + K − 2

IJK
(6)

In the situation where the components are sparse, i.e.,
many parameters are zero,2 an arguably better way to mea-
sure the compression offered by the model is to take into
account the non-zero parameters only. In such a situation,
Equations 5 and 6 are lower bounds that offer a minimum
guaranteed compression rate for a model with the given
number of components.

The approximation quality may be measured in various
ways such as the mean squared error or the mean absolute
error. In the context of probabilistic models, it is measured
by the log-likelihood (Equation 1) or, equivalently, the de-
viance G2. The deviance offers a “standard” way to measure
the approximation quality: perfect approximation yields a
deviance of 0 and higher deviance means worse approxima-
tion, so it is a good way to compare various models of the
same data cube. However, there is to our knowledge no
way to offer a guaranteed approximation level a priori for
a given data cube and model complexity (i.e., number of
components in NMF or number of interactions in LLM).
The optimal approximation error depends on the level of
noise in the data. In typical situations, the noise level is
unknown before modeling, therefore the resulting approxi-
mation level can not be guaranteed. Note however that for
most probabilistic models, increasing the model complexity
will systematically improve the approximation of the data
on which the model is estimated. If a given approximation
level is required, it is straightforward to increase the model
complexity, e.g., by adding components in NMF, until the
minimum deviance is reached.

4. DATA COMPRESSION, APPROXIMATION,

AND RETRIEVAL
Besides the Governance data cube described in Sec-

tion 2, we used two synthetic data sets to illustrate the po-
tential of NMF for data approximation/compression as well
as approximate query answering. One of the sets is a simpli-
fied version of a dimension table called Customer of Food

2Near-zero parameters may usually be pruned from the
model with no loss in approximation.

Cubes
Features Governance Customer Sales

Nb. of dimensions 4 5 3
Nb. of cells 48 2400 528
Nb. of records 214 10281 5191
Highest nb. modalities 4 8 44
Density 63% 37% 50%

Table 2: Features of the three data cubes. “Density”
is the ratio of non-zero cells.

mart data delivered with Analysis Services of Microsoft
SQL Server. From the Customer table (10281 records)
we constructed a data cube of five dimensions: Status,
Income, Child, Occupation and Education. Status ∈
{1, 2} indicates whether the customer is single (value equal
to 1) or not. Income takes eight possible values indicating
the level of income (e.g., 1 for income between 10K and 30K,
and 8 for income ≥ 150K). Child ∈ {0, 1, 2, 3, 4, 5} repre-
sents the number of children. Occupation takes five possi-
ble values indicating the customer’s occupation (e.g., 1 for a
manual worker and 5 for a manager). Education refers to
customer’s education level and can take five possible values
(e.g., 1 for partial high school studies and 5 for graduate
studies). The other data set was also extracted from Food

mart data and concerns a data cube of Sales according to
product category (44 values), time (in quarters) and coun-
try (USA, Canada and Mexico). This cube has a relatively
small set of dimensions but one of them has a large number
of modalities (members).

Table 2 summarizes the features of the three data cubes
in terms of their dimensionality, the number of members per
dimension, the number of records/instances, the number of
cube cells as well as the density. The first cube was selected
because it represents real data while the other ones were
retained for their relatively higher size or dimensionality.

4.1 Model Estimation
We illustrate model estimation for both NMF and LLM

through the Governance cube.
For NMF, the information criterion AIC identifies three

components (see Figure 1). Therefore, the user can see these
components as a way to cluster the initial cube into ho-
mogeneous data sets, and hence can focus his analysis on
some identified components rather than the whole popula-
tion (cube). The first component C1 represents only 16%
(P (C1) = 0.16) of the observations and corresponds to com-
panies with no duality (i.e., they have distinct CEO and
Chairman of the Board), listed in a US stock exchange and,
with high governance quality. This component represents
what we could call the “virtuous” companies. The sec-
ond component represents the rest of the companies listed
on a US Stock Exchange, for which the governance qual-
ity is lower than in component C1. Finally, the last and
largest component contains small to moderate-sized compa-
nies which are not listed in the US Stock Exchange.

The parsimonious model generated from this cube using
LLM is {QI*Size*USSX, QI*Duality}. This means that
(i) the link between QI, Size and USSX needs a three-way
interaction, expressing the fact that the relationship between
governance quality and USSX is not the same in each value
of firm size, and (ii) Duality is only involved in a two-
way interaction with QI, indicating that the presence or
absence of duality in governance quality is the same for all
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Figure 1: Parameters of the 3-component NMF
model. The tall left pane shows P (c). Each row
shows P (QI|c), P (Size|c), P (Duality|c) and P (USSX|c)
scaled for each c.

Size groups and USSX values. The deviance for this model
is G2 = 23.06, with 21 degrees of freedom, and a p-value
of 0.341. This means that this parsimonious model is not
significantly different from the saturated model in terms of
approximation, but it uses only 26 (48 - 21 -1) free param-
eters instead of 48.

4.2 Compression and Approximation
Figure 2 illustrates the well-known trade-off between com-

pression and approximation on the Governance cube. The
X-axis is the number of parameters in the model (lower
means more compression) while the Y-axis is the likelihood
ratio (lower means better approximation). The dotted lines
are contours of the AIC. An ideal model with good approx-
imation using few parameters would be in the bottom left
corner.

From this figure, one can see that the independence and
saturated models are two extremes, and other probabilistic
models are positioned in between. Moreover, as the num-
ber of NMF components increases, the approximation im-
proves, but the number of parameters grows. One model
that reaches a good compromise between compression and
approximation is the 3-component model, which has the best
AIC of all NMF models. Note that the parsimonious log-
linear model reaches a different, and seemingly better (for
that cube) compromise.

In order to empirically analyze the trade-off between com-
pression and approximation, we consider our three example
cubes and three models (NMF with BIC, NMF with AIC
and LLM), and compute for each model the compression
rate Rc (Equation 5) and the deviance G2.

Table 3 shows that in the Governance cube, all models
compress the data by one half to two-third. The Customer

cube compresses well, from 76.4% for LLM to about 95% for
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Figure 2: The compression-approximation trade-off
for the Governance cube.

NMF. Finally, the Sales cube is harder to compress. Using
BIC, the NMF yields a compression rate of only 26% for the
third cube, while LLM does not manage to compress the
data since there exists a three-way interaction between the
three existing dimensions.

These experimental results confirm that BIC yields a more
parsimonious representation than AIC. This is known from
theoretical considerations, as the BIC penalty is larger. How-
ever, results also seem to indicate that NMF tends to com-
press the data more than LLM. This comes of course at the
price of a worse approximation, as indicated by G2 in Table
3. In all cases, the deviance is much larger for the BIC-
optimal NMF than for the AIC-optimal NMF and LLM,
indicating a worse fit.

These results suggest that NMF and LLM are able to bal-
ance the conflicting goals of compression and faithful rep-
resentation of the data in different ways and to different
degrees, with LLM focusing more on good approximation,
while NMF produces more compact representations of the
data. In the most extreme case presented here, the BIC-
optimal NMF represents the 2400 cells of the Customer

cube using only 109 free parameters. This represents a very
large space saving.

The approximation of cubes allows also a better under-
standing and an easier exploration of data as indicated be-
low.

4.3 Approximate Query Answering
In this section, we show how OLAP queries [8] may be an-

swered within the NMF framework using information about
the generated components. We consider the following op-
erators: selection (Dice), projection (Slice) and aggregation
(Roll-Up). Many other OLAP operators (Rotate, switch,
etc.) are concerned primarily with visualization and/or per-
mutations of dimensions and modalities, and therefore do
not carry any significant change to the model.

A Roll-up will aggregate values either over all the modal-
ities of one or several dimensions, or over subsets of modal-



Governance (Nc=3x4x2x2), N=214
Model sub-cubes param. Rc G2

NMF (best BIC) 2 16 66.7% 56
NMF (best AIC) 3 24 50.0% 35
LLM 2 26 45.8% 23

Customer (Nc=2x8x6x5x5), N=10281
Model sub-cubes param. Rc G2

NMF (best BIC) 5 110 95.4% 1020
NMF (best AIC) 6 132 94.5% 917
LLM 4 567 76.4% 595

Sales (Nc=44x4x3), N=5191
Model sub-cubes param. Rc G2

NMF (best BIC) 8 392 25.8% 715
NMF (best AIC) - 528 0% 0
LLM - 528 0% 0

Table 3: Output of NMF and LLM for three differ-
ent data cubes. Nc is the number of cells in the table,
N is the number of records, Rc is the compression
rate, and G2 is the deviance.

ities. This is easily implemented on the model by summing
over the corresponding probabilistic profile. In addition,
when a roll-up is performed over all modalities of a dimen-
sion, by definition the sum over the entire probabilistic pro-
file is 1, i.e.

P

k P (k|m) = 1, meaning that this probabilis-
tic profile is simply dropped from the model. An example
will clarify this. Without loss of generality, let us assume
a three-dimensional cube X = [xijk] with corresponding 3D
NMF model Px(i, j, k) =

P

m P (m)P (i|m)P (j|m)P (k|m).
A roll-up over dimension k will result in a 2-dimensional
cube Y = [yij ]. The corresponding NMF model is Py(i, j) =
P

k

P

m P (m)P (i|m)P (j|m)P (k|m) =
P

m P (m)P (i|m)P (j|m).
The model estimate for the rolled-up cube Y is therefore ob-
tained “for free” from the model of the original cube X with
essentially no additional computation. Note that the result-
ing model for cube Y is not optimal in the sense that it
does not necessarily maximize the likelihood on that cube.
However, the resulting estimated counts byij = N.Py(i, j)
(with N =

P

ijk
xijk) are exactly the same as what we

would obtain by first forming the estimated cube for X us-
ing bxijk = N.Px(i, j, k), and doing a roll-up on that cube.
Doing the roll-up on the model lightens the computational
requirements. In the example given above, instead of order
4.M.I.J.K operations3 for forming the entire cube and I.J.K
for the aggregation operation, only 3.M.I.J operations are
required.

The Slice and Dice operations are similar in the sense that
they select a portion of the cube and differ mainly on the
extent of the selection. The availability of a probabilistic
model potentially cuts the processing in at least two ways.
First, only the necessary cells may be approximated, instead
of computing the entire approximate cube and performing
the Slice or Dice explicitly on the full cube. Second, during
the approximation, it is possible to discard the components
that are not relevant to the current query.

As an illustration we will use the NMF model of five com-
ponents selected by BIC for the Customer cube. Table 4

3Recall that M stands for the number of components.

Modalities
Dimension Data C1 C2 C3 C4 C5

Status 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2
Income 1-8 4-8 1-3 1-3 2, 3 1-4, 6, 8
Child 0-5 0-5 0-5 0-5 0-5 0-5

Occupation 1-5 4, 5 1-5 1, 2 1, 2 4, 5
Education 1-5 1-5 3 1, 2 1-3 4, 5

Table 4: Modalities of the 5-dimensional data cube
“Customer” and its five components C1 to C5. The
following convention is used: i, j means that only
modalities i and j are non-zero for the correspond-
ing dimension and component, and i − j means all
modalities between i and j.

shows modalities of the Customer cube and its five compo-
nents C1 to C5. The table shows, for each component, the
modalities of each dimension that are “active”, i.e. have a
probability significantly higher than zero. For example, in
component C2, all values of Occupation are probable, but
for components C3 and C4, values of Occupation higher
than 2 have a zero probability. This table will be helpful in
the design of our OLAP query plans. For example, when the
query involves cells with Income=3, component C1 may be
ignored; for Occupation=3, the only relevant component
is C2.

Let us consider the following queries:

1. Slice: Number of customers according to Status, In-

come, Child, and Occupation for customers with
Education= 4 (bachelor’s degree).

2. Dice: Number of customers according to Status, In-

come, and Occupation for customers with Educa-

tion= 4 (bachelor’s degree) or 5 (graduate studies)
where Child ∈ {3, 4, 5}.

3. Roll-Up1: Number of customers according to Income,
Occupation, and Education (a subset of dimensions
of the Customer cube).

4. Roll-Up2: Number of customers according to the five
dimensions (Status, Income, Child, Occupation and
Education) with a roll-up on the Income hierarchy
(e.g., three intervals: 1-3, 4-5, and 6-8).

The first two queries are processed using only components
C1 and C5—all other are zero for Education=4 or Educa-

tion=5. The Dice query can then be processed as follows:
(i) perform Dice query (i.e., selection on Education and
Child) on C1 to get C′

1; (ii) compute, into C′

5, the number
of customers according to Status, Income, and Occupa-

tion for customers with Child ∈ {3, 4, 5}; (iii) add C′

1 to
C′

5 to get the approximate answer.
For the third query, a three dimensional model is available

directly from the original five dimensional NMF by dropping
the profiles for Child and Education from the model. All
five components are used, but for three dimensions only.

Finally, the fourth query concerns a roll-up on the hier-
archy of the Income dimension. It can be answered by se-
lecting the appropriate components and aggregating data for
each interval of Income. In that way, irrelevant components
can be ignored for each interval of Income (component C1

for interval 1-3, and C2 to C4 for 4-5 and 6-8).
Table 5 reports mean (mE) and standard deviation (∆E)

of the approximation error (absolute difference) observed



Error
Query mE ∆E mE0 ∆E0

Slice 0.98 2.23 0.08 0.35
Dice 2.20 4.83 0.00 0.00

Roll-Up1 2.77 5.93 0.00 0.00
Roll-Up2 1.49 3.12 0.05 0.43

Table 5: Mean (mE) and standard deviation (∆E)
of the absolute error by cell. mE0 and ∆E0 are the
mean and standard deviation on the cells with zero
count.

between the result of each query performed on the original
data, and the approximation calculated as presented above,
directly on the model. We also check whether the model
approximates well empty cells in the cube by calculating
the approximation error limited to these empty cells (mE0

and ∆E0).
Table 5 shows that, mean absolute error by cell (mE) is

the smallest for Slice query. This situation is explained by
the fact that Slice query processing does not need cells aggre-
gation which implies error accumulation. In Roll-Up2 query,
error is partially accumulated since a partial aggregation is
performed while building intervals on Income. (mE0) and
(∆E0) values are very small, which indicates that zero-cells
are generally well-estimated.

5. DISCUSSION
The present work shows that NMF and LLM display sim-

ilarities and differences. As NMF and LLM are probabilistic
models, they associate a probability to each cell in the data
cube. This is very helpful to detect outliers by comparing
the observed count in one cell with the expected frequency
according to the modeled probability (see [15, 24]).

Both models break down a complex data analysis problem
into a set of smaller sub-problems. In the context of data
warehousing, this means that instead of exploring a large
multi-dimensional data cube, the user can analyze a few
sets of smaller cubes. This reduces distracting and irrelevant
elements and eases the extraction of actionable knowledge.

NMF can identify homogeneous dense regions inside a
sparse data cube and find relevant modalities within each
dimension for each sub-cube. LLM, on the other hand, can
identify important correlations between dimensions. While
NMF expresses the original data cube as a superposition of
several homogeneous sub-cubes, LLM expresses the origi-
nal data cube as a decomposition into a set of sub-cubes
expressing strong associations among dimensions. In both
cases, the sub-cubes allow the user to focus on one partic-
ular component/association at a time rather than on the
population as a whole.

Although both models can handle a variety of multi-way
arrays, there are also key differences in the way they use
their parameters [15]. In NMF, the number of parameters
scales linearly in the number of components, and the scaling
factor is the sum of the number of modalities on all dimen-
sions (up to a small constant, e.g., I + J + K − 2 for three
dimensions). On the other hand, the number of parame-
ters in LLM depends on lower-order products of the number
of modalities in each of the dimensions involved in the re-
tained interactions. As a consequence, LLM is better suited
for modeling tables with many dimensions, each with rela-

tively few modalities, like in some data cubes. NMF will get
the largest benefits from situations where there are relatively
few dimensions, each with large numbers of modalities, such
as textual data.

6. CONCLUSION
In this paper we advocate the use of non-negative multi-

way array factorization for the approximation, compression
and exploration of data cubes. We also compare this tech-
nique with log-linear modeling for cube approximation and
compression. Both techniques reach a compromise between
smaller memory footprint and good approximation. Finally,
we show how NMF can handle OLAP query answering by se-
lecting the appropriate components to consider. This is par-
ticularly useful for queries involving selection and/or roll-up
on dimensions.

Our future work concerns the following topics: (i) im-
prove the efficiency of the model selection and parameter
estimation procedures in order to scale up to very large data
cubes, (ii) incrementally update an NMF model when a set
of aggregate values are added to the data cube such as a
new dimension or new members of a dimension (e.g., a new
month); and (iii) explore and intensively experiment the po-
tential of NMF for approximating large data sets, and for
preprocessing data to get homogeneous and dense sub-cubes
that could then be analyzed individually using LLM for ex-
ample.

7. ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC) un-
der the discovery grant PGPIN-48472. The authors would
like to thank the anonymous referees for their valuable com-
ments and suggestions.

8. REFERENCES
[1] H. Akaike. A new look at the statistical model

identification. IEEE Transactions on Automatic

Control, 19(6):716–723, 1974.

[2] J. L. Ambite, C. Shahabi, R. R. Schmidt, and
A. Philpot. Fast approximate evaluation of olap
queries for integrated statistical data. In Proceedings

of the First National Conference on Digital

Government Research, 2001.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

international conference on Management of data,
pages 539–550, New York, NY, USA, 2003. ACM
Press.

[4] D. Barbara and X. Wu. Using loglinear models to
compress datacubes. In WAIM ’00: Proceedings of the

First International Conference on Web-Age

Information Management, pages 311–322, London,
UK, 2000. Springer-Verlag.

[5] D. Barbara and X. Wu. Loglinear-based quasi cubes.
J. Intell. Inf. Syst., 16(3):255–276, 2001.

[6] A. Boujenoui and D. Zéghal. Effet de la structure des
droits de vote sur la qualité des mécanismes internes
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