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Characterization of Climatic Variations in Spain at the Regional

Scale: A Computational Intelligence Approach.

Julio J. Valdés, Antonio Pou, Robert Orchard

Abstract— Computational intelligence and other data mining
techniques are used for characterizing regional and time-
varying climatic variations in Spain in the period 1901− 2005.
Daily maximum temperature data from 10 climatic stations
are analyzed (with and without missing values) using principal
components (PC), similarity-preservation feature generation,
clustering, Kolmogorov-Smirnov dissimilarity analysis and ge-
netic programming (GP). The new features were computed
using hybrid optimization (differential evolution and Fletcher-
Reeves) and GP. From them, a scalar regional climatic index
was obtained which identifies time landmarks and changes
in the climate rhythm. The equations obtained with GP are
simpler than those obtained with PC and they highlight the most
important sites characterizing the regional climate. Whereas
the general consensus is that there has been a clear and
smooth trend towards warming during the last decades, the
results suggest that the picture may probably be much more
complicated than what is usually assumed.

I. INTRODUCTION

In spite of the wide number of well tested methodologies

in the study of climatic data, the use of computational intel-

ligence still has a promising place among them; for instance,

in the difficult field of the simultaneous study of time varying

processes and their spatial distribution. The definition of

homogeneous climatic regions considers the sub-continental

scale as its upper limit [1]. However, such regions, generally

based upon geographic or political boundaries, are much

more difficult to establish when driven by climatic data. On

one hand, decade or centennial variations of local climates

may produce undefined or changing boundaries with time.

On the other hand, the availability of old daily records

is usually scarce and limited to a few parameters, most

frequently to maximum and minimum temperatures.

As a first step towards the goal of making the definition

of climatic regions and their time variations less subjective

by means of computational intelligence data mining and

other techniques, the case of the Iberian Peninsula, with

ten stations placed in Spain, has been investigated (Fig. 1).

The stations were carefully selected in order to have a

representative coverage of most of the Spanish territory.

Almost continuous records for maximum temperature, min-
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Fig. 1. Distribution of selected meteorological stations within Spain. From
North to South and from West to East: CO: La Coruña, SS: San Sebastián,
SA: Salamanca, SO: Soria, HU: Huesca, BA: Badajoz, AB: Albacete, SF:
San Fernando, JA: Jaen, AL:Alicante.

imum temperature and precipitation are available in Spain

since 1901. In the dataset used in this paper, 4.8% of the

information is missing, but that situation seems susceptible to

improvement as new un-digitized data may become available.

The climate distribution of Iberia oscillates among the At-

lantic climates distributed along the north and northwestern

coastal line, the continental climates of the central plains and

the Mediterranean climates of the rest; the whole complicated

by the intricacies of the many mountains, ridges and relieves.

In a first instance, it would seem logical to expect the data

would tend to define at least these three climatic regions,

but, as it will be seen in the results of the present analysis,

apparently that is not the case.

During the last two decades there have been some studies

(notably [2]), covering the region with the purpose of analyz-

ing the climatic variation and finding climate change indices.

One of the authors (A.P) tried a daily approach with a subset

of the dataset used in this paper [3] at a time when the

available mathematical and computational tools were largely

insufficient for the task. There are no antecedents (known to

the authors), about computational intelligence approaches to

this problem prior to the present study.

From the three existing climatic parameters available,

this paper focuses on maximum temperatures Tmax. It is

known that maximum temperature, minimum temperature



and precipitation respond to somewhat different physical pro-

cesses, although they are linked and interdependent. Studies

targeting the other variables are in the making.

The purpose of this paper is to approach a regional climatic

characterization in the Spanish territory from a computational

intelligence and data mining perspective, including the search

for regional indices through which the overall climatic vari-

ations can be analyzed.

The paper is organized as follows: Section II describes

the data and the data processing approach (details about the

methods and techniques used are given in specific subsec-

tions), Section III describes the experimental settings with

which the different algorithms were used, Section IV presents

the main findings and Section V contains the conclusions.

II. DATA AND DATA PROCESSING METHODOLOGY

The data consist of daily observations of Tmax values

in the 10 stations described in Section I during the period

1901 − 2005, defining a collection of 38351 10-D objects

(Dataset-1). A second dataset was constructed by selecting

only those objects of Dataset-1 without missing values.

This will be called Dataset-2 and contains 24648 10-D

observations.

The data processing strategy aimed at finding a new

(smaller) set of features derived from the original 10-D data

that preserves their similarity structure, followed by the anal-

ysis of its time behavior and their relation to other climatic

variables. In a result-driven fashion, further processing or

transformations were performed on these features. In the

first place, similarity structure preserving small-size, proper

subsets were constructed out of Datasets 1, 2 (see similarity

preserving mapping and L-subsets in Subsection II-A). For

the resulting 10-D L-subsets, 3 new similarity-preserving

features were sought, so that they could be used as a base

for constructing a Virtual Reality Space suitable for visual

data mining [4], [5].

A L-subset induces a partition on the corresponding

dataset so that each of its elements (leaders) is the represen-

tative of an equivalent class of original objects (those whose

similarity with the leader of the class is greater or equal than

a given threshold).

In the case of Dataset-1 the features were obtained by

implicit mapping [6] using Eq. 1, because of the presence of

missing values (see Subsection II-B). In the case of Dataset-

2 the same goal was sought using genetic programming

(see Subsection II-C) in order to obtain explicit mappings

(analytical equations) relating the new features with the

original attributes (the 10 meteorological stations). As will

be seen in Section IV, further dimensionality reduction to

just 1 feature (F1) was suggested by the data structure

found. The meaning of F1 is that of a general index for the

entire Spanish territory concentrating the Tmax information

provided by the 10 stations from the point of view of their

similarity structure content. It was computed using the same

procedures described above for the 3-D case. The new 1-D

feature values found for the 239 samples (see Subsection II-

A), were extended to the remaining objects from Dataset-1

by assigning the value of F1 of each element of the L-subset

to all Dataset-1 objects belonging to its equivalent class.

Then, the F1 values for Dataset-1 were binned ac-

cording to the year (1901 − 2005). A dissimilarity ma-

trix (MKS) (105x105) was computed using Kolmogorov-

Smirnov’s statistic (see Subsection II-D). A 1-D feature

space (FKS) was computed as an approximation to (MKS).

Accordingly, years with similar values of FKS indicate that

the empirical probability distributions of F1 are similar. The

FKS were hierarchically clustered and the time variation of

the main classes analyzed.

In the case of Dataset-2, principal component analysis was

performed on both the whole dataset and on the 229 elements

from the L-subset (see Subsection II-A). Also, new sets of

3 and 1-D features were constructed for the L-subset (as in

Dataset-1) using genetic programming (ECJ-GEP) for finding

an explicit ϕ minimizing Sammon’s error.

A. Dimensionality reduction and visualization

One of the steps in the construction of a VR space for

data representation is the transformation of the original set

of objects under study O, often defining a heterogeneous high

dimensional space, into another space of small dimension Ô,

(typically {2, 3}) with an intuitive metric (e.g. Euclidean).

The operation usually involves a non-linear transformation

(ϕ : O → Ô); implying some information loss. There

are basically three kinds of spaces sought [6]: i) spaces

preserving the structure of the objects as determined by

the original set of attributes or other property, ii) spaces

preserving the distribution of an existing class or partition

defined over the set of objects and iii) hybrid spaces.

In this study, unsupervised spaces are constructed because

data structure is one of the most important elements to con-

sider when the location and adjacency relationships between

the objects in the new space should give an indication of the

similarity relationships [7], [8] between the objects, as given

by the set of original attributes [5]. ϕ can be constructed

to maximize some metric/non-metric structure preservation

criteria as in multidimensional scaling [9], [8], or to minimize

some error measure of information loss [10]. If δij is a

dissimilarity measure between any two objects i, j ∈ O ,

and ζîĵ is another dissimilarity measure defined on objects

î, ĵ ∈ Ô (̂i = ϕ(i), ĵ = ϕ(j), a frequently used error measure

associated to the mapping ϕ is:

Sammon error =
1

∑

i<j δij

∑

i<j (δij − ζîĵ)
2

δij
(1)

When seeking simultaneously for a reduced set of features

and a suitable space for visualization, a target 3-D space is

the natural choice. The solution of Eq. 1 guarantees that

the new features preserve the similarity structure of the

original as much as possible but it implies the construction

of dissimilarity and distance matrices in both the original

and the target spaces respectively, which are quadratic in

the number of objects. Moreover, the number of variables to

estimate in Eq. 1 is Nu = N · m where N is the number



of objects and m the dimension of the target space (3). In

the present case Nu = 38351 · 3 = 115, 053, which will

make the optimization process very difficult. Therefore, it is

necessary to work with a suitable (small) proper subset of

the original data. That is, one which is at the same time small

and also preserves the overall data structure. For the purpose

of extracting such a kernel sample, the leader algorithm was

applied [11]. If O is the set of objects, S(i, j) ∈ [0, 1] is a

similarity measure defined for any two objects i, j ∈ O and

Ts ∈ [0, 1] is a similarity threshold, then this algorithm builds

a set L ⊆ O (called an L-subset of O) with the property

that ∀x ∈ O,∃ l ∈ L such that S(x, l) ≥ Ts. Therefore, L
represents the similarity structure of O up to the similarity

level Ts. In the particular variant of the algorithm used, any

object x is associated with the element lx ∈ L for which

the following holds: ∀ l ∈ L, S(x, lx) ≥ S(x, l) (lx is the

element of L that is most similar to x).

B. Hybrid Optimization using Differential Evolution and

Classical Optimization

Evolutionary algorithms (EC) are global optimizers and in

general explore broad areas of the search space, whereas clas-

sical deterministic optimization techniques are more power-

ful at local search. It is a good practice to combine them

in order to benefit from the properties of both approaches.

A hybrid algorithm (DE-FR) was constructed by applying

Differential Evolution (DE) [12], [13], [14] until convergence

and then using the DE solution as an initial approximation

for the Fletcher-Reeves (FR) classical optimization algorithm

[15]. This hybrid approach was used for the implicit compu-

tation of ϕ (minimization of Sammon error in Eq. 1).
1) Differential Evolution: Differential Evolution is a kind

of evolutionary algorithm working with real-valued vectors,

and it is relatively less popular than genetic algorithms.

However, it has proven to be very effective in the solution

of complex optimization problems [16], [17]. Like other EC

algorithms, it works with populations of individual vectors

(real-valued), and evolves them. Many variants have been

introduced, but the general scheme is as follows:

General Differential Evolution Scheme:

step 0 Initialization: Create a population P of random vec-

tors in ℜn, and decide upon an objective function

f : ℜn → ℜ and a strategy S, involving vector

differentials.

step 1 Choose a target vector from the population ~xt ∈ P .

step 2 Randomly choose a set of other population vectors

V = {~x1, ~x2, . . .} with a cardinality determined by

strategy S.

step 3 Apply strategy S to the set of vectors V ∪ {~xt}
yielding a new vector ~xt′ .

step 4 Add ~xt or ~xt′ to the new population according to

the value of the objective function f and the type

of problem (minimization or maximization).

step 5 Repeat steps 1-4 to form a new population until

termination conditions are satisfied.

There are several variants of DE which can be classified

using the notation DE/x/y/z, where x specifies the vector

to be mutated, y is the number of vectors used to compute the

new one and z denotes the crossover scheme. In particular,

DE was applied using Strategy S = DE/best/2/bin, which

produced good results in a wide variety of test problems [17].

Let F be a scaling factor, Cr ∈ ℜ be a crossover rate, D be

the dimension of the vectors, P be the current population,

Np = card(P) be the population size, ~vi, i ∈ [1, Np]

be the vectors of P , ~bP ∈ P be the population’s best

vector w.r.t. the objective function f and r, r0, r1, r2, r3, r4
be random numbers in (0, 1) obtained with a uniform random

generator function rnd() (the vector elements are ~vij , where

j ∈ [0, D)). Then the transformation of each vector ~vi ∈ P
is performed by the following steps:

step 1 Initialization: j = (r ·D), L = 0
step 2 while(L < D)
step 3 if((rnd() < Cr)||L == (D − 1))

~vij = ~bPj + F · (~vr1j + ~vr2j − ~vr3j − ~vr4j)
step 4 j = (j + 1) mod D
step 5 L = L+ 1
step 6 goto 2

step 7 stop

2) Classical Optimization: The Fletcher-Reeves method is

a well known technique used in deterministic optimization

[15]. It assumes that the function f is roughly approximated

as a quadratic form in the neighborhood of a N dimensional

point P. f(~x) ≈ c − ~b · ~x + 1

2
~x · A · ~x, where c ≡ f(P),

b ≡ −∇f |P and [A]ij ≡ ∂2f
∂xi∂xj

|P
The matrix A whose components are the second partial

derivatives of the function is called the Hessian matrix of

the function at P. Starting with an arbitrary initial vector ~g0
and letting ~h0 = ~g0, the conjugate gradient method constructs

two sequences of vectors from the recurrence ~gi+1 = ~gi −
λi A · ~hi, ~hi+1 = ~gi+1 − γi A · ~hi, where i = 0, 1, 2, . . .

The vectors satisfy the orthogonality and conjugacy con-

ditions ~gi · ~gj = 0, ~hi · A · ~hj = 0, ~gi · ~hj = 0, j < i

and λi, γi are given by λi =
~gi·~gj

~hi·A·~hi

, γi = ~gi+1·~gi+1

~gi·~gi
.

It can be proven [15] that if ~hi is the direction from point

Pi to the minimum of f located at Pi+1, then ~gi+1 =
−∇f(Pi+1), therefore, not requiring the Hessian matrix.

C. Genetic Programming

Genetic programming (GP) techniques aim at evolving

computer programs. They are an extension of the Genetic

Algorithm introduced in [18] and further elaborated in [19],

[20] and [21]. The algorithm starts with a set of ran-

domly created computer programs. This initial population

goes through a domain-independent breeding process over

a series of generations. Genetic programming combines the

expressive high level symbolic representations of computer

programs with the search efficiency of the genetic algorithm.

Those programs which represent functions are of particu-

lar interest and can be modeled as y = F (x1, · · · , xn),
where (x1, · · · , xn) is the set of independent or predictor

variables, and y the dependent or predicted variable, so that

x1, · · · , xn, y ∈ , where are the reals. The function F
is built by assembling functional subtrees using a set of



predefined primitive functions (the Function Set), defined be-

forehand. In general terms, the model describing the program

is given by y = F (~x), where y ∈ and ~x ∈ n. Most imple-

mentations of genetic programming for modeling fall within

this paradigm but for some problems vector functions are

required. A GP based approach for finding vector functions

was presented in [22]. In these cases the model associated

to the evolved programs is ~y = F (~x), which allows for

the simultaneous estimation of several dependent variables

~y from a set of independent variables ~x. Note that these are

not multi-objective problems, but problems where the fitness

function depends on vector variables. The mapping problem

between vectors of two spaces of different dimension (n and

m) is one of that kind. In this case a transformation like

ψ : n → m mapping vectors ~x ∈ n to vectors ~y ∈ m

would allow a reformulation of Eq. 1:

Sammon error =
1

∑

i<j δij

∑

i<j (δij − d(~yi, ~yj))
2

δij
, (2)

where ~yi = ψ(~xi), ~yj = ψ(~xj).
The evolution has to consider populations of forests such

that the evaluation of the fitness function depends on the set

of trees within a forest [22]. In these cases, the cardinality

of any forest within the population is equal to the dimension

of the target space m.

Gene Expression Programming (GEP) [23], [24] is one of

the many variants of GP and has a simple string represen-

tation. In the GEP algorithm, the individuals are encoded as

simple strings of fixed length with a head and a tail, referred

to as chromosomes. Each chromosome can be composed of

one or more genes which hold individual mathematical ex-

pressions that are linked together to form a larger expression.

For the research described in this paper, the extension of

the GEP algorithm which supports vector functions was used

[22]. The GEP implementation is an extension to the ECJ

System [25].

D. Kolmogorov-Smirnov statistic as a dissimilarity measure

A powerful non-parametric statistical test called

Kolmogorov-Smirnov [15], addresses the problem of

whether a one-dimensional data sample is compatible with

being a random sampling from a given distribution.

It is also used to test whether two data samples

are compatible with being random samplings of the

same, unknown distribution. The statistic is based

on the largest deviation between two cumulative

distributions. If there are two empirical distributions:

SN (x) containing N events, and SM (x) containing

M events, then D(SN , SM ) = max|SN (x), SM (x)|,
over x (Fig.2) . The statistic Dks is given by

Dks(SN , SM ) = D(SN , SM ) ∗
√

NM/(N +M). In

particular, Dks(SN , SM ) ∈ [0,∞), Dks(SN , SN ) =
Dks(SM , SM ) = 0 and Dks(SN , SM ) = Dks(SM , SN ),
which are the axioms of a dissimilarity relation [7]. Hence,

the overall structure of the similarity structure of a set

of empirical probability distributions can be visualized by

Fig. 2. Kolmogorov-Smirnov statistic (D) between two empirical cumula-
tive distributions of a given variable X.

computing a dissimilarity matrix based on the Kolmogorov-

Smirnov statistic, use it as δij and solve Eq. 2 for the

vectors in the target visualization space.

III. EXPERIMENTAL SETTINGS

The leader algorithm [11] was used for extracting a kernel

sample out of the 38351 original 10-D data objects (days)

with missing values. Gower’s similarity coefficient [26] was

used with a similarity threshold of 0.93 for assigning each

object to the most similar leader. A set of 239 objects were

extracted and a Gower’s dissimilarity matrix between them

was computed as δij = (1/sij) − 1, where sij is Gower’s

similarity between objects i, j. The same procedure and

settings was applied to the second Dataset-2 (24648 10-D

observations with no missing values) and a set of 229 leaders

was obtained for further processing.

Then Eq. 1 was solved for the coordinates of a 3-D

space using hybrid DE-FR optimization. Table I shows the

experimental settings used for different runs of the DE-FR

algorithm, where several F, Cross-over rate and Population

Sizes were tried. For every DE run, the best chromosome

was used as an initial approximation for the Fletcher-Reeves

optimization completion. The same procedure was used for

computing the 1-D spaces.

TABLE I

EXPERIMENTAL SETTINGS FOR THE HYBRID (DIFFERENTIAL

EVOLUTION-FLETCHER-REEVES) OPTIMIZATION ALGORITHM (DE-FR).

3D AND 1D SPACES USING ALL DATA WERE COMPUTED

Parameter Values

F {0.4, 0.5, 0.6}
Cross-over Rate {0.8, 0.9}
Population Size {100, 1000, 4000}

Principal component analysis was applied using the cor-

relation matrix. The ECJ-GEP genetic programming exper-

iments were performed using population sizes of 100 and

300. 50 different random seeds were used, for a total of

100 runs. The remaining algorithm parameters were fixed

at the following suggested values [24]: number of genera-

tions = 1000, genes/chromosome = 5, gene headsize = 5,



elitism = 3 individuals, constants = allowed (in [−1, 1]),
probabilities: inversion = 0.1, mutation = 0.044, istranspo-

sition = 0.1, ristransposition-prob = 0.1, onepointrecomb-

prob = 0.3, twopointrecomb-prob = 0.3, generecomb-prob

= 0.1, genetransposition-prob = 0.1, rnc-mutation= 0.01, dc-

mutation-prob = 0.044, dc-inversion= 0.1, dc-istransposition

= 0.1. In particular, the Function Set was composed only of

arithmetic functions: {+,−, ∗, /}.

IV. MAIN RESULTS

The distribution of the daily means (grouped by annual

means) for the ten stations along 1901 − 2005 (105 years)

(Fig. 3) shows a general warming trend, which is statistically

significant at α = 0.05 (Pearson’s correlation = 0.2475,

t-statistic = 2.593, df = 103). Apparently, the variation is

distributed in a set of steps. However, the individual behavior

of each station may follow a very different pattern [3],

including stations with negative trends and others with no

apparent variations.

Fig. 3. Annual means of the daily mean maximum temperatures (Celcius)
for the set of 10 stations in the period 1901 − 2005.

A. Dataset-1

With the settings described in Section III, a L-subset

composed of 239 objects out of the 38351 was extracted.

From it, 3 new features were generated by an implicit

solution of Eq. 1 with DE-FR hybrid optimization. Sammon

errors were in the range [0.044009, 0.044870] with 0.044009
as best result. A snapshot of a 3-D space is shown in Fig. 4

(it is impossible to represent virtual reality on hard (printed)

media), where the object sizes are proportional to the number

of original objects similar to the one represented. A seasonal

class distribution can be identified as well as an apparent

intrinsic dimensionality close to 1 for the objects in the 3-

D space. This suggests that the Iberian Peninsula behaves

like a single climatic region in spite of the diversity of its

geographical regions. In that case, a scalar index based on

this feature could be used for characterizing the regional

climate in the territory.

Accordingly, a 10-D to 1-D ϕ mapping of the L-subset

was computed with the DE-FR hybrid algorithm, producing

a new F1 feature for the L-subset. Sammon errors were in the

range [0.072628, 0.072636] with 0.072628 as best result. As

expected, the error increased in comparison with a 10-D to

3-D mapping, but it was still low. In an attempt to investigate

Fig. 4. Snapshot of a 3-D space computed from the original 10-D
data by DE+FR (Dataset-1). light spheres: January-February, light cones:
March-April, light disks: May-June, dark disks: July-August , dark cones:
September-October, dark spheres: November-December.

Fig. 5. Hierarchical clustering (Ward’s method with Euclidean distance)
of the FKS feature computed from the Kolmogorov’s statistic matrix. The
horizontal line indicates a distance level defining 4-clusters.

the behavior of this new index, the values of F1 were ex-

tended from the objects in the L-subset to the whole Dataset-

1 as explained in Section II and grouped by years. From it, a

105x105 Kolmogorov-Smirnov-statistic dissimilarity matrix

MKS was computed and mapped to a 1-D dissimilarity pre-

serving feature (FKS) with Fletcher-Reeves’s optimization

(Sammon error = 0.144766). A hierarchical clustering using

Ward’s method and Euclidean distance [7] (Fig. 5), which

shows 4 well defined clusters. Also, the deviations from the

general centroid were computed.

The joint behavior of the class transitions and the devia-

tions from the centroid are shown in Fig. 6. There are several

landmarks at {1911, 1920, 1936, 1940, 1960, 1973, 1989}.

Whereas some of them are related with artifacts when the

original records are checked (e.g. a large number of missing



Fig. 6. Behavior of FKS in the period 1901 − 2005. Vertical lines indicate time landmarks and important transitions between the classes.

values at the Spanish Civil War during [1936, 1940]), others,

at least 1911 and 1920, coincide with solar related events

found elsewhere [27]. Overall, the time evolution is clearly

marked by discrete steps and does not respond to smooth

changing conditions as it may appear at first glance from

Fig. 3. This is an interesting insight into the process which

should be confirmed by further analysis with higher quality

data and the inclusion of other climatic parameters.

B. Dataset-2

A principal component analysis of the correlation matrix

for the original set of 10 attributes with the entire set of

objects, revealed that the cumulative variances for the first

3 components were 84.1%, 89.3%, and 92.4% respectively

(the first component has 84.1% of the total, suggesting that

a scalar index for describing the regional climatic process is

indeed possible. In particular the eigenvalues associated with

that component are in the [0.285, 0.334] range for the 10
attributes, indicating that they are all contributing, positively

and similarly, to that first component. In the case of the L-

subset (229 objects) the cumulative variances for the first

3 components were 74.4%, 82.4% and 87.4% respectively,

with eigenvalues for the first component in the [0.280, 0.340]
range. This is very similar to the results for the whole

Dataset-2. The first principal component is given by

PC1 = k1 ∗AB + k2 ∗AL+ k3 ∗BA

+ k4 ∗ CO + k5 ∗HU + k6 ∗ JA (3)

+ k7 ∗ SA+ k8 ∗ SS + k9 ∗ SO

+ k10 ∗ SF

where k1 = 0.340, k2 = 0.316, k3 = 0.329, k4 = 0.285,

k5 = 0.340, k6 = 0.335, k7 = 0.293 , k8 = 0.299,

k9 = 0.337, k10 = 0.280. When genetic programming

(ECJ-GEP) is used for the generation of 3 new similarity-

preserving features for the L-subset (obtained from Eq. 2),

the best result obtained in 100 runs is:

X = k1 + k2 ∗ SA

Y = k3 (4)

Z = k4 + k5 ∗AB + k6 ∗AL+ k7 ∗BA

+ k8 ∗ SS + k9 ∗ JA+ k10 ∗ SO

where k1 = 1.982044, k2 = −0.092116, k3 = 1.156882,

k4 = −0.661387, k5 = −0.045865, k6 = −0.025702,

k7 = −0.045865, k8 = −0.045865, k9 = −0.050245,

k10 = −0.050246 and SA, AB, AL, BA, SS, JA and SO

represent the Tmax values (as standard scores). This mapping

produced a Sammon error = 0.06455 and the associated 3-D

space is shown in Fig. 7. The distribution of the main classes

is very similar to that of Dataset-1 (Fig. 4) and the intrinsic

dimensionality is also close to 1.

Fig. 7. Snapshot of a 3D space computed from the original 10-D
data by ECJ-GEP (Dataset-2). light spheres: January-February, light cones:
March-April, light disks: May-June, dark disks: July-August , dark cones:
September-October, dark spheres: November-December.

Whereas the first 3 principal components requires the

contribution of all of the 10 original attributes, the GP result:



i) is strictly bi-dimensional (actually cuasi one-dimensional),

ii) is linear, just like PCs (due to the nature of the Fuction

Set, potentially there could have been divisions, quadratic

terms, etc.) and iii) it involves fewer attributes than the PC

solution (7 out of 10).

The best GP result when generating a single feature was

X = k1 + k2 ∗AB + k3 ∗AL+ k4 ∗BA

+ k5 ∗ SS + k6 ∗ SA+ k7 ∗ SO (5)

where k1 = −0.944511, k2 = 0.065500, k3 = 0.035075,

k4 = 0.065500, k5 = 0.035075, k6 = 0.035075, k7 =
0.065500. Sammon error was 0.0823, which is only a little

higher than the one obtained for 3 features and confirms

that a single scalar dimension can approximate the overall

similarity structure of the L-subset. Again, the GP solution

is still linear and simpler than the PC solution for a single

component. It required all of the 10 attributes, whereas GP

requires only 6.

V. CONCLUSIONS

A computational intelligence-based data mining approach

was used for the study of regional and time variations of the

maximum daily temperatures in 10 selected climatological

stations in Spain in the period 1901− 2005. New similarity-

preserving features were derived from datasets with and

without missing values and 3-D spaces suitable for visual

data mining were constructed. Their structure showed that

further dimensionality reduction to a single new feature was

possible, which enabled an overall regional description of the

behavior of the maximum temperatures with a scalar regional

climatic index. For the subset of the data without missing

values, equations were obtained which provide a preliminary

explanation of the variations observed and highlight the most

important sites characterizing the behavior of the regional

climate in the Spanish territory. The analysis of F1 as a

regional index, the Kolmogorov-Smirnov’s structure of its

probability distributions and its time variations, showed that

the time evolution is marked by discrete steps and does not

respond to smooth changing conditions as it may appear at

first glance.

The results are very promising, but preliminary. Further

studies are required with more and better quality data, as

well as with consideration of other climatic parameters.
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