
Publisher’s version / Version de l'éditeur:

Nordic Journal of Computing, 4, 4, 1997

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Architecture-Driven Verification of Concurrent Systems
Erdogmus, Hakan

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=abb9b207-f404-42d0-8d05-2d95adbf15e9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=abb9b207-f404-42d0-8d05-2d95adbf15e9

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Architecture-driven verfication of concurrent
systems.*

Erdogmus, H.

1997

* published in: Nordic Journal of Computing. 4: 380-413; 1997. NRC 41549.

Copyright 1997 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Nordic Journal of Computing

Architecture-Driven Verification of Concurrent Systems

Hakan Erdogmus
National Research Council of Canada

Software Engineering Group
Building M-50, Montreal Road

Ottawa, Ontario, Canada K1A 0R6
erdogmus@iit.nrc.ca

wwwsel.iit.nrc.ca

Abstract. This paper proposes a method to construct a set of proof obligations
from the architectural specification of a concurrent system. The architectural spec-
ifications used express correctness requirements of a concurrent system at a high
level without any reference to component functionality. Then the proof obliga-
tions derived from such specifications are discharged as model checking tasks in a
suitable behavioral model where components are assigned their respective function-
alities. An experimental extension to the SPIN tool is used as the model checker.
The block diagram notation used to specify architectures allows interchangeable
components with equivalent intended functionalities to be encapsulated within a
representative module. A proof obligation of such a system is discharged as an e-
quivalence checking task in the behavioral model chosen. It is shown how infeasible
proof obligations can be decomposed by decomposing the architectural specifica-
tion. Obligation decomposition relies on assume-guarantee conditions.

Key words: architecture-based verification, architectural specifications, architec-
tural formalisms, model checking, equivalence checking, compositional verification.

CR Classification: D.2.1[Software Engineering]:Requirements/Specifications;
D.2.4[Software Engineering]:Program Verification; F.3.1[Logics and Mean-

ing of Programs]: Specifying and Verifying and Reasoning about Programs;
C.2.4[Computer-Communication Networks]: Distributed Systems.

1. Introduction

Architectural specifications have an increasingly important role in the design
and development of computer-based systems. This role is evidenced by the e-
mergence of software architecture with its formal underpinnings as a distinct
field [28,50,55,3,18,13], and by the proliferation of specialized methods and
notations for architectural descriptions of software [6,14,27,43,53,26]. Be-
sides their use as documentation and as an abstraction mechanism to man-
age structural complexity, architectural specifications can also aid in rigorous
system development based on step-wise refinement [49,52], in rapid system
prototyping [52,36,51,43], in pre-implementation analysis [48,34,42,5], and
in system development through reuse and instantiation of reference models
[54,47,7,57,26,53].

Received July, 1996. Revised April, September 1997.

2 ERDOGMUS

This paper addresses architectural specifications in terms of their ability
to express correctness requirements of concurrent systems: architecture is
exploited for verification. A method is proposed to construct a set of proof
obligations from an architectural specification of a concurrent system. It is
also shown how infeasible obligations can be decomposed by decomposing
the architectural specifications themselves. Once the proof obligations are
determined, each obligation can be discharged as a model checking task in
a chosen behavioral model. The central idea of the paper is that proof obli-
gations can be derived from structure and that decomposition of structure
leads to decomposition of obligations. The criteria for selecting proof obli-
gations from a redundant set are touched upon here, and discussed in more
detail in [22] where a simple algorithm is provided to remove redundancy
from a given set of obligations.

The architecture of a concurrent system is often expressed in terms of
block diagrams with boxes and lines. Boxes represent modules, and lines
represent connections. A diagrammatic notation of this type is used in this
paper. Since such a notation alone does not address the functionality of
the systems specified, modules are assigned their respective functionalities
in some suitable behavioral model. Provided the behavioral model has a
notion of composition of its own, it is necessary to assign functionality only
to primitive modules which are found at the lowest level of an architectural
specification.

Proof obligations are derived from modules which possess interchange-
able components. These modules are called functional groups : a functional
group represents a set of modules with equivalent intended functionalities.
Typically, a functional group involves an abstract module and a number
of concrete modules which represent alternative decompositions of the ab-
stract module. If modules M and N belong to the same functional group F ,
then {M,N} is a proof obligation of F . Such an obligation is discharged by
checking β(M) ≡ β(N), where β associates a corresponding functionality,
in a given behavioral model, with each module; and ≡ is an equivalence
relation on behaviors. The proof obligations of a system are independent of
the actual behavioral model and the equivalence relation adopted.

The problem of deciding behavioral relations between system specifications
is not addressed here. This problem is well known in the model checking
literature; the reader is referred to [19,11,40,25,56]. Examples of behavioral
equivalences can be found in [17,16,39,46,30].

The distinction between open and closed systems is important in the pro-
posed approach. An open system can interact with other systems, whereas a
closed system can only be observed. It is assumed that only proof obligations
of closed systems can be discharged. Thus {M,N} cannot be discharged if
M and N are open. However, if M and N are embedded in a closed context
C as C[M] and C[N], respectively, then {C[M], C[N]} may constitute a le-
gitimate proof obligation that can be discharged. The context C models the
common environment of M and N ; it captures the assumptions that apply
to the potential users of these two modules. Note that while some model

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 3

checkers such as Cæsar-Aldébaran [25] can handle open systems, others
such as Spin [33] can not. The idea that it is possible to reason about open
systems using explicit environmental assumptions and established methods
for reasoning about closed systems has been suggested in [2].

The paper is organized as follows:
Section 1.1 reviews the related literature on architectural notations, com-

positional verification of concurrent systems, and architecture-driven ver-
ification. This is followed in Section 2 by the introduction of the model
and the corresponding graphical notation used for architectural specifica-
tions. Section 3 introduces the formal model: module systems. The subject
of Section 4 is the expression and derivation of correctness requirements
in the architectural model. The concept of proof obligation is formalized
here. Section 5 deals with obligation decomposition. Two kinds of decom-
position techniques are presented: horizontal decomposition and vertical
decomposition. A case study is discussed in Section 5.3 to illustrate these
two techniques. Section 6 discusses the specification and verification of sys-
tem architectures using Promela and Spin. The paper is concluded with
a discussion in Section 7.

1.1 Related Work

The use of a formalism based on box-and-line diagrams to describe system
architectures is not novel. Neither is the idea of expressing component (and
system) variability in terms of groups of interchangeable modules.

Numerous techniques have been proposed for architectural descriptions.
Examples include specification languages which support a box-and-line type
block diagram notation, such as ROOM [52], SDL [51,35], and ModeChart
[36]; architectural description languages such as Aesop [26], Wright [6], U-
niCon [53], Rapide [43], and ACME [27]; and other formal notations such
as those used in [49], [31], and [18]. All of these techniques refer to the
notions of component, connector, and configuration to describe interface-
connection architectures (systems of modules interconnected through their
interface ports) [44].

While the separation of structure from behavior (functionality) is evident
in many of these techniques [18,53,27,52,36,51], some formal approaches
to software architecture [49,42,4,34] augment structural descriptions with
behavioral descriptions of interactions between system components. This
mixing of structure and functionality allows architectural specifications to
be animated, and also certain types of behavioral analyses to be performed
on them. As opposed to these latter methods, in this paper architecture
refers exclusively to structure: hence structural and behavioral models are
separated.

A central feature of the proposed architectural model is its ability to ex-
press families of systems (variability) in terms of module groups. A similar
idea has been suggested in [7] and [57]. [7] uses realms and type equations
to represent a system family. A realm is akin to a set of interchangeable,

4 ERDOGMUS

singular modules which implement the same interface (analogous to a union
here). A type equation defines a module group and uses realms as compo-
nents. In [57], a system family is made up of different versions of a generic
system where each version structurally differs from the others in some way.
Variability is expressed by conditional expressions which specify where and
which variable components are included in different versions.

Architecture-based verification has been addressed in [48], [42], [4], and
[34]. All of these works focus on interactions between components as the
basis of verification, whereas here the focus is on the system structure itself.
[48] and [4] employ a notation based on the familiar component-connector-
configuration paradigm to specify structure: [48] uses a logical formalism for
connector semantics while [4] uses a process algebraic one. [42] proposes an
event-based, object-oriented formalism to specify executable architectures;
structure is denoted again in terms of components, connectors, and configu-
rations. This latter formalism is considerably more expressive than those of
[48] and [4]. [48] and [42] attack the problem of deciding whether a concrete
architecture conforms to, or implements an abstract architecture. While
the underlying reasoning is purely behavioral and conformance is checked
through animation in [42], [48] takes into account structural properties, de-
fines correctness criteria which give rise to proof obligations, and uses logic-
based proofs. By contrast, [4] deals with correctness properties within a
single architecture: proof obligations are generated to ensure components
interact in desirable ways. The approach of [34] is different in that it uses
an operational model to specify high-level interactions between components.
Structure is not explicitly specified: instead, it results from the underlying
behavior. [34] also uses formal proofs to check specific behavioral properties
of a single architecture. Unlike all of these works, here proof obligations are
derived from purely structural specifications although they are discharged
in a behavioral model. The choice of the behavioral model and the correct-
ness criterion is independent of the structural specification. Therefore, the
correctness criterion can easily be changed depending on which properties
should be preserved, without affecting the structural specification.

Compositional verification of concurrent systems have been explored in
many articles [45,37,41,15,38,1,2,12,29]. In [45], [37], [41] and [38], as well
as here, correctness is defined in terms of a behavioral relation. In the
remaining references, correctness is defined in terms of properties expressed
in a modal logic. [45] uses abstractions of different levels as the basis of
decomposition. In [37], a system satisfies its specification if its components
satisfy their respective specifications. In [41, Ch. 6], a property holds for a
system defined in terms of a conjunction of constraints if it holds for each
constraint individually.

DeLeon and Grumberg describe a compositional method based on reduc-
tion for temporal model checking in [15]. To verify that a composite system
satisfies a given property, each component is reduced by abstracting away
details irrelevant for the property to be verified. The resulting abstractions
are then recomposed, and the property is verified in this reduced system.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 5

This idea is similar to the decomposition technique (vertical decomposition)
discussed in Section 5.2: a composite system is verified using abstractions
of its components.

Similarly, Kurshan describes a compositional verification method based on
homomorphic reduction for testing ω-language inclusion between two con-
current systems [38]. The notion of reduction described in [38] and [15] is
a powerful one in that it is defined relative to the property to be proved.
Clarke and others [12] propose a technique to compositionally obtain such
reductions (called approximations therein) directly from the syntactic de-
scription of a concurrent program. Their technique is constructive in that
the validity of the reductions does not have to be checked. Kurshan’s notion
of reduction and the notion of approximation defined by Clarke and others
are analogous to the notion of approximation discussed in Section 4, where
approximations apply to closed contexts and are defined relative to a sys-
tem which can be enclosed in those contexts. By contrast in [38] and [12],
reductions or approximations apply to systems and are defined relative to a
behavioral property.

In [29], Grumberg and Long describe another compositional verification
method for temporal model checking. This method requires environmental
assumptions expressed in an assume-guarantee style [2] to be explicitly spec-
ified in order to reason about an open system. To prove that a component
(subsystem) enclosed in a particular context (the environment) satisfies a
given property, first the context is abstracted in a way independent of the
property to be proved. Then the property is verified with the component
enclosed in the abstracted context. The abstracted context captures the as-
sumptions regarding the environment. Unlike in [12], it is not described how
the abstract context can be obtained: thus the validity of the abstraction
needs to be checked explicitly. Note that the notion of abstraction is not as
powerful as that of reduction or approximation because rather than being
defined relative to a particular property, it is defined relative to a large set
of properties. The method of Section 5 for obligation decomposition is also
based on an assume-guarantee type reasoning: environmental assumptions
are expressed as approximation relationships among contexts.

2. Representation of System Architectures

Here system architectures are represented graphically as block diagrams.
These diagrams consist of nested boxes, called modules, which can be in-
terconnected in different ways. A module may denote a single system or a
class of systems.

Fig. 1 summarizes the relationships between the different kinds of mod-
ules and introduces the graphical notation used. The arrows represent an
inheritance-like relationship. Meeting points of arrows imply exclusive dis-
junction. For example, a primitive module is a singular module, which in
turn is an interaction module; a group is either a composite or a union; a

6 ERDOGMUS

Interaction
Module

Observation
Module

Group

Primitive
Module

Singular
Module

Union

Functional
Union

Variant
Union

Module

Composite

Environment
Module

Abstraction

p

vf

g

Fig. 1: Module terminology and notation.

union is either a functional union or a variant union; an abstraction is a
singular module; and so on.

The exposition of this section is mostly informal. The underlying formal
model of modules is defined in Section 3. A more elaborate model can be
found in [20].

2.1 Designation of a Module

The designation of a module specifies the purpose of the module. Three
designations are possible: observation, interaction, and environment .

2.1.1 Observation Modules and Interaction Modules

An observation module (drawn as a box with rounded corners) represents a
closed system. Such a system is self-contained: it may be observed, but
it does not interact with the observer or other modules [2]. Therefore,
observation modules are found only at the top layer of the module hierarchy
of an architectural specification.

An interaction module (drawn as a rectangular box) represents an open
subsystem. A module of this kind can be understood as a type whose in-
stances can serve as components in larger systems, or more precisely, in
composite modules.

2.1.2 Environment Module

An environment module (drawn as a small square) is like an interaction
module, but unlike that of an interaction module, its interface is not ex-
plicitly specified. Environment modules represent shared resources, and are
composed typically of variable declarations and access macros. An environ-
ment module has no structure defined for it, and as such, is always found

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 7

at the bottom layer of a module hierarchy. Environment modules are owned
as components by composite modules. An environment module can not be
a component of (owned by) more than one composite.

2.2 Interface of a Module

Every interaction or observation module has a nonempty interface which
consists of a finite set of ports. The interface of a module M is denoted by
IM .

In an observation module, the interface exposes the module’s relevant
internal behavior to be observed by an external agent. By observing the
interface, the external agent can reason about the system described by the
module. For an interaction module, the interface specifies the boundary
through which instances of that module can be interconnected with instances
of the same or other modules within a larger, composite module.

2.3 Structural Type of a Module

Independent of their designation, interaction and observation modules are
classified according to their internal structure. The structural type of a
module can be primitive, composite, or union.

2.3.1 Primitive Modules

A primitive module (marked by a “p” in block diagrams) is an interac-
tion module with no further internal structure. It represents an elementary
subsystem, and like an environment module, occupies a leaf node in the
module hierarchy of an architectural specification. The structure of a prim-
itive module consists only of an interface. Observation modules cannot be
primitive.

2.3.2 Composites

A composite module, or simply composite, (drawn as a rectangular box)
is comprised of a network of interconnected components. Therefore the
structure of a composite consists of an interface, a set of components, and a
set of connections. Composites occupy nonleaf nodes in a module hierarchy.

A composite possesses at least one component. Each component is either
an environment module or an instance of some interaction module. For a
component x which is an instance of an interaction module I, the notation
xI is used. Then I is called the type of x. The statements “x is a component
of type I of M” and “xI is a component of M” are equivalent. The type of
a component is not to be confused with the structural type of a module. In
block diagrams, xI is written x: I.

See Fig. 2 for the different port and connector types used in block dia-
grams.

8 ERDOGMUS

Provide Port

Use Port

Input Port

Output Port

Synchronous Port

Synchronous Channel

Reliable Asynchronous
Channel

Unreliable Asynchronous
Channel

Provide-Use Link

Input Link, Output Link,
Provide Link, Use Link

Synchronous
Observation Link

(a) Ports (b) Connectors

Fig. 2: Ports and connectors.

2.3.3 Unions

A union (drawn as a rectangular box with cut corners) expresses bounded
variability. It consists of a finite set of modules with identical interfaces.
The modules which constitute a union are called its members. A union
must have at least two distinct members.

Members of a union must have the same designation: they are either all
interaction modules or all observation modules, giving rise to interaction and
observation unions, respectively. Members cannot be environment modules.
A member module inherits its interface from the union to which it belongs:
IM = IU , for every member M of a union U .

Note the difference between the members of a union and the components
of a composite. Whereas members are modules, components are instances.
Components can be interconnected, but members (and modules) can not.
However, instances of unions and their members can serve as components,
and hence they can be interconnected within a composite.

If a composite M has a component xU , where U is an interaction union,
then it is possible to envision a selection operation which replaces that com-
ponent with an instance of a particular member I of U . The resulting
module is denoted by (M\xU)[I]. This operation will be discussed in detail
in Section 3.

Two kinds of unions are possible: functional unions (marked by “f”) and
variant unions (marked by “v”).

2.3.4 Functional Unions and Variant Unions

The members of a functional union represent interchangeable systems. De-
pending on the designation of the functional union, the members are expect-
ed either to behave similarly when used as components in larger systems (if
the members are interaction modules) or to produce identical observations
(if the members are observation modules).

By contrast, the members of a variant union represent related systems
whose external functionalities or observable behaviors vary. For example,

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 9

different types of users of an open system may be defined as members of a
variant union.

Typically, a functional union contains an abstract member and a number
of concrete members. The abstract member represents an idealized system,
and the concrete members represent alternative implementations of the ab-
stract member. The abstract member is called the abstraction of the union.
Each functional union must declare one of its singular members as its ab-
straction. Hence, every functional union must possess at least one singular
member. In block diagrams, the abstraction of a union can be identified by
its bold frame.

2.3.5 Groups and Singularity

A group, defined recursively, is either (1) a union or (2) a composite with
a component which is an instance of a group. Thus a composite group
must possess a union submodule. A group represents a set of modules,
and therefore, can be reduced to a union. In block diagrams, groups are
indicated by the symbol “g”.

A module which is not a group is singular . A singular module can not be
reduced to a union. All primitive modules are by definition singular. All
environment modules are also singular. A composite is singular if it does
not have a union submodule.

A functional group is a group whose union submodules are all functional
unions. Similarly, a variant group is one whose union submodules are all
variant unions.

An interaction group is a group which is an interaction module, and an
observation group is one which is an observation module. Functional groups
play a special role in architecture-driven verification.

2.3.6 The Submodule Relation

The submodule relation captures both the part-of and the member-of re-
lationships between modules. It is defined in terms of the immediate-
submodule relation ≺. We say that M is an immediate submodule of N ,
written M ≺ N , if and only if one of the following conditions is satisfied:

◦ N is a composite, M is an environment module, and M is a component
of N ;

◦ N is a composite, M is an interaction module, and N has a component
xM (of type M); or

◦ N is a union and M is a member of N .

The submodule relation ≺∗ is defined as the transitive closure of ≺. It
underlies the module hierarchy of an architectural specification.
M is a called an immediate subunion (respectively, immediate subgroup

and immediate subcomposite) of N if M ≺ N and N is a union (respectively,
group and composite). The definition of subunion (respectively, subcompos-
ite and subgroup) is obtained if ≺∗ is used instead of ≺.

10 ERDOGMUS

FIFO_Group

f

x: F1 y: F1

F1_F1

F2

p p

FIFO2

IN OUT

u: User

f: FIFO_Group

f

p

fg
FIFO_System

p

Fig. 3: Block diagrams for the FIFO buffers system.

A group can be defined in terms of the submodule relation. G is a group
if either G is a union or it has a subunion. Equivalently, G is a group if
either G is a union or it has an immediate subgroup.

2.4 A Small Example: Synchronous FIFO Buffers

Consider a system composed of a user module and a synchronous FIFO
buffer with a maximum capacity of two slots. This system is illustrated
in Fig. 3. The top-level module FIFO System is defined as an observation
group, where the component f is as an instance of a union FIFO Group.
Interactions between the components f and u can be observed through the
observation ports IN and OUT .

The functional interaction union FIFO Group has two members. One
of these, the primitive module F2 is defined as the abstraction of the u-
nion: it can be thought of as representing a centralized implementation
of FIFO Group. The other member F1 F1 represents a distributed imple-
mentation of FIFO Group in terms of the composition of two synchronous
FIFO buffers each with a maximum capacity of one slot. Thus each of the
components x and y of F1 F1 is an instance of a primitive module F1 .

Consequently, it is possible to generate two singular observation modules
from the top level module FIFO System. These singular modules are gener-
ated by the selections (FIFO System\f)[F2] and (FIFO System\f)[F1 F1].
Since FIFO Group is defined as a functional union, these two selections are
expected to produce identical observations.

3. Module Systems

Having established the basic structural model, it is time to provide the
relevant formal definitions. Connections and connectors will be disregarded
in this section, because they are not relevant for the discussion which follows.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 11

3.1 Definition of a Module System

A module system S is a quadruple 〈M, σ, δ,∆〉 where

◦ M is a set of modules;

◦ σ is a partial function on M which may associate with M ∈ M, a
structural type σM ∈ {p, c,u};

◦ δ is a total function on M which associates with every M ∈ M, a
designation δM ∈ {i,o, e}; and

◦ ∆ is a partial function on M which may associate with M ∈ M, an
abstraction ∆M ∈ M.

The three structural types in the range of σ stand for primitive module,
composite, and union, respectively. The three designations in the range
of δ stand for observation module, interaction module, and environment
module, respectively.

The structural type of a module determines its structure:

◦ A primitive module P ∈ M is a pair 〈νP , IP 〉, where νP is the name
of P and IP is the interface of P . The name of a primitive module
uniquely identifies it in M.

◦ A composite C ∈ M is a quadruple 〈IC ,XC , CC , τC〉, where IC is the
interface of C, XC is the set of components of C, CC is the set of
connections of C, and τC is a partial function from XC to M.

◦ A union U ∈ M is a pair 〈IU ,NU 〉, where IU is the interface of U and
NU is a set of modules called the members of U . By abuse of notation,
we will write N ∈ U whenever N ∈ NU .

For composites, the partial function τC associates with every element x of
XC , where x is not an environment module, a corresponding type τC(x) in
M. Note that the type of a component is a module, and the domain of τC
gives the subset of those components which are instances of some interaction
module. For x ∈ XC , the notation xI is a shorthand for τC(x) = I. For
the purposes of this article, the details of connections are not relevant. The
interested reader can find the formal definition in [22].

Definition 1. A set of modules M is downwards closed under the relation
≺ if for every N ∈ M, M ≺ N implies M ∈ M. M≺ is the smallest
superset of M which is downwards closed under ≺.

To be well defined, a module system must satisfy extra properties. For
example, each functional union of M has at least one singular member; for
every functional union U of M, ∆U ∈ U and U must be a singular module;
etc. The formal definition of well-definedness for modules can be found in
[22].

12 ERDOGMUS

3.2 Contexts

A context Cx,I is a composite module with a single stub component. A stub
component sx,I is a placeholder for a component x whose interface must
equal II . An instance xJ (of an interaction module J) may be substituted for
the stub sx,I in Cx,I provided II = IJ . As such, contexts express unbounded
variability. The result of the substitution is a composite, and is denoted by
Cx,I [J].

Mathematically, a context is simply a partial (unary) function from mod-
ules to modules. A context can be obtained from a composite C by making
a particular component xI of C a stub. A context obtained in this way
is denoted by C\xI . If the stub xI is substituted by module J , then one
obtains the module (C\xI)[J]. Here, C\xI is called the context of xI in C.
The result of the substitution, or the module, (C\xI)[J] is called a comple-
tion of C\xI and a mutation of C. The composite C is called the enclosing
module of C\xI . Finally, the module J , which replaces the stub xI , is called
a replacement of C\xI . This construction is formalized in Definition 2:

Definition 2. Let C be a composite and xI ∈ CC . Define

(C\xI)[J]
def
=

{

〈IC ,XC , CC , τC ⊕ {x 7→ J}〉 if II = IJ ;
undefined otherwise,

where

(τC ⊕ {x 7→ J})(y)
def
=

{

τC(y) if x 6= y;
J otherwise.

Contexts may be open or closed depending on the designation of their
enclosing modules. A context C\x is closed if C is an observation module,
it is open if C is an interaction module.

By Definition 2, completion is commutative:

((C\x)[I]\y)[J] = ((C\y)[J]\x)[I] if x 6= y.

In addition, (C\xI)[I] = C for every context C\xI . Two contexts can be
composed as follows:

Definition 3. Let C and D be two contexts such that the enclosing module
of D has the same interface as the stub of C. Let I be an interaction module
such that I has the same interface as (the type of) the stub of D. Then
C ◦D, the composition of C and D, is a new context defined as

(C ◦D)[I]
def
= C[D[I]].

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 13

3.3 Selections

If the enclosing module of a context is a group, a special case arises. Let
G\x be such a context (G is a group). Then its enclosing module G can
recursively be specialized to a mutation G′ by using replacements drawn
from the members of the subunions (union submodules) of G. The resulting
mutation G′ is called a selection of G.

A selection can be defined recursively as follows:

Definition 4. Let G be a group.

1. If G is a union and M ∈ G then M is a selection of G.

2. If G is a composite, xH ∈ CG, and I is a selection of H, then (G\xH)[I]
is a selection of G. The designation of (G\xH)[I] equals the designa-
tion of G and the structural type of (G\xH)[I] is c (a composite).

3. If G′′ is a selection of G′ and G′ is a selection of G then G′′ is a
selection of G.

4. Nothing else is a selection of G.

The following shorthand notation is used for nested selections:

(G\xH1
, . . . , xHn

)[I1, . . . , In]
def
= ((G\xH1

, . . . , xHn−1
)[I1, . . . , In−1]\xHn

)[In]

For examples, consider the module system given in Fig. 4.

1. A and D are selections of U .

2. B and C are selections of V .

3. (H\u)[A] and (H\u)[D] are selections of H.

4. (G\h)[(H\u)[A]] is a selection of G.

5. (H\u, v)[A,B] = ((H\u)[A]\v)[B] = ((H\v)[B]\u)[A] =
(H\v, u)[B,A] is a selection of (H\u)[A], (H\v)[B], and H.

6. (G\h)[(H\u, v)[A,B]] is a selection of G.

Definition 5. Let M be a set of modules. M is closed under selection if
for every group G ∈ M, H is a selection of G implies H ∈ M. M∗, the
closure of M under selection is the smallest superset of M closed under
selection.

Clearly, if M is downwards closed under ≺, then M∗ is downwards closed
under ≺.

Now Definition 5 can be extended to module systems.

Definition 6. Let S = 〈M, σ, δ,∆〉 be a well defined module system. S∗,
the closure of S under selection is the module system 〈M∗, σ∗, δ∗,∆〉, where

σ∗
M

def
=

{

σM if M ∈ M;
c otherwise

δ∗M
def
=

{

δM if M ∈ M;
δG if M is a selection of G ∈ M.

14 ERDOGMUS

A

D

u: U

B

C

v: V

h: H

G

Fig. 4: A module system M = {G,H,U, V,A,B,C,D}. Interfaces (ports) and connec-
tions are not shown.

In Definition 6, δ∗ is well defined because the designation of a group is
preserved by every selection of that group. S∗ must be well defined since
a selection cannot violate any of the properties a well defined module must
satisfy, and a selection cannot be a union in a well defined module system.

4. Derivation and Expression of Correctness Requirements

4.1 Functional Classes

Consider a well defined module system 〈M, σ, δ,∆〉. Typically, M will con-
tain some functional unions, and consequently, M∗ will contain some func-
tional groups. By definition, a functional group — if it is not a functional
union itself — has at least one submodule which is a functional union.

A functional union represents a collection of interchangeable systems. A
functional group involves functional unions, and therefore, it defines an e-
quivalence class of (singular) modules. For the time being, it is sufficient
to assume that such equivalence classes give rise to proof obligations which,
given a behavioral model and a suitable mapping from modules to behav-
iors, can be discharged by checking the satisfaction of a behavioral relation
between selected pairs of modules from the equivalence classes. This subject
will be examined later.

Definition 7. Let G be a group. A selection M of G is called a singular
selection if M is a singular module. G1 denotes the set of all singular
selections of G.

The equivalence class associated with a functional group F is called the
functional class of F . It is given by F 1, the set of all singular selections of
F . A singular selection has no selections of its own.

Functional groups that are observation modules are of special interest.
These modules occupy nodes at the top layer of a module hierarchy (that is,

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 15

they have no supermodules). As they represent closed systems, it is assumed
that only the proof obligations of such modules can be discharged. The
abbreviation fog refers to functional observation group. The term functional
observation class , or foc, refers to the functional class of a fog .

4.2 The Abstraction of a Functional Group

The singular selections of a group can be interpreted as a union. This is
possible because all selections of a group possess the same interface. Let
UG denote the union associated with a group G. Then UG can simply be

defined as UG
def
= 〈IG, G

1〉. The designation of UG equals that of G since
the designation of a group is preserved by its selections.

If G is a variant group, UG is automatically a variant union. If G is
functional group, then for UG to be interpreted as a functional union, an
abstraction ∆UG

∈ G1 must be defined for UG. In general, any module
in G1 can serve as the abstraction since all modules of G1 are singular.
However, one particular module in G1 is a better candidate than the others.
This particular selection of G — denoted by ∆1

G — will be referred to as
the abstraction of G. Intuitively, ∆1

G is obtained from G by using only the
abstractions of G’s subgroups (group submodules) as replacements.

Definition 8. Let F ∈ M∗ be a functional group of a well defined module
system 〈M, σ, δ,∆〉. For a composite group H ∈ M, let GH denote the set
of all group components of H. That is,

GH
def
= {xG ∈ CH | G ∈ M is an interaction group}.

Define ∆1
F ∈ F 1, the abstraction of F , as the following singular selection of

F :

1. If F is a union, then ∆1
F

def
= ∆F .

2. If F is a composite with GF = {xG1
, . . . , xGn

}, then

∆1
F

def
= (F\xG1

, . . . , xGn
)[∆1

G1
, . . . ,∆1

Gn
].

4.3 Obligations

The functional observation groups (fogs) of a module system give rise to
proof obligations. Again, let S = 〈M, σ, δ,∆〉 be a well defined module
system.

Definition 9. A proof obligation, or simply an obligation o of S is a two
element set {M,N} where:

1. M and N are distinct singular modules in M∗, and

2. there exists a fog F ∈ M∗ such that both M and N belong to F 1, the
foc of F .

16 ERDOGMUS

Obligation satisfaction is defined with respect to a behavioral model 〈B,≡〉
and a mapping β from the singular modules of M∗ to B. Here B is a set of
behavior descriptions and ≡ is an equivalence relation over B.

Definition 10. An obligation {M,N} of a module system is satisfied for
the model 〈B,≡〉 under the mapping β if β(M) ≡ β(N). A set of obligations
O is satisfied for 〈B,≡〉 under β if every obligation o ∈ O is satisfied for
〈B,≡〉 under β.

Definition 11. Let F ∈ M∗ be a fog. Define

OF
def
= {{M,N} | M,N ∈ F 1}.

OF is called the obligations of F .

It is possible to compose two obligations provided they involve a common
module:

Definition 12. Let o and o′ be two obligations such that o 6= o′ and o∩o′ 6=
∅. The composition o ◦ o′ of o and o′ is defined as:

o ◦ o′
def
= (o ∪ o′) \ (o ∩ o′).

A set of obligations O is closed under composition if o, o′ ∈ O implies o◦o′ ∈
O for every o, o′ such that o 6= o′ and o ∩ o′ 6= ∅.

The two conditions of obligation composition guarantee that o ◦ o′ is an
obligation whenever o and o′ are obligations. If o = {L,M} and o′ = {M,N}
where L 6= N , then o ◦ o′ = {L,N}. Note OF is closed under composition
for every fog F .

4.4 Design Hypotheses

Hypotheses specify dependencies among obligations in an assume-guarantee
style. A hypothesis h is written as

h : o1, . . . , on ⊢ o

The obligations oi are called the assumptions of h and the obligation o is
called the guarantee of h; α(h) denotes the assumptions and γ(h) denotes
the guarantee.

A hypothesis h is said to be valid if the guarantee γ(h) is satisfied whenever
each of the obligations in the assumptions α(h) is individually satisfied.
Thus a valid hypothesis allows the decomposition of its guarantee into its
assumptions.

Two hypotheses can be composed as follows:

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 17

Definition 13. Let h and h′ be two hypotheses. The composition of h and
h′ is the hypothesis h ◦ h′ : α(h), α(h′) \ γ(h) ⊢ γ(h′).

Validity is preserved by composition: if h and h′ are valid hypotheses,
then so is their composition h ◦ h′.

Validity is extended to a set of hypotheses in the obvious manner: H is
valid if all of its hypotheses are valid.

4.4.1 Implicit Hypotheses

Within a well defined module system, every fog F is associated with a set HF

of valid hypotheses. The hypotheses of HF are derived from OF , the obli-
gations of F . Keep in mind that F 1, the foc of F , represents an equivalence
class. The set HF is referred to as the implicit hypotheses of F .

Let o, o′ ∈ OF be two distinct obligations such that o∩o′ 6= ∅. Define ho,o′

as

ho,o′ : o, o′ ⊢ o ◦ o′.

The hypothesis ho,o′ is valid because satisfaction for obligations is defined
with respect to an equivalence relation (see Definition 10). This is also the
reason F 1 can be viewed as an equivalence class. Hence, if o = {M1,M2},
o′ = {M2,M3}, and if both o and o′ are satisfied, then so is γ(ho,o′) =
{M1,M3}. Note that by definition, {M1,M2,M3} ⊆ F 1 and γ(ho,o′) ∈ OF .
The validity of ho,o′ implies that it is sufficient to discharge o and o′ to verify
the satisfaction of γ(ho,o′).

The implicit hypotheses of F can now be defined as follows:

Definition 14. Let F be a foc.

HF
def
= {ho,o′ | (o 6= o′) ∧ (o, o′ ∈ OF) ∧ (o ∩ o′ 6= ∅)}.

HF is valid since the ho,o′ are valid. In addition, by Definition 11, HF is
closed under composition. The validity of HF makes it possible to discharge
a relatively small subset of OF to fulfill all of F ’s obligations.

As an example refer to the module system depicted in Fig. 3. Here FI-
FO System is a fog . Its foc FIFO System1 consists of the singular modules
(FIFO System\f)[F2] and (FIFO System\f)[F1 F1]. Thus, OFIFO System

contains a single obligation

{(FIFO System\f)[F2], (FIFO System\f)[F1 F1]}.

Consequently, FIFO System has no implicit hypotheses: HFIFO System = ∅.

18 ERDOGMUS

4.4.2 Approximations and Explicit Hypotheses

It is possible to extend a module system with additional hypotheses to reduce
further the number of obligations that must be discharged. The additional
hypotheses can be represented concisely as approximations. An approxima-
tion is like an abstraction, but it applies to contexts rather than modules.
It allows the decomposition of complex obligations into simpler obligations
that are easier to check for satisfaction. Similar to abstractions, approxima-
tions are defined with respect to a functional group. Let

◦ closed contexts C and D1, . . . , Dn whose stubs are of type I; and

◦ a functional interaction union U such that IU = II .

Then D1, . . . , Dn is said to approximate C with respect to U if for every
M,M ′ ∈ U1, there exists a hypothesis

{D1[M], D1[M
′]}, . . . , {Dn[M], Dn[M ′]} ⊢ {C[M], C[M ′]}.

This approximation is conveniently denoted by the tuple 〈D1, . . . , Dn, C, U〉.
For a set of modules M, the approximation is said to be over M if (1)
U ∈ M, (2) the enclosing modules of the contexts Di are in M∗ or each
Di is composed of contexts whose enclosing modules are in M∗, and (3) the
enclosing module of C is in M.

The approximation 〈D1, . . . , Dn, C, U〉 asserts the ability of the contexts
Di to simulate the context C (a) in terms of the obligations associated with
the completions of C, and (b) under replacements from the functional class
of U .

An approximation is valid if all of its hypotheses are valid. The problem of
obtaining valid approximations has been addressed elsewhere; for examples,
see [38,15,12]. Validity of an approximation can be either guaranteed by
construction or checked explicitly.

4.5 Designs

A design extends a module system with a set of approximations, a behavioral
model, and a mapping from modules to behaviors. The approximations
specify how the obligations of the module system can be decomposed and
the behavioral model with the mapping defines the satisfaction criterion for
the obligations.

A design D is a quadruple 〈S,A, 〈B,≡〉, β〉, where

◦ S = 〈M, σ, δ,∆〉 is a well defined module system;

◦ A is a set of approximations over M;

◦ 〈B,≡〉 is a behavioral model with B being a set of behavior descriptions
and ≡ an equivalence relation on B; and

◦ β:M1 7→ B is a mapping from the singular modules of M∗ to the set
B.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 19

Satisfaction for obligations is defined for the behavioral model 〈B,≡〉 under
the mapping β (see Definition 10). Assume that B has a suitable notion of
composition and that for a composite M , β(M) is a function of the structure
of M as well as the behaviors of M ’s submodules.

To give rise to a nonempty set of obligations, M∗ must contain at least
one fog . The following definitions will be needed in the sections to come:

◦ The fogs of the design D are given by the fogs of M∗, and will be
denoted by FD.

◦ The obligations of D are given by
⋃

F∈FD
OF , and will be denoted by

OD.

◦ The implicit hypotheses of D are given by
⋃

F∈FD
HF , and will be

denoted by Hi
D

.

◦ The explicit hypotheses of D are given by the union of the sets of
hypotheses of the approximations in A, and will be denoted by He

D
.

◦ The hypotheses of D are given by Hi
D
∪ He

D
, and will be denoted by

HD.

5. Obligation Decomposition

An obligation {M,N} may be infeasible to discharge because β(M) or β(N)
is infeasible to compute or too large for a ≡-equivalence test. In this case,
the obligation needs to be decomposed into obligations that are easier to
discharge. Since obligations are derived from the design, they can be de-
composed by decomposing the design itself.

Design decomposition in this sense involves a transformation of the un-
derlying module system together with the proper extension of its set of
approximations. The result is a syntactically legal decomposition if the new
design has a larger set of obligations than those of the original design. In
addition, there must exist a subset of the original obligations such that each
obligation in this subset is the guarantee of some hypothesis of the new
design.

Two kinds of decompositions are introduced: (1) horizontal decomposi-
tion, which directly exploits the property underlying the obligations to be
decomposed; and (2) vertical decomposition, which exploits the hierarchical
structure of a module to decompose an obligation involving that module. In
what follows, assume D = 〈M,A, 〈B,≡〉, β〉.

5.1 Horizontal Decomposition

Let

◦ H ∈ M be a functional interaction group; and

◦ D[H] ∈ M be a fog , where D is a closed context.

20 ERDOGMUS

A

M

v: V

En

f

fg

==>
A

M

v: V

D

f

fg

A

M

v: V

E1

f

fg

...

Fig. 5: Horizontal decomposition: E1, . . . , En approximates D with respect to V .

Assume the obligations of D[H] are to be decomposed. Then D can be
decomposed into D′ by introducing n new fogs E1[H], . . . , En[H] such that
E1, . . . , En approximates D with respect to H. The resulting design D′ is
such that

◦ M′ = M∪ {E1[H], . . . , En[H]}≺

◦ A′ = A ∪ {〈E1, . . . , En, D,H〉}.

Horizontal decomposition is illustrated in Fig. 5.

5.2 Vertical Decomposition

Let

◦ F ∈ M be a fog ;

◦ I ∈ M be a singular interaction module; and

◦ C[I] ∈ F 1, where C is a closed context.

Assume the obligations of F which involve C[I] are to be decomposed. Then
D can be decomposed into D′ as follows:

1. Introduce a new functional union V such that I ∈ V . The abstraction
of V must be different from I (∆V 6= I). For the decomposition to
pay off, the abstraction ∆V should be considerably simpler than I.

2. Replace F by F ′ such that

(F ′)∗ = F ∗ ∪ {C[V]}∗.

Therefore, the submodule I of F is replaced by the union V .

3. Define a new closed context D for V such that D approximates C with
respect to V . Include the fog D[V] in M. Typically D is simpler than
C.

The resulting design D′ is such that

◦ M′ = (M\ {F}) ∪ {F ′, D[V]}≺

◦ A′ = A ∪ {〈D,C, V 〉}.

Note that {F ′}≺ includes V , I, and ∆V .
Vertical decomposition is illustrated in Fig. 6.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 21

S

C[M]

U
f

S

C[V]

U’
f

A

M

v: V

D

f

fg

==>

Fig. 6: Vertical decomposition: D approximates C with respect to V .

5.3 Case Study: Decomposition of A Protocol

As an example, consider the architecture of a system consisting of a protocol
module and two users [24,23]. The functionalities of the modules involved
are discussed only informally to provide a rationale for the example; no
particular behavioral model is assumed. The top level system is given by
the fog RT System:

RT_System

t: RT_Service_Group

u: RT_Users

ui:

UserI

ua:

UserA

ACCEPTINVOKE

EA

p p

fg

f

RT System consists of two components: a component u of type RT Users
and a component t of type RT Service Group. The component t (mod-
ule RT Service Group) represents the protocol whose purpose is to provide
remote method invocation service to end users over unreliable and semi-
reliable connections. The component u (module RT Users) is in turn com-
posed of an invoking user ui , an accepting user ua, and an environment
module EA.

An initial breakdown of the functional union RT Service Group is given
by the following module (named RT Service Group0 in the block diagram):

22 ERDOGMUS

Std_RT_Service

h: HighLevel_RT_Protocol

x: LP_Subservice

HLRTP_LP_Pair

RT_Service_Group0

p f

Flat_RT_Protocol

i: Invoker a: Accepter

p p

The primitive member Std RT Service of this functional union represents
the abstract service to be provided to the two end users, and is declared
as the abstraction of the functional union. The member Flat RT Protocol
provides the required service over an unreliable connection in terms of a
single-layer protocol. The third member HLRTP LP Pair provides the same
service over a semi-reliable connection by means of a higher-level protocol
(module HighLevel RT Protocol), which in turn relies on a data link mod-
ule (LP Subservice) for data transmission. These two modules are in turn
expanded as follows:

HighLevel_RT_Protocol

ah:

AccepterH

ih:

InvokerH

p p

LP_Subservice

p0: Link_

Protocol

p1: Link_

Protocol

EL
p p

Note that in Flat RT Protocol the components i and a communicate di-
rectly over unreliable connections, whereas in HighLevel RT Protocol the
corresponding components ih and ah do not.

The fog RT System has three singular selections, namely:

R′
1 = (RT System\t)[Std RT Service],

R′
2 = (RT System\t)[Flat RT Protocol], and

R′
3 = (RT System\t)[HLRTP LP Pair].

Thus, the underlying foc RT System1 equals {R′
1, R

′
2, R

′
3}. This foc gives

rise to three initial obligations:

o′1 = {R′
1, R

′
2}, o

′
2 = {R′

1, R
′
3}, o

′
3 = {R′

2, R
′
3}.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 23

Note that obligation o′3 is already covered by obligations o′1 and o′2 due to
the implicit hypothesis o′1, o

′
2 ⊢ o′3, and therefore, o′3 is redundant (optional).

5.3.1 Vertical Decomposition

Suppose obligation o′2 is infeasible to discharge because β(R′
3) is infeasible

to compute. To apply vertical decomposition, first RT Service Group is
redefined as follows:

Std_RT_Service

h: HighLevel_RT_Protocol

x: Link_Subservice_Group

HLRTP_LSS_Pair

RT_Service_Group

p f

fg

f

Flat_RT_Protocol

Here the functional group HLRTP LSS Pair replaces the module HLRT-
P LP Pair . HLRTP LSS Pair is similar to HLRTP LP Pair except that
the component x is an instance of Link Subservice Group, a functional u-
nion:

Std_Link_Subservice

ls: Link_Subservice

EL

Link_Subservice_Group

p

LP_Subservice

f

This functional union includes an abstract member Std Link Subservice,

24 ERDOGMUS

as well as the more complex module LP Subservice. Whereas the first mod-
ule Std Link Subservice represents an abstract data link service, the second
module LP Subservice represents a concrete implementation of this service
in terms of two peer protocol modules communicating over an unreliable
connection.

Now RT System has the following singular selections:

R1 = (RT System\t)[Std RT Service],

R2 = (RT System\t)[Flat RT Protocol],

R3 = (RT System\t)[(HLRTP LSS Pair\x)[LP Subservice]],

R4 = (RT System\t)[(HLRTP LSS Pair\x)[Std Link Subservice]].

Here, R1 and R2 are identical to R′
1 and R′

2, respectively, and R3 is equiva-
lent to R′

3. The new set of obligations are:

o1 = {R1, R2}, o2 = {R1, R3}, o3 = {R2, R3},

o4 = {R3, R4}, o5 = {R1, R4}, o6 = {R2, R4}.

A similar correspondence exists between the new and the old obligations
with identical indices.

To complete the vertical decomposition, an appropriate closed context for
Link Subservice Group and a corresponding approximation must be intro-
duced. The context involves the symmetric, general purpose user module
Generic LSS User :

Generic_

LSS_User

u0:

LSS_User

u1:

LSS_User

p p

The resulting fog is the following one:

u: Generic_LSS_User

x: Link_Subservice_

Group

Generic_LSS_System

RECV0

RECV1

SEND0
SEND1

fg

f

The approximation associated with vertical decomposition is:

Generic LSS System\x approximates
(RT System\t) ◦ (HLRTP LSS Pair\x)
with respect to Link Subservice Group.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 25

Let us denote this approximation by V.

The fog Generic LSS System has two singular selections:

G1 = (Generic LSS System\x)[Std Link Subservice],

G2 = (Generic LSS System\x)[LP Subservice].

Therefore, this fog gives rise to a single obligation

o7 = {G1, G2}.

Finally, the explicit hypothesis associated with the approximation V is:

hV : o7 ⊢ o4.

5.3.2 Horizontal Decomposition

Now assume the obligation o5 is infeasible to discharge. The following illus-
trates how horizontal decomposition can be applied to remedy the situation.

The fog Generic LSS System assumes the user module Generic LSS User
engages in full-duplex communication with Link Subservice Group. The
idea is to break down Generic LSS User into simpler user modules which en-
gage in more restricted patterns of interaction with Link Subservice Group.
The variant union LSS User Group is introduced for this purpose:

Generic_LSS_User

IR_Pairi: Initiater r: Responder

SR_Pairs: Sender r: Receiver

LSS_User_

Group

p

pp

p

v

The member SR Pair defines two asymmetric users in sender/receiver-
type, simplex communication. The member IR Pair defines two asym-
metric users in half-duplex, initiator/responder-type communication. A
fog is defined for each of these new, more restricted types of users: Sim-
plex LSS System for SR Pair and HalfDuplex LSS System for IR Pair :

26 ERDOGMUS

sr: SR_Pair

x: Link_Subservice_

Group

Simplex_LSS_System

RECV1

SEND0

fg

f

ir: IR_Pair

x: Link_Subservice_

Group

HalfDuplex_LSS_System

RECV0

SEND0

fg

f

Note the differences among the interfaces of the three fogs shown in the
figure. The following approximation completes the horizontal decomposi-
tion:

Simplex LSS System\x,HalfDuplex LSS System\x
approximates Generic LSS System\x
with respect to Link Subservice Group.

Denote this second approximation by H. Intuitively, H asserts that it would
be sufficient to test Link Subservice Group separately in simplex and in half-
duplex operation to infer that it behaves correctly in full-duplex operation.
(This assertion is based on the symmetric nature of the service provided by
Link Subservice Group to its users.)

The fog Simplex LSS System has two singular selections, namely

S1 = (Simplex LSS System\x)[Std Link Subservice],

S2 = (Simplex LSS System\x)[LP Subservice].

and a single obligation
o8 = {S1, S2}.

Similarly, the fog HalfDuplex LSS System has two singular selections, name-
ly

H1 = (HalfDuplex LSS System\x)[Std Link Subservice],

H2 = (HalfDuplex LSS System\x)[LP Subservice],

and a single obligation
o9 = {H1,H2}.

Therefore, the explicit hypothesis associated with the approximation H is

hH : o8, o9 ⊢ o7.

5.4 Obligation Selection

The hypotheses of D can be taken into account to reduce the number of
obligations to be discharged. Provided all the explicit hypotheses of D are
valid, it should be sufficient to discharge only a relatively small subset of
OD to achieve full coverage. For a single fog , the size of this subset is linear

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 27

in the size of the associated foc. If suitable approximations are defined, it
can even be linear in the number of the subgroups involved.

A set of obligations is called optimal under a set of hypotheses if no obli-
gation can be removed from it without affecting the coverage of the set. It is
sufficient with respect to a larger set if it provides full coverage for the latter
under a given set of hypotheses [22]. The aim is to obtain a subset of OD

that is both optimal under the hypotheses of D and sufficient with respect
to OD under the hypotheses of D. The desired subset can be constructed in
many different ways. A reasonable starting point is the so-called principal
obligations which involve the abstractions of the fogs of D. The criteria used
in obligation selection is addressed in detail in [22]. Here we only provide
an example.

5.5 Case Study Revisited

Refer to the case study that was presented in Section 5.3. This case study
involved a module system with four fogs (RT System, Generic LSS System,
Simplex LSS System, and HalfDuplex LSS System) and two approximation-
s:

V = 〈Generic LSS System\x, (RT System\t) ◦ (HLRTP LSS Pair\x),

Link Subservice Group〉,

H = 〈Simplex LSS System\x,HalfDuplex LSS System\x,

Generic LSS System\x,Link Subservice Group〉.

The set of obligations of the resulting design D is given by

OD = {o1, . . . , o9}

which is the union of the obligations of the four fogs. For the definitions of
the oi, refer again to Section 5.3.

The first step is to obtain the set of principal obligations PD (a principal
obligation is one which involves an abstraction of some fog) which is sufficient
with respect to OD under HD:

PD = {o1, o2, o5, o7, o8, o9}.

PD excludes obligations o3, o4, and o6. For instance, o3 is excluded due to
the implicit hypothesis o1, o2 ⊢ o3. (Note that o3 = o1 ◦ o2.)

Now PD can be reduced by taking into account the explicit hypotheses
of the two approximations: He

D
= {hV, hH} where hV : o7 ⊢ o4 and hH :

o8, o9 ⊢ o7.
Let O = OD.

28 ERDOGMUS

1. Eliminate obligation o2 from O. Obligation o2 can be removed because
there exists an implicit hypothesis h : o4, o5 ⊢ o2 with hV ◦h = o7, o5 ⊢
o2. Therefore, o2 is optional (redundant) in O under HD. This step
leaves

O = {o1, o5, o7, o8, o9}.

2. Eliminate obligation o7 from O. Obligation o7 can be removed due to
hH (o7 is optional in O under HD at the end of Step 1.) This step
leaves

O = {o1, o5, o8, o9},

which is both sufficient and optimal. An obligation can not be removed
from this final set without violating its sufficiency with respect to OD

under HD.

6. Specification and Verification of Architectures in SPIN

Spin is a powerful modeling and analysis tool for concurrent systems [32,33].
It is based on the specification language Promela in which a system is de-
scribed as a network of extended state machines (processes) communicating
through FIFO channels.

Spin supports, among other things, model checking and random simu-
lation. A front-end tool can translate correctness properties expressed in
linear temporal logic to ω-automata. Then the properties can be verified by
computation of the state space of a given Promela specification on the fly.

An experimental extension to Spin, the Spine tool also supports another
form of model checking: testing a given behavioral relation between two
Promela specifications. This tool is similar to Spin except that it accepts
two Promela specifications as input and generates a customized relation
checker. The relation checker tests whether a particular behavioral relation
holds true between the two input specifications. The flow diagram of the
Spine tool is given in Fig. 7. Currently Spine is a prototype which supports
only a particular class of behavioral relations. This class, while it includes
such well known relations as trace equivalence [16] and testing equivalence
[9,30], excludes some stronger relations such as observation (weak bisimu-
lation) equivalence [46] which cannot be traced [8]. (Testing equivalence is
not yet implemented in Spine.) For more details about the Spine tool, the
reader is referred to [21,24,23].

To support relation checking it was necessary to extend the syntax of
Promela. The new syntax allows a channel to be declared as an external
channel and given a unique external name. External channels define the rel-
evant observable behavior of a Promela specification so that this behavior
can be compared with the observable behavior of another Promela specifi-
cation. If the same name is used for two different channels in two Promela

specifications, then the relation checker considers send and receive opera-
tions on these channels as matchable external transitions.

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 29

fileL

fileR

poc.cspine

-eRel

cc

-o poc

-g

-lm

-eRel

-mN

-Mn

-Sn

-wN

-V

poc.

trace

Verdict
&
Stats

poc
*

*

C files

generator

options compilation

options
execution

options

executable

relation

checker

relation

checker

trace file

(false verdict)

screen

output

input

PROMELA

models

syntax

checking

&

code

generation compilation

execution

Fig. 7: Flow diagram of the Spine verification system.

6.1 Representation of Architectures in PROMELA

Assume that Promela is used as the behavioral model for system archi-
tectures. Therefore the mapping β referred to in Section 4.5 associates a
Promela specification β(M) with each module M of a module system M.
Each Promela specification is stored in a separate file with the same name
as the module. An appropriate suffix and prefix are added to the file name,
depending on the designation and the structural type of the module. See
[24,23,22] for more details.

If M is a primitive module, the behavior of M is given by a Promela

process type. If M is a composite, the behavior of M is specified in terms of
the behaviors of M ’s submodules. The behavior of an environment module
consists of variable declarations and access macros.

The behavior of the primitive module Std RT Service is given in Fig. 8.
First a process type is defined for the primitive module. This definition
is followed by a #define statement. The macro defined by the #define

statement has the same name as the primitive module. Its right hand side
simply instantiates the process type and executes it. Each input and output
interface port of the module is represented by a corresponding parameter of
this macro. Process types are only defined for primitive modules.

In Fig. 9, the Promela specification of the fog RT System is shown. Note
that some of the channels are declared as external channels. In an interac-
tion composite, the init statement is replaced by a #define statement.
Here InitEA is a macro defined in the file EA.env which specifies an envi-
ronment module EA. The macro initializes the shared variables declared in
this file. The include file Common.env contains message type definitions and
other macros accessible by all modules. For example, it defines generic send
and receive operations to model nondeterministic message loss for unreliable
channels.

Unions are represented in Promela in a straight forward manner as a

30 ERDOGMUS

proctype _Std_RT_Service(chan fromUI, fromUA) {
restart:

fromUI?RTinvoke -> if
:: RTServiceAvailable -> StartRT
:: RTServiceNotAvailable -> goto restart

fi;
do

:: fromUA?RTcomplete -> goto restart
:: fromUA?Pull
:: fromUA?Push
:: UserAError -> goto restart
:: RTServiceFailure -> goto restart

od }
#define Std_RT_Service(spI, spA)

run _Std_RT_Service(spI, spA)

Fig. 8: The file Std RT Service.int.

#include "Common.env"
#include "RT_Users.int"
#include "%RT_Service_Group.int"
chan UItoRT (extern INVOKE) = [0] of {byte};
chan UAtoRT (extern ACCEPT) = [0] of {byte};
init {

atomic{InitEA;
RT_Users(UItoRT, UAtoIRT);
RT_Service_Group(UItoRT, UAtoRT)} }

Fig. 9: The file %RT System.obs.

series of “#if ... #endif” blocks that implement a logical case statement.

6.2 Discharging Obligations in SPIN

Considering β maps every module to a corresponding Promela specifica-
tion, an obligation {M,N} is discharged using the Spine tool by checking
β(M) ≡ β(N), where ≡ is a behavioral relation on Promela specifications.
Trace equivalence was used as the correctness criterion in the case study of
Section 5.3 and in other small examples tried. Thus ≡ was taken to be trace
equivalence.

The choice of the equivalence relation depends on the particular class of
behavioral properties that equivalent specifications must preserve. That
trace equivalence can preserve only safety properties is a well known fac-
t. To reason about liveness properties, a stronger relation such as testing
equivalence should be used.

Obligations often involve selections. A selection can be represented eas-
ily in Promela as a series of #include and #define statements. As an

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 31

#include "Mods.env"
#define nLink_Subservice_Group nStd_Link_Subservice
#define nRT_Service_Group nHLRTP_LSS_Pair
#include "%RT_System.obs"

Fig. 10: Specification of a selection in Promela. Unions are represented in Promela

as a series of “#if ... #endif” blocks that implement a logical case statement. The
blocks use integer identifiers assigned to each module in a file named Mods.env. This file
is used for the specification of selections in Promela.

example, consider the selection

(RT System\t)[(HLRTP LSS Pair\x)[LP Subservice]].

The Promela specification of this selection is given in Fig. 10.

The implementation of the function β in Spine is straightforward. If
M is an ordinary module (not a selection), then the file containing the
Promela description of M is used. If M is a selection, a file specifying the
selection is created, for example, as in Fig. 10. Then to discharge β(M) ≡
β(N), Spine is invoked with the associated files for M and N . β(M) and
β(N) are computed by the validation engine using a specific state space
exploration algorithm [24]. This computation is performed on the fly during
the equivalence check from the Promela descriptions of the two modules.

7. Discussion

This paper presented an approach based on architectural specifications for
the expression, derivation, and decomposition of proof obligations of con-
current systems. Here, architecture refers to the structure of a concurrent
system and is specified in terms of a simple formalism with a box-and-line
type graphical notation. The central feature of the formalism is its ability
to express variable systems as groups of modules with identical interfaces.

Proof obligations generated from such specifications are discharged as
model checking tasks in a given behavioral model. The approach proposed
is independent both of the particular correctness criterion adopted and of
the behavioral model in which the proof obligations are discharged. Lowest
level architectural components are assigned their respective functionalities
in the behavioral model. Since the correctness criterion is based on behav-
ioral equivalence, proof obligations represent equivalence checking tasks. In
the examples provided, Promela was used as the behavioral model, trace
equivalence as the correctness criterion, and an extension to the Spin tool
as the model checker to discharge the proof obligations. In principle, other
specification languages and formalisms such as LOTOS [58], CCS [46], Es-
telle [58], and SDL [58,51] can be used to assign functionality to architectural
components. In addition, the block diagram notations of such languages as

32 ERDOGMUS

SDL and ROOM [52] can be adapted to support system variability. For LO-
TOS, a box-and-line notation has been proposed in [31] to express process
interconnection structures graphically.

An assume-guarantee style reasoning was used in the decomposition of
proof obligations. Decomposition required hypothesizing that such assume-
guarantee conditions hold for the obligations of the decomposed system.
These conditions were captured by approximation relationships among the
enclosing contexts (environments) of the modules involved. The problem
of checking the validity of approximations was not addressed here. A con-
structive approach is recommended, whereby approximations (and also ab-
stractions) can be obtained in the behavioral model compositionally from
the specifications of the components involved. Such approaches have been
proposed in the model checking literature [38,15,12]. These works were dis-
cussed briefly in Section 1.1.

The correctness criterion can be changed depending on which properties
are of interest and the capabilities of the model checker used. For example,
if liveness properties are of interest, failures equivalence [10] or testing equiv-
alence [9] can be adopted as the correctness criterion; if fairness properties
are important, ω-language equivalence [38] can be used.

It is also possible to define the correctness criterion in terms of a behav-
ioral preorder rather than an equivalence. A behavioral preorder captures
the notion of a concrete system implementing, refining, or simulating an
abstract system. Examples can be found in [19,11,9]. In this case, proof
obligations would be derived from complete partial orders of modules rather
than equivalence classes. The techniques presented for obligation decompo-
sition and reduction can easily be adapted to a preorder-based correctness
criterion.

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang.

Syst., 15(1):73–132, January 1993.
[2] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. Program. Lang.

Syst., 17(3):507–534, May 1995.
[3] G. Abowd, , R. Allen, and D. Garlan. Formalizing style to understand descriptions of

software architecture. Technical Report CMU-CS-95-111, Carnegie Melon University,
School of Computer Science, Pittsburgh, PA, March 1995.

[4] R. Allen and D. Garlan. Beyond definition/use: Architectural interconnection. In
Proc. of Workshop on Interface Definition Languages, January 1994.

[5] R. Allen and D. Garlan. Formalizing architectural connection. In Proc. 16th Internat.

Conf. on Software Engineering, pages 71–80, May 1994.
[6] R. Allen and D. Garlan. The Wright architectural specification language. Draft

Report CMU-CS-96-xx, Carnegie Melon University, School of Computer Science,
Pittsburgh, PA, September 1996.

[7] D. Battory et al. Creating reference architectures: An example in avionics. In Proc.

Symp. on Software Reusability, 1995.
[8] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced: preliminary

report. In Proc. 15th ACM Symp. on Principles of Programming Languages, 1988.
[9] E. Brinksma. On the existence of canonical testers. Memorandum INF-87-5, Depart-

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 33

ment of Informatics, University of Twente, Netherlands, 1987.
[10] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating

processes. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on

Concurrency, number 197 in Lect. Notes Comput. Sci. Springer-Verlag, 1984.
[11] R. Civalero, B. Jonsson, and J. Nilsson. Validating simulations between large nonde-

terministic specifications. In Proc. 6th Internat. Conf. on Formal Description Tech-

niques, pages 3–17, 1993.
[12] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM

Trans. Program. Lang. Syst., 16(5):1512–1542, September 1994.
[13] P. C. Clements. Formal methods in describing architectures. In Proc. Workshop on

Formal Methods in Software Architecture, 1995.
[14] P. C. Clements. A survey of architecture description languages. In Proc. 8th Internat.

Workshop on Software Specification and Design, March 1996.
[15] H. De-Leon and E. Grumberg. Modular abstractions for verifying real-time distribut-

ed systems. Formal Methods in System Design, 2(1):7–43, 1993.
[16] R. De Nicola. Extensional equivalences for transition systems. Acta Inform., 24:211–

237, 1987.
[17] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoret. Comput.

Sci., 34:83–133, 1984.
[18] T.R. Dean and J.R. Cordy. A syntactic theory of software architecture. IEEE Trans.

Softw. Eng., 21(4):302–313, April 1995.
[19] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simula-

tion preorders. In Proc. 3rd Workshop on Computer-Aided Verification, 1991.
[20] H. Erdogmus. A formal framework for software architectures. Technical Report ERB-

1047, National Research Council of Canada, Institute for Information Technology,
Ottawa, Ontario, December 1995.

[21] H. Erdogmus. Verifying semantic relations in SPIN. In Proc. 1st SPIN Workshop,
Verdun, Québec, Canada, October 1995. INRS-Télécommunications.

[22] H. Erdogmus. Architectural specifications, proof obligations, and decomposition.
Technical Report, National Research Council of Canada, Institute for Information
Technology, Ottawa, Canada, March 1997.

[23] H. Erdogmus. Verification of concurrent systems based on equivalence checking in
SPIN. Technical Report ERB-1050, National Research Council of Canada, Institute
for Information Technology, Ottawa, Ontario, February 1997.

[24] H. Erdogmus, R. Johnston, and C Cleary. Formal verification based on relation
checking in SPIN. In Proc. 1st Workshop on Formal Methods in Software Practice,
San Diego, CA, January 10–11 1996.

[25] J. Fernandez and L. Mounier. Verifying bisimulations on the fly. In Proc. 3rd Inter-

nat. Conf. on Formal Description Techniques, 1990.
[26] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design

environments. In SIGSOFT’94, Proc. 2nd ACM SIGSOFT Symp. on Foundations of

Software Engineering, pages 175–188, December 1994.
[27] D. Garlan, R. Monroe, and D. Wile. ACME: An architectural interchange language.

In Proc. ICSE’97, 19th Internat. Conf. on Software Engineering, 1997.
[28] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola

and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineer-

ing, volume 1. World Scientific Publishing, 1993.
[29] O. Grumberg and D. E. Long. Model checking and modular verification. ACM Trans.

Program. Lang. Syst., 16(3):843–871, May 1994.
[30] M. Hennessy and R. Cleaveland. Testing equivalence as a bisimulation equivalence.

Form. Asp. Comput., 5:1–20, 1993.
[31] J. Hinterplattner, H. Nirschl, and H. Saria. Process topology diagrams. In Proc. 3rd

Internat. Conf. on Formal Description Techniques, pages 535–550, 1990.
[32] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, En-

glewood Cliffs, N.J., 1991.
[33] G. J. Holzmann. Design and validation of protocols: a tutorial. Computer Networks

34 ERDOGMUS

and ISDN Systems, 25(9):981–1017, 1993.
[34] P. Inverardi and A.L. Wolf. Formal specification and analysis of software architectures

using the Chemical Abstract Machine Model. IEEE Trans. Softw. Eng., 21(4):373–
386, April 1995.

[35] ITU. CCITT Specification and Description Language, Recommendation Z.100. In-
ternational Telecommunications Union, 1993.

[36] F. Jananian and A. Mok. Modechart: A specification language for real-time systems.
IEEE Trans. Softw. Eng., 21(12), December 1994.

[37] B. Jonsson. Modular verification of asynchronous networks. In Proc. 6th ACM Symp.

on Principles of Distributed Computing, pages 152–166, August 1987.
[38] R. P. Kurshan. Analysis of discrete event coordination. In Proc. REX Workshop,

number 430 in Lect. Notes Comput. Sci., pages 414–453. Springer-Verlag, 1989.
[39] K. G. Larsen. A context dependent bisimulation between processes. Theoret. Com-

put. Sci., 49:185–215, 1987.
[40] K. G. Larsen. Efficient local correctness checking. In Proc. 4th Workshop on

Computer-Aided Verification, pages 35–47, 1992.
[41] G. Leduc. On the Role of Implementation Relations in the Design of Distributed

Systems using LOTOS. Thèse d’agréation de l’enseignement supérieur, Faculté des
sciences appliquées, Université de Liège, Belgium, June 1991.

[42] D. C. Luckham et al. Specification and analysis of system architectures using Rapide.
IEEE Trans. Softw. Eng., 21(6), April 1995.

[43] D. C. Luckham and J. Vera. An event based architecture definition language. IEEE

Trans. Softw. Eng., 21(9), September 1995.
[44] D. C. Luckham, J. Vera, and S. Meldal. Three concepts of architecture. Technical re-

port, The Program Analysis and Verification Group, Computer Science Department,
Stanford University, Stanford, CA, July 1995.

[45] A.N. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In Proc. 6th Annual Symp. on Principles of Distributed Computing, August
1987.

[46] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[47] R. T. Monroe and D. Garlan. Style-based reuse for software architectures. In Proc.

1996 Internat. Conf. on Software Reuse, 1996.
[48] M. Moriconi and X. Qian. Correctness and composition of software architecture.

In SIGSOFT’94, Proc. of 2nd ACM SIGSOFT Symp. on Foundations of Software

Engineering, pages 164–174, December 1994.
[49] M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct architecture refinement.

IEEE Trans. Softw. Eng., 21(4):356–372, April 1995.
[50] D.E. Perry and A.L. Wolf. Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.
[51] A. Sarma. Introduction to SDL-92. Comput. Netw. ISDN Syst., 28(12):1603–1615,

June 1996.
[52] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling. Wiley,

1994.
[53] M. Shaw. Abstractions for software architecture and tools to support them. IEEE

Trans. Softw. Eng., 21(6), April 1995.
[54] M. Shaw and D. Garlan. Characteristics of higher-level languages for software ar-

chitecture. Technical Report CMU-CS-94-210, Carnegie Melon University, School of
Computer Science, Pittsburgh, PA, December 1994.

[55] M. Shaw and D. Garlan. Formulations and formalisms in software architecture. In
Lect. Notes Comput. Sci., volume 1000. Springer-Verlag, 1995.

[56] S.K. Shukla et al. On the complexity of relational problems for finite state processes.
In Proc. Internat. Colloq. on Automata, Languages and Programming, Paderborn,
Germany, July 1996.

[57] I. Sommerville and G. Dean. PCL: A language for modeling evolving software archi-
tectures. Software Eng. J., 11(2):111–121, 1996.

[58] K. Turner, editor. Using Formal Description Techniques: An Introduction to ES-

ARCHITECTURE-DRIVEN VERIFICATION OF CONCURRENT SYSTEMS 35

TELLE, LOTOS, and SDL. Wiley, 1993.

