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(1) document categorization

9

(2) named entity tagging: e.g protein / gene names

9

(3) fact extraction, information extraction:  

extract more elaborate patterns out of the text.

9

(4) collection-wide analysis:  combine facts that were

extracted from various text into inferences, ranging from

combined probabilities to newly discovered knowledge.

Figure 1: Text mining as a modular process.
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Abstract:

Literature mining is the process of extracting and combining facts from scientific publications. In recent years, many

studies have resulted in computer programs to extract various molecular biology findings using  Medline abstracts or

full text articles. This article describes the range of techniques that have been applied in literature mining. In doing so,

it divides automated reading into four general subtasks: text categorization, named entity tagging, fact extraction and

collection-wide analysis. Special attention is given to the domain particularities of molecular biology.

Introduction

With an overwhelming amount of biomedical

information available as text, it is natural to ask if it can

be read automatically. For several decades, natural

language processing (NLP) has been applied in

biomedicine to automatically ‘read’ patient records and

has resulted in a growing, but fairly homogeneous body

of research. Now with the explosive growth of

molecular biology research, there is an overwhelming

amount of text of a different sort, journal articles. The

text collection in Medline can be mined to learn about

a subfield, find supporting evidence for new

experiments, or add to m olecular biology databases.

Literature mining can be compared to reading and

understanding literature  but is performed au tomatically

by a computer. Like reading, most literature mining

projects target a specific goal. In bioinformatics,

examples are:

- Finding protein-protein interactions [a.o. 2, 20,

31],

- Finding protein-gene interactions [26],

- Finding subcellular localization of proteins [5, 6],

- Functional annotation of proteins [1, 23],

- Pathway discovery [10, 18],

- Vocabulary construction [19, 24],

- Assisting BLAST search with evidence found in

literature [3],

- Discovering gene functions and relations [27].

With this wide variety of goals, it's not surprising that

many different tools have been adopted or invented by

the various researchers. Although the approaches differ,

they can all be seen as examples of one or more stages

of a reading process (Fig 1). A reader first selects what

they will read, then identifies important entities and

relations between those entities, and finally combines

this new information with other articles and other

knowledge. This reading process forms the backbone of

this article.

Before the sections of this article go into detail of the

four stages, a few words about the material on which

analyses are done. M ost of the studies that work with

biomedical literature , use M edline abstracts only. This

underlines the immense value of the Medline

collection. Its size is now approaching 12 million

citations, most of which include abstracts. Our hope is

that in future years, more and more initiatives will and

can be directed  towards the full text of articles. A

number of publishers now offer free on-line access to

full articles and standards in web lay-out and

metatagging are finding their  acceptance. Algorithms

that scale up better and  a continuous increase in

affordable computing power are - or will be - ready to

tackle  that.

Free availability of material is at this moment trapped

between two forces. There is the growing pressure from

the (noncom mercial) scientific community to freely

share material. But on the other hand there is a growing

pressure on companies to make a profit on the web and

therefore to regulate access to material. This matter -

interesting as it is though - falls outside the scope of

this article.

This article introduces a number of studies on literature

mining applied to molecular biology, and takes a look

at the range of techniques that have been (or could be)

applied to modules within the literature mining process.

For a more extensive overview of NLP studies applied

to molecular b iology - as well as to other biomedical

domains - see our on-line, partially annotated

bibliography at

http://textomy.iit.nrc.ca/cgi-bin/BNLPB_ix.cgi .



'raw' sentence: The interleukin-1 receptor (IL-1R) signaling pathway leads to nuclear factor kappa B (NF-kappaB)
activation in mammals and is similar to the Toll pathway in Drosophila.

tagged sentence: The <protein>interleukin-1 receptor</protein> (<protein>IL-1R</protein>) signaling pathway leads to
<protein>nuclear factor kappa B</protein> (<protein>NF-kappaB</protein>) activation in mammals
and is similar to the <protein>Toll</protein> pathway in <organism>Drosophila</organism>.

Figure 2: an example of named entity tagging on protein and organism names.

Document categorization

Document categorization, at its most basic, divides a

collection of documents into disjoint subsets. This is

also known as Document or Text Classification, but

categorization is the most comm on term. The

categories are usually predefined; if they are not, the

process is actually document clustering (grouping

documents through their superficial characteristics, e.g.,

[15]). By this definition Information retrieval (IR) is

one form  of categorization : the collection is divided

into two categories of documents, one relevant to the

query and one irrelevant. IR algorithms however differ

from more specialized categorization algorithms as they

use queries rather than teaching from examples.

Document categorization is useful primarily for

efficiency reasons. Automated readers, just like human

readers, cannot usually spend the time to read  all

available documents. Having a relevant subset in an

early phase can  direct future  efforts, especially those

that are computationally expensive. For example, a text

mining system  that hunts for subcellular localizations

of proteins, might need one minute of processing time

per M edline abstract. One can apply that system  to all

12 million Medline abstracts and find in retrospect that

only, say, 8,900 abstracts returned a valid finding. One

could also use a document categorizer that finds, say,

10,000 promising abstracts, and see in retrospect that

8,800 abstracts were useful. A  researcher might accept

a slight loss of 100 documents with the huge reduction

in processing time.

Document categorization can be used to aid human

readers by providing a much more accurate, but slower

and less flexible, alternative to search engines (e.g.

[33]). Other projects explicitly include document

categorization but as a module in a larger system (e.g.,

[19, 30, 35]).

The methods used for document categorization can be

borrowed from Machine Learning. Popular methods

include Naive Bayes (e.g. [17, 33]), Decision Trees

(e.g. [34]), Neural Networks, Nearest Neighbor (e.g.

[8]) and Support Vector Machines (e.g. [9, 33]). In all

these methods, a collection of precategorized

documents is used to train a statistical model of word or

phrase use and then the statistical model is applied to

uncategorized documents.

Before the training and the actual categorization, there

are two preliminary steps: (1) feature extraction, and

(2) feature set transformation. The characterizing

features of documents can be based on words (most

often), word combinations, character sequences or

(more rarely) concepts associated with word

occurrences. Feature set transformation has two

purposes: reducing the size of the feature set, hoping

that that will improve efficiency as well as

effectiveness, and scaling or weighting the feature set

with the purpose of improving the document

representation relative to the entire collection.

Reduction of the feature set is often done by stemming,

eliminating stop words, and eliminating very rare words

that burden the classifier more than that they add

discrimination power. See for instance [15].

As one example, the Support Vector Machine (SVM)

is a relatively new but promising technique for pattern

categorization and it has been successfully applied to

text (see e.g. [9]). In an SVM , documents are

represented as points in a vector space, where the

dimensions are the selected features. Based on the

training document vectors, the SVM finds the (unique)

hyperplane that minimizes the expected generalization

error. It does this by maximizing the shortest distance

between any of the training examples and the

hyperplane. Only some of training vectors w ill finally

define the position of the hyperplane so these are called

the 'support vectors'. After the training phase,

classification of new documents is a fast process. For

biological literature, only few results have been

reported. Wilbur [33] used an SVM in combination

with a Naive Bayes classifier to construct a boosted

system for text categorization. In our own project, we

have been applying SVM to various classes of Medline

abstracts with good results. A more detailed publication

is in preparation, but accuracy is just short of 90%

(precision=recall cut-off point). Advantages of SVM

include its good and robust performance, and resistance

to overfitting the data.

The usual evaluation metric for documen t

categorization tasks is accuracy (in multi-class

systems), and the twin-metrics recall and precision (for

binary class systems). It is often possible to tweak the

system for better precision at the cost of recall or better

recall at the cost of precision , so that a task-specific

setting can be reached. In  evaluation, this makes it

possible to plot results in ROC curves. N-fold cross

validation is the method of choice for evaluation.

Named entity tagging

The main reason why we read an article is to find out

what it says. Similarly, the goal of Information

Extraction is to fill in a database record with specific

information from the article. The first level of this task

is to identify what entities or objects the article

mentions. This is called named entity tagging, where



the beginning and end of entities might be marked with

SGML or XM L tags - see fig . 2. 

In molecular biology, most of the entities are

molecules, such as RNA, genes and proteins, and these

entities have many aliases. The lack of naming

conventions make this task particularly  difficult.

Molecu le names are invented on a daily basis and

conventions, if they exist, may differ between

subdisciplines. Two m olecules may share  nam es, with

only  the context to distinguish between the gene and

the protein. Even if names are not shared, a substring of

an entity name might be a legitimate, bu t different

entity. Tagging 'protein  kinase 2' might be an adequate

tag in a certain sentence, but 'protein kinase 2 alpha'

might be even better.

All techniques suggested for finding named entities use

some form of character-by-character or word-by-word

pattern to iden tify the enti ties. In some of these

techniques, the patterns are designed by hand. In others,

the patterns are learned from examples that are

provided by an expert. Then when a new  article is

encountered, each string of characters or words is

scanned looking for close matches to the learned

patterns.

The simplest, manual, approach is to take advantage of

string regularity and write patterns to capture the

known naming conventions, such as a 'p' preceding or

succeeding a gene name (see e.g. [11]). Other reliable

rules are possible that identify certain words with letters

and digits.

A similar approach is lexicon based that uses name lists

to tag terms, or likely components of entity names [16,

20]. The success of this approach depends on the

availability and the coverage of such lists, as well as on

their stab ility over time. 

A final manual approach is context based. In this

method, a dictionary of sentence contexts is compiled

that suggest likely mo lecule names. For instance, in a

sentence that shows the pattern "<protein A> inhib its

<unknown string>", a rule can dictate that the unknown

string is a  cand idate protein nam e. 

The learning methods, on the other hand, are applied

when it is deem ed impossible, inaccurate or too  slow to

manually com pile the string regularities and lexicon

and context dictionaries. Hishiki et al. [13] use a

machine learning m odule to identify which sequences

of n characters are likely to be a part of a molecu le

name. The most likely ones are the string regularities.

New sequences are then scored by the system 's past

experience with such sequences.

Hidden Markov M odels [4] can learn a lexicon and

context as well by computing the probability that a

sequence of specific words surround or constitute a

molecule name. The expert just has to identify

exam ples, while the HM M learns the patterns to apply

to new sequences of words.

Of course, the methods do not have to be used in

isolation. Friedman et al. [10] used string regularity as

well as a lexicon to tag protein and gene names. Also,

the methods can be improved by filtering the text.

Some researchers prefer to apply part-of-speech tagging

to help the Named entity tagging task, so that only

(whole) noun phrases are considered as candidate

molecule names. The popular part-of-speech taggers or

shallow parsers appear to be flexible enough  to handle

the specialized biological language. For instance,

EngCG was used by  Hishiki et al. [13] and by

Yakushiji et al. [36].

 For protein name tagging, accuracies as high as around

95% have been reported [11], but care should be given

to the test set composition. It is known that for some

organisms or some protein subd om ains, the

nomenclature is fairly rigidly standardized and

excellent tagging accuracy can be reached there.

Likewise, experiments with lower results should not be

discarded without close scrutiny of the application

domain: it might be that the study concentrates on a

tr ickier problem.

Fact extraction

Readers do not understand  text if they merely know the

entities. They must also grasp the interactions or

relationships between those entities. Fact extraction  is

the identification of entities and their relations. To have

a machine do this correctly for arbitrary  relationships

would require a full natural language intelligence,

something that is many years away. There are several

approximations that have been tried, from purely

statistical co-occurrence to imperfect parsing and

coreference resolution.

The simplest approach to capture entity relationships is

to search for sentences that mention two entities of the

right sort frequently enough. For example, the frequent

cooccurrence of two specific protein names with a verb

that indicates a molecular interaction might be enough

to guess the existence of  such an interaction. Craven

[5] had his system find sentences where a protein name

occurred together with a subcellular location. The effect

of accidental cooccurrence could be minimized by

requiring frequent corroboration of any pairing.

Another approach that increases the reliability of

discovered relationships searches for fixed regular

lingu istic templates [20, 31]. For example, the system

might search for a specific interaction verb  while

verifying that the surrounding context is parsable in a

correct syntactic structure and with entity nam es in the

allocated positions - taking any (negative) modifiers

into account - and only then assume the interaction

between the substances to be sufficiently proven. The

main disadvantage of this approach is that the templates

must be constructed m anually. Also, many relationships

that do not match the template will be missed, but a few

good patterns (even when they have low recall) might

extract a good number of facts out of a large corpus.

Some linguistic templates can be learned, for instance



using a Hidden M arkov M odel [22]. This requires a

corpus with annotated patterns - something that is

harder to find or more labour-intensive to construct

than a nam ed en tity annotated corpus. The expert must

mark both the entities and which of several relations

applies between those entities. There are clear

advantages, no need to explicitly craft rules, better

'portability', and possibly greater overall recall.

Finally, even though automated understanding is not

fully possible, important relationships can be

discovered by performing a full syntactic parse, where

relations between syntactic components are inferred

[25, 36]. This approach is similar to the template

searching except that it is not domain specific and

attempts to identify many or all relationships in a

sentence. Park [21] illustrates the syntactical

complexities and pitfalls of sentences in biomedical

documents.

As an alternative to developing a literature mining

system from scratch, some groups have adapted

systems or modules of earlier developed systems. They

were originally conceived for other bioinformatics tasks

(Jake, Kleisli [18, 35]), for other medical domains (e.g.

MedLEE [10] or for general use (e.g. Highlight [31],

LaSIE [14]).

Collection wide analysis

Thinking new thoughts and using what is known,

requires integrating information between documents.

This opens the door to knowledge discovery, where

combined facts form the basis of a novel insight. The

well-known Swanson study [28, 29] on the relation

between Raynauds disease and fish oil, was a starting

point of formal literature-based knowledge discovery.

Weeber et al. [32] discuss an automated replication of

that study and similar ones.

Other studies have addressed  knowledge discovery  in

molecular biology (see [5, 10]). As an example: from

document 1 you were able to extract relation A implies

B; from document 2 you deduced that B implies C. So

you might want to study  whether A implies C, for

which you have found no previous evidence in the

literature.

Blaschke et al. [2] used a large number of automatically

extracted facts on protein-protein interactions to

automatically graph an interaction map for the

drosophila cell cycle. This is one illustration where the

system abstracts many articles and leaves it to the

researcher to make inferences based on the output

graph.

Less ambitious goals have still benefitted from

collection-wide analyses. One notable application is

using collection redundancy to com pensate for recall

limitations of both statistical and structural methods

(e.g. [5]). A high precision/fair recall algorithm such as

the typical structural one should have a pretty good

confidence in any fact that did get extracted. Facts that

were missed in one document might get extracted from

another if the fact is redundant. If higher recall with fair

precision algorithm is achieved - something that

statistical methods tend to do - the combined

confidence from various redundant instances might be

enough to accept an extracted fact (e.g. [1]).

Apart from findings from other documents in the

collection, external sources might help the text analysis.

Analogous to clinical settings where medical thesauri

and classification schemes (MeSH, ICD, Snomed,

ULMS) are used to support text algorithms, database

structures in biology (such as GenBank, SwissProt) can

be applied towards the correct analysis of abstracts or

full text. Craven [5] used Yeast Protein Database data,

Krauthammer [16] used BLAST for protein name

tagging; Hatzivassiloglou [12] mentions validation

across other publications and existing knowledge.

With higher hopes on collection-wide analyses, the

scalability of algorithms becomes a more urgent issue.

Considering the current size of Medline (close to 12

million articles) and the growing corpus on molecular

biology, practical algorithms should scale up well. The

ever-increasing power of computers helps in that

respect too.

Concluding remarks

With such a wide variety of current applications and

techniques, the future is only likely to be even wider

open. On-line access of molecular databases will

augment the knowledge component in literature mining

systems. Large-scale statistical methods will continue

to challenge the position of the more syntax-semantics

oriented approaches, although  both  will hold their own

place. Literature m ining systems will move closer

towards the human reader, supporting subtasks of

reading in a more interactive and flexible way. For

instance by doing text categorization and named entity

tagging on-the-fly, working with training material that

can easily be edited and augmented . 

Written language  will a lways remain only

semistructured -and we see that as a benefit. Literature

mining adds to written language the promise of making

translations onto structures that we do not yet foresee.

Therefore, these m ethods will continue to be fruitful

even when some of the molecular biology challenges

are solved. 
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