

NRC Publications Archive Archives des publications du CNRC

Aerobic biofilms grown from Athabasca watershed sediments are inhibited by increasing concentrations of bituminous compounds

Yergeau, Étienne; Lawrence, John R.; Sanschagrin, Sylvie; Roy, Julie L.; Swerhone, George D. W.; Korber, Darren R.; Greer, Charles W.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1128/AEM.02216-13 Applied and Environmental Microbiology, 79, 23, pp. 7398-7412, 2013-09-20

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=a8e46933-9fc0-4680-b2f6-d44edc681e09 https://publications-cnrc.canada.ca/fra/voir/objet/?id=a8e46933-9fc0-4680-b2f6-d44edc681e09

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

- 1 Title: Aerobic biofilms grown from Athabasca watershed sediments are inhibited by increasing
- 2 bituminous compounds concentrations
- 3
- 4 **Authors:** Etienne Yergeau¹#, John R. Lawrence² Sylvie Sanschagrin¹, Julie L. Roy², George D.W.
- 5 Swerhone², Darren R. Korber³, and Charles W. Greer¹
- 6
- 7 Affiliations: ¹National Research Council Canada, Montreal, Canada
- 8 ²Environment Canada, Saskatoon, Canada
- 9 ³University of Saskatchewan, Saskatoon, Canada
- 10
- 11 Keywords: Athabasca River / Biofilms / Next-generation sequencing / Oil sands / Sediments
- 12
- 13 Running title: Athabasca River bitumen effects on biofilms
- 14
- 15 **Date**: September 4, 2013
- 16
- 17
- 18 #Correspondence to: Etienne Yergeau, National Research Council Canada, 6100 Royalmount,
- 19 Montreal, Qc, H4P 2R2, Canada. Phone: 514-496-6152. Fax: 514-496-6265.
- 20 Etienne.Yergeau@cnrc-nrc.gc.ca

21 Abstract

22	Sediments from the Athabasca River and its tributaries naturally contain bitumen at various
23	concentrations, but impacts of this variation on the ecology of the river are unknown. Here,
24	we used controlled rotating biofilm reactors in which we re-circulated diluted sediments
25	containing various concentrations of bituminous compounds taken from the Athabasca River
26	and three tributaries. Biofilms exposed to sediments having low and high concentrations of
27	bituminous compounds were compared. The latter were 29% thinner, had a different
28	extracellular polysaccharide composition, 67% less bacterial biomass per μm^2 , 68% less
29	cyanobacterial biomass per μm^2 , 64% less algal biomass per μm^2 , 13% fewer protozoa per
30	cm ² , were 21% less productive, had a 33% reduced content in chlorophyll a per mm ² and a
31	20% reduction in the expression of photosynthetic genes, but had a 23% increase in the
32	expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in
33	community composition were also observed, with relatively more Alphaproteobacteria and
34	Betaproteobacteria and less Cyanobacteria, Bacteroidetes and Firmicutes in biofilms exposed
35	to high concentrations of bituminous compounds. Altogether, our results suggest that
36	biofilms that develop in the presence of higher concentrations of bituminous compounds are
37	less productive and have lower biomass, linked to a decrease in the activities and abundance
38	of photosynthetic organisms, likely due to inhibitory effects. However, within this general
39	inhibition, some specific microbial taxa and functional genes are stimulated because they are
40	less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize
41	some bitumen associated compounds.

42 Introduction

43	Oil sands are unconventional petroleum deposits where bitumen, a dense and viscous form of
44	petroleum, is found in combination with sand, clay and water. One of the largest bitumen
45	reservoirs, the Athabasca oil sands, is located in Northeastern Alberta, Canada, along the
46	Athabasca River. Here, as the Athabasca River and its tributaries (e.g., Ells, Steepbank and
47	Firebag) cut through the Athabasca oil sands formation, oil sands are eroded, making the water
48	and sediments naturally-enriched in various bituminous compounds. These compounds are
49	mainly asphaltenes, but also various aromatic hydrocarbons (typically high molecular weight,
50	partially saturated polycyclic aromatic hydrocarbons similar to hopanoids), naphthenic acids
51	and alkanes (49, 50). The concentrations of these compounds vary naturally due to geological
52	and hydrological factors, but also because of aerial deposition from oil upgrading activities (24-
53	26). There are also some indications of a potential hydraulic connectivity between the oil sands
54	tailings ponds (which are often above grade, setting up a hydraulic head) and the at-grade or
55	subsurface natural water bodies (22). Many microorganisms, often belonging to the
56	Proteobacteria, can degrade and utilize hydrocarbon compounds that are found in bitumen (12,
57	52, 53). The Betaproteobacteria were previously shown to be positively correlated to various
58	hydrocarbon indicators in a field survey of sediments from the Athabasca River, suggesting that
59	they might be able to use some of the bituminous compounds as carbon sources (57). However,
60	the Athabasca River is generally considered to be nitrogen and phosphorus limited (8), which
61	probably strongly limits the utilization of bituminous compounds by microorganisms, as even
62	with abundant carbon sources, microbial growth cannot occur without N and P.

63	Although some bituminous compounds like asphaltenes and alkanes are generally not
64	toxic to microbial activity, other compounds like polycyclic aromatic hydrocarbons and
65	naphthenic acids can inhibit microbial growth. Although some bacteria can metabolize them (5,
66	6, 23), naphthenic acids can have negative effects on bacteria (15, 21), algae (20, 31) and
67	cyanobacteria (42). Aromatic hydrocarbons are also known to be toxic to a variety of microbial
68	processes (47, 51) and to bacteria (14, 34). Photosynthetic organisms were reported as being
69	more strongly inhibited by contaminants than other organisms (17, 57), but also as being
70	stimulated indirectly by oil addition through decreased grazing pressure (9). In river
71	ecosystems, biofilms and flocs containing photosynthetic organisms are in large part
72	responsible for ecosystem productivity and are used as a nutrient source by higher trophic
73	levels. Any changes in microbial community productivity and nutrient cycling activities will have
74	a direct influence on other trophic levels.
75	In freshwater ecosystems, the majority of microbial activity is associated with surfaces.
75 76	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as
75 76 77	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident
75 76 77 78	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical
75 76 77 78 79	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition, there is
75 76 77 78 79 80	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition, there is recruitment of populations to form the biofilm that represents the selection pressure for those
75 76 77 78 79 80 81	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition, there is recruitment of populations to form the biofilm that represents the selection pressure for those conditions and locations (4). Therefore the biofilm community is more representative of what
75 76 77 78 79 80 81 82	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition, there is recruitment of populations to form the biofilm that represents the selection pressure for those conditions and locations (4). Therefore the biofilm community is more representative of what
75 76 77 78 79 80 81 82 83	In freshwater ecosystems, the majority of microbial activity is associated with surfaces. Biofilms form at a specific location and respond to local environmental conditions such as current velocity, nutrients (27) and pollutants (56, 58), which makes them ideal resident communities for environmental monitoring. They also regulate the physical and chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition, there is recruitment of populations to form the biofilm that represents the selection pressure for those conditions and locations (4). Therefore the biofilm community is more representative of what would be happening within a region of the river and in/on the sediment in particular than the planktonic community. The response of river biofilms to contaminant presence could therefore

85	was shown previously to influence biofilm aquatic microbial communities, even at
86	concentrations that were generally considered to be sub-inhibitory (56, 58).
87	Our objective was to observe, under controlled in vitro conditions, the type of biofilm
88	communities that would develop from sediments taken from various parts of the Athabasca
89	watershed, which would be indicative of the impact of the variation in bituminous compounds
90	on microbial communities. To do this, sediments from various locations were diluted in
91	Athabasca River water taken from a reference location and re-circulated in rotating annular
92	reactors and the biofilm architecture, community composition and activities were measured
93	after 8 weeks. A large array of techniques was used to describe the functional and biological
94	differences in microbial communities. We hypothesized that the hydrocarbons contained in
95	bitumen would be inhibitory for microbial growth, but that dilution in the reactor would
96	decrease this inhibition and provide a supplementary carbon source for adapted microbial
97	communities

98 Material and Methods

99 Sediment and water samples

100	Sediment and water for reactor set-up (see below) were sampled on September 23, 2010. A
101	single large 10 kg sediment sample (top 15 cm of the sediment) was taken from each of the
102	sites (12 samples) using a stainless steel shovel in less than 1 m of water. See Yergeau et al. (57)
103	for a map of the sampling sites. Three sampling sites were chosen for the Athabasca River: a
104	reference site near Fort McMurray (AR; 56.72°N, 111.40°W; 19.41 km from the nearest tailings
105	pond), one site upstream of the oil sands mining activities (US; 56.87°N, 111.44°W; 4.69 km)
106	and one site directly downstream of Suncor mining activities (DS; 57.06°N, 111.52°W; 6.90 km).
107	Nine other sampling sites were chosen in three of the Athabasca tributaries: upper (EU;
108	57.23°N, 111.89°W; 22.69 km), mid (EM; 57.24°N, 111.77°W; 19.41 km) and lower (EL; 57.26°N,
109	111.72°W; 21.12 km) Ell's River (just outside the mining area); upper (FU; 57.34°N, 110.48°W;
110	73.15 km), mid (FM; 57.44°N, 110.89°W; 59.67 km) and lower (FL; 57.52°N, 111.11°W; 57.75
111	km) Firebag River (outside the mining area); upper (SU; 56.86°N, 111.13°W; 16.16 km), mid
112	(SM; 56.99°N, 111.34°W; 10.69 km), and lower (SL; 57.02°N, 111.47°W; 10.80 km) Steepbank
113	River (directly in the mining area). Sediment samples were collected, transferred to plastic bags,
114	transported in coolers to the laboratory within 48 h and kept at 4°C in the dark until used in
115	reactor set-up (14 days). Water for the experiment was taken at the reference site near Fort
116	McMurray (AR). The chemical characteristics of the water were as follow: dissolved organic
117	carbon (DOC), 4.5 mg/L; dissolved inorganic carbon, 28.2 mg/L; SO ₄ , 34.6 mg/L; Ca, 35.7 mg/L;
118	Mg, 9.87 mg/L; K, 1.15 mg/L; Cl, 3.22 mg/L; conductivity, 0.298 μ S; pH, 8.61; O ₂ , 9.05 mg/L; NH ₃ ,
119	0 mg/L. Examination of an extensive database on reference sites in the Athabasca indicates that

120	median concentrations were 5, 13 and 26 $\mu g L^{^{-1}}$ total phosphorus and 2, 2 and 8 $\mu g L^{^{-1}}$ total
121	dissolved phosphorus for the upper, mid and lower Athabasca River, respectively. Total
122	nitrogen concentrations at reference sites were 200 and 361 $\mu g L^{^{-1}}$ for the mid and lower
123	Athabasca River, respectively (8). The reference site is considered to be both nitrogen and
124	phosphorus limited based on periphyton assessments (7). The water used for dilution (AR site)
125	contained negligible or undetectable levels of the various hydrocarbon indicators.
126	
127	Experimental design and sampling
128	Rotating annular reactors containing 450 ml were set up as previously described (28, 29).
129	Sediment slurry (500 ml, >60% solid) was added to a 10 L container and then filled with
130	Athabasca River Reference water (from the AR site) (this represented a 1/20 dilution). The
131	overlying water plus sediment was then continuously recirculated through 3 replicate reactors
132	for each treatment (each replicate reactor was supplied independently via a peristaltic pump
133	but from the same reservoir and was randomly placed on the reactor bench) for about 50 days
134	at a rate of 500 ml per day at 22±2°C, giving 36 bioreactors. The reactors were run with
135	continuous illumination (2.1 μ E s ⁻¹ m ⁻²) as described in Neu et al. (37). Each replicate reactor
136	contained twelve identical coupons, made in-house out of polycarbonate as previously
137	described (29). Each analysis was done on subsamples of three randomly selected replicate
138	biofilm coupons. Confocal laser scanning microscopic imaging was performed at 5 random
139	locations on transects across a 1 cm ² subsample piece of the biofilm coupons. Subsampling for
140	other analyses (protozoan counts, thymidine incorporation, carbon utilization analyses,
141	molecular/genomic) was also carried out using randomly-selected subsamples from among the

143	scraping off one coupon from each replicate reactor and flash freezing the biomass in liquid
144	nitrogen. Since all replicate reactors were inoculated with the same dilution for each sediment
145	source and concentrations were not measured directly in the reactors, statistical significance
146	cannot be tested. For correlation analyses (see below), we used the same concentrations for
147	the three replicate reactors.
148	
149	Confocal laser scanning microscopy (CLSM)
150	Examination of all stained and control materials was carried out with an MRC 1024 confocal
151	laser scanning microscope (formerly Bio-Rad, now Zeiss, Jena, Germany) attached to a
152	Microphot SA microscope (Nikon, Tokyo, Japan) equipped with a Nikon, 10X NA 0.3, water
153	immersible lens. Coupons from each of the replicate reactors were cut into 1 cm ² pieces and
154	mounted in small Petri dishes using Dow Corning #3140 acid-free silicone (WPI, Inc., Sarasota,
155	FL.) and then stained and analyzed according to Lawrence et al (28). In brief: bacteria were
156	stained with the fluorescent nucleic acid stain (SYTO 9, Green); a lectin probe (Triticum vulgaris-
157	TRITC [tetramethyl rhodamine isothiocyanate], Red) was used to visualize exopolymer, while
158	autofluorescence was used to detect algal and cyanobacterial cells (Blue) as described
159	previously in detail (39). The lectins Arachis hypogaea, Canavalia ensiformis, Glycine max,
160	Triticum vulgaris and Ulex europaeus conjugated to fluorescein isothiocyanate (FITC) were
161	applied individually for <i>in situ</i> analyses of polymer composition, as described by Neu et al. (38).
162	Digital image analysis of the CLSM optical thin sections was performed by using NIH Image
163	version 1.61 (<u>http://rsb.info.nih.gov/nih-image/</u>) with macros written for semi-automated

12 identical coupons in each replicate reactor. For DNA-RNA work, biofilm was harvested by

164	quantification as described in Manz et al. (33). This allowed determination of biofilm thickness,
165	bacterial cell area (biomass), exopolymer biomass, cyanobacterial biomass, and total
166	photosynthetic biomass at various depths. Three-color red-green-blue projections (bacterial
167	cells = green, polymer = red, and algal autofluorescence = blue) of the biofilms were computed.
168	Based on controls, there was no background detectable that could be interpreted as
169	hydrocarbon and the threshold setting for algal+cyano autofluorescence limits and detection of
170	weaker signals.
171	
172	Protozoan and micrometazoan enumeration, carbon utilization pattern and thymidine
173	incorporation
174	Protozoa and micrometazoa were enumerated as follows: Samples were removed from the
175	reactors on a weekly basis and the numbers of protozoa and micrometazoa manually counted
176	on replicate 2 cm ² subsamples using phase contrast microscopy. The abundance values
177	presented are the cumulative abundance over the course of the 8 weeks of the experiment.
178	Carbon utilization patterns were determined for biofilm samples using commercial Eco-plates
179	(Biolog, Hayward, CA), as described previously (30). Thymidine incorporation was carried out
180	using tritiated thymidine following the standard protocol of Robarts and Wicks (44). All negative
181	controls were killed with formaldehyde at 0.4% final concentration.
182	
183	Nucleic acid extraction and rRNA subtraction
184	Frozen biofilm strips were thawed in 2 volumes (approximately 5 ml) of RNAlater (Ambion, Life

Technologies, Burlington, Ontario, Canada) and centrifuged at 8,000x g for 12 minutes. The

quantification as described in Manz et al. (33). This allowed determination of biofilm thickness,

185

186	DNA and RNA from resulting cell pellets were simultaneously extracted using a homemade
187	bead-beating protocol with subsequent phenol-chloroform purification, as previously described
188	(54, 55). Extracts were separated in two parts, one was treated with DNAse to produce RNA
189	and the second one was treated with RNAse to produce DNA. Total RNA was amplified using
190	the Message Amp kit (Ambion) and rRNA was subtracted following the protocol described by
191	Stewart et al. (48), with the exception that the T7 promoter was coupled to the forward primer
192	instead of the reverse primer because the MessageAmp procedure produces antisense RNA.
193	
194	Ion Torrent 16S rRNA gene sequencing
195	Partial 16S rRNA gene amplicons were produced using the universal primers E786 (5'-
196	GATTAGATACCCTGGTAG-3') and U926 (5'-CCGTCAATTCCTTTRAGTTT-3') (1) containing the 10-
197	bp multiplex identifiers (MID) and adaptor sequences for Ion Torrent sequencing described
198	previously (3, 57). Reactions were performed in 25- μl volumes containing 1 μl of template DNA,
199	0.3 μM each primer, 0.4 mg/ml of BSA, 0.2mM of dNTPs and 0.05 U/µl of rTaq DNA polymerase
200	(GE Healthcare, Baie d'Urfé, Canada). Cycling conditions involved an initial 5 min denaturing
201	step at 95°C, followed by 25 cycles of 30 s at 95°C, 30 s at 55°C, and 45 s at 72°C, and a final
202	elongation step of 3 min at 72°C. All PCR products were purified on agarose gels using the
203	QIAquick Gel Extraction Kit (Qiagen, Valencia, CA) and quantified using the PicoGreen dsDNA
204	quantitation assay (Invitrogen, Carlsbad, CA). All the 36 amplification products from the
205	different samples were pooled in an equimolar ratio and sequenced together. A total of
206	3.50x10 ⁷ molecules were used in an emulsion PCR using the Ion OneTouch [™] 200 Template Kit
207	(Life Technologies) and the OneTouch [™] instruments (Life Technologies) according to the

208	manufacturer's protocol. The sequencing of the pooled library was done using the Personal
209	Genome Machine TM (PGM) system and a 314 chip with the Ion Sequencing 200 kit according to
210	the manufacturer's protocol. Sequences were binned by MID, after which MIDs were trimmed
211	from each sequence. Sequences having an average Phred quality score below 20, or being less
212	than 100 bp, were then filtered out of the dataset. Taxonomic identities were assigned to
213	sequences using the "multiclassifier", which is the local multi-sample version of the RDP
214	Pipeline Classifier (http://pyro.cme.msu.edu/). Weighted-normalized Unifrac distances
215	between each sample pair were calculated using the FastUnifrac website (18) based on the
216	GreenGene core dataset. For OTU calculation, sequence data were randomly normalized to
217	1964 sequences and were then de-noised using the procedure of Quince et al (43). These
218	sequence data have been submitted to the NCBI SRA database under accession No. SRP026549
219	(NCBI BioProject PRJNA210445).

221 RNA sequencing

Total rRNA-subtracted RNA was reverse-transcribed using the SuperScript III kit (Invitrogen). 222 Illumina libraries were prepared following the protocol of Meyer and Kircher (36), with indices 7 223 224 to 42 pooled together and sent for three lanes of Illumina HiSeq 2000 paired-end 2x101 bp 225 sequencing at The Center for Applied Genomics of the Hospital for Sick Children, Toronto, 226 Canada. Resulting data were split into 216 files (36 samples x 2 reads x 3 lanes). These sequence 227 data have been submitted to the NCBI SRA database under accession No. SRP026549 (NCBI 228 BioProject PRJNA210445). Data from the different lanes were pooled together and the resulting 229 72 files were filtered using a custom-made Perl script. Sequences were trimmed to the first

230	occurrence of an undefined base (N) or of a low quality base (below phred-like score of 20) and
231	sequences shorter than 75 bp were filtered out. The resulting high-quality sequences were
232	submitted to MG-RAST 3.0 (35) for automated annotation. No attempt was made to assemble
233	the paired reads as overlaps were not observed. Annotation results from the two paired files
234	were summed after preliminary analyses that revealed no significant differences between the
235	paired datasets. We also looked more specifically at key genes related to aerobic hydrocarbon
236	utilization: alkane hydroxylases and ring-opening dioxygenases. For alkane hydroxylase, we
237	used the MG-RAST "all annotations" functionality with the GenBank database and summed the
238	abundance of reads matching either "alkane monooxygenase" or "alkane hydroxylase". For the
239	ring-opening dioxygenase, we used the MG-RAST "hierarchical classification" functionality with
240	the M5NR database and summed the abundance of reads for three categories of ring-opening
241	dioxygenases. The intradiol ring-opening dioxygenase represents a sum of MG-RAST functions
242	"Catechol 1,2-dioxygenase (EC 1.13.11.1)", "Catechol 1,2-dioxygenase 1 (EC 1.13.11.1)",
243	"Intradiol ring-cleavage dioxygenase (EC 1.13.11.1)", "Protocatechuate 3,4-dioxygenase alpha
244	chain (EC 1.13.11.3)", and "Protocatechuate 3,4-dioxygenase beta chain (EC 1.13.11.3)". The
245	extradiol ring-opening dioxygenase represents a sum of MG-RAST functions "catalytic subunit
246	of meta cleavage enzyme", "Catechol 2,3-dioxygenase (EC 1.13.11.2)", "extradiol dioxygenase
247	large subunit", "Protocatechuate 4,5-dioxygenase alpha chain (EC 1.13.11.8)",
248	"Protocatechuate 4,5-dioxygenase beta chain (EC 1.13.11.8)", "Biphenyl-2,3-diol 1,2-
249	dioxygenase (EC 1.13.11.39)", and "1,2-dihydroxynaphthalene dioxygenase". The
250	gentisate/homogentisate ring-opening dioxygenase represents a sum of MG-RAST functions

252 1.13.11.5)".

253

254	Data	anal	ysis
-			

255 All statistical analyses were carried out in R (v 2.13.2, The R Foundation for Statistical 256 Computing). Normal distribution and variance homogeneity of the data was tested using the "shapiro.test" and "bartlett.test" functions, respectively. If the data was not normally 257 258 distributed or did not show homogeneous variance, it was log transformed before ANOVA analyses. ANOVA were carried out using the "aov" function, with the post-hoc Tukey Honestly 259 Significant Difference tests being performed with the "TukeyHSD" function. Spearman rank-260 order correlations were carried out using the "cor" and "cor.test" functions. Similarity matrices 261 262 were calculated using the "vegdist" function of the "vegan" package using "Bray" for Biolog substrate utilization patterns and for mRNA functional classification. These matrices and the 263 264 Unifrac matrix were then used for principal coordinate analyses (PCoA) that were carried out using the "pcoa" function of the "ape" package. Vectors of summed relative abundance at the 265 266 phyla/class level, substrate or SEED functional hierarchy were overlaid on the ordinations.

267

268

270	Sediments chemical analyses
271	A subset of the sediments analyzed in Yergeau et al. (57) was diluted in Athabasca River water
272	(1:20) and used to inoculate rotating annular reactors. Since the same sediment was
273	recirculated in triplicate reactors and hydrocarbon concentrations were not measured directly
274	in the re-circulated water, chemical data cannot be tested for significance. The sediments had
275	very different concentrations of bituminous compounds, with Ell's River lower, Firebag River
276	lower and Steepbank River mid and lower sediment samples generally having values one or
277	more orders of magnitude higher than other samples. In these samples with high levels of
278	bituminous compounds, up to 12.76% of the total organic matter was due to the presence of
279	total petroleum hydrocarbons (TPH) (Table 1). In contrast, the samples showing the lowest
280	values for bituminous compounds generally had less than 1% of their organic matter being
281	related to hydrocarbons (Table 1).
282	
283	Biofilm architecture
284	Biofilms were 29.0% thinner in the samples exposed to the sediments containing the highest
285	concentration of hydrocarbon (black bars) when compared to the other treatments (white and
286	grey bars), and many of the pairwise differences were significant (Fig. 1). Consequently, biofilm
287	thickness was significantly and negatively correlated to most of the hydrocarbon indicators,
288	with stronger correlations (up to r_s =-0.77, P<0.001) with EPA-PAH, alkylated PAHs and aromatic
289	compounds (Table 2). The composition of the extracellular polysaccharide (EPS) matrix varied

269 Results

291	(N-acetylglucosamine), NeuNAc (N-Acetylneuraminic acid) was 35.9% less abundant in the
292	samples exposed to the sediments containing the highest concentration of hydrocarbon (black
293	bars) when compared to the other treatments (white and grey bars) (Fig. 1), resulting in
294	significant (P<0.05) negative correlations with concentrations of naphthenic acids, EPA-PAH,
295	alkylated PAHs and aromatic compounds (Table 2). In contrast, terminal α or β galNAc (terminal
296	α - or β -linked N-acetylgalactosamine) was 207.6 % more abundant in the samples exposed to
297	the sediments containing the highest concentration of hydrocarbon (black bars) when
298	compared to the other treatments (white and grey bars) (Fig. 1), resulting in significant (P<0.01)
299	positive correlation with TPH, TSH and TAH (Table 2).
300	
301	Biofilm community composition
302	The biofilm community composition was analyzed by Ion Torrent 16S rRNA gene sequencing,
303	direct counts and confocal laser scanning microscopy. The microbial communities exposed to
304	the sediments having the highest concentrations of hydrocarbons (Ell's lower, Firebag lower
305	and Steepbank mid and lower) were visually very different from the other biofilms when
306	observed by confocal laser scanning microscopy (Fig. 2). Similar differences were found upon
307	analysis of each biofilm for relative abundance of algae, Cyanobacteria and Bacteria using
308	confocal laser scanning microscopy (Fig. 3). Cyanobacteria, algae and Bacteria were 67.7%,
309	63.6% and 67.2% less abundant, respectively, in the samples exposed to the sediments
310	containing the highest concentration of hydrocarbon (black bars) when compared to the other
311	treatments (white and grey bars) (Fig. 3). Significant negative correlations were observed
312	between algae, Cyanobacteria and Bacteria and various hydrocarbon indicators (P<0.001,

313	P<0.05 and P<0.01, respectively), with the strongest correlations being with EPA-PAH, alkylated
314	PAHs and aromatic compounds (Table 2). The cumulative number of protozoa observed over
315	the course of the 8 week experiment (with observation every week) was also 13.4% lower in
316	the samples exposed to the sediments containing the highest concentration of hydrocarbon
317	(black bars) when compared to the other treatments (white and grey bars) (Fig. 3). Protozoa
318	counts were also negatively correlated to most of the hydrocarbon indicators measured
319	(P<0.01), with total aromatic hydrocarbon, total petroleum hydrocarbon and naphthenic acid
320	concentrations having the strongest correlations (Table 2).
321	The bacterial community, as measured by Ion Torrent 16S rRNA gene sequencing, was
322	dominated by Proteobacteria, with the Alphaproteobacteria and Betaproteobacteria classes
323	being highly abundant in most treatments (19.6-36.0% and 14.7-43.8% of total community,
324	respectively) (Fig. 4a and Table S1). Most of the phyla/classes were significantly (P<0.05)
325	affected by the experimental treatments, with the exception of the Cyanobacteria (Table S1).
326	The Alphaproteobacteria and the Betaproteobacteria were often significantly more abundant in
327	the biofilms exposed to sediments containing the highest hydrocarbon concentrations (Alpha:
328	29.0% (high) vs. 23.3% (medium-low); Beta: 32.4% vs. 28.9%) (Fig. 4a and Table S1), and were
329	positively correlated to several hydrocarbon indicators (P<0.01 and P<0.001, respectively), with
330	the highest coefficient being for EPA-PAH, alkylated PAHs and aromatic compounds (Table 3).
331	The Gammaproteobacteria class was significantly more abundant in two treatments,
332	downstream of Suncor and Steepbank River upper (29.0% and 27.2% of total community,
333	respectively) (Fig. 4a and Table S1), but only showed a significant positive correlation (P<0.01)
334	with naphthenic acid concentration (Table 3). The Bacteroidetes were significantly more

335	abundant in the biofilms exposed to sediments from the Firebag River (15.7-23.2% of total
336	community) (Fig. 4a and Table S1), which resulted in significant negative correlations (P<0.001)
337	with EPA-PAH, alkylated PAHs and aromatic compounds (Table 3). The Actinobacteria were
338	significantly more abundant in the biofilms that developed from Firebag River lower and upper,
339	Ell's river mid and Steepbank River upper sediments (6.8-9.3%) (Table S1), which resulted in a
340	significant positive correlation (P<0.01) with naphthenic acids and negative correlations
341	(P<0.001) with EPA-PAH, alkylated PAHs and aromatic compounds (Table 3).
342	The relationships between phyla/classes and samples mentioned above were also
343	visible in the principal coordinate analyses of the Unifrac distance onto which the phylum/class
344	data were projected. The ordination also revealed that the biofilms exposed to sediments from
345	the Firebag River were harbouring similar bacterial communities, with relatively more
346	Actinobacteria (average Firebag River: 5.04% vs. average other samples: 4.29%),
347	Deltaproteobacteria (2.42% vs. 1.79%) and Bacteroidetes (12.59% vs. 8.70%) than other
348	treatments (Fig. 5a). These samples were also relatively richer in Acidobacteria (1.58% vs.
349	1.39%) and Cyanobacteria (0.06% vs. 0.02%) and poorer in Betaproteobacteria (29.02% vs.
350	33.22%) and Alphaproteobacteria (25.73% vs. 25.96%) (Fig. 5a). In contrast, most of the biofilms
351	exposed to the lower Ell's River and the Steepbank River sediments were richer in Beta-
352	(average lower Ell's River and the Steepbank River: 34.27% vs. average other samples 27.97%),
353	Alpha-(27.70% vs. 24.00%) and Gammaproteobacteria (17.76% vs. 17.28%) (Fig. 5a). The
354	remaining biofilms were relatively enriched in <i>Planctomycetes</i> (average other samples: 1.54%
355	vs. average lower Ell's River and the Steepbank River: 0.90%), Firmicutes (2.32% vs. 1.39%) and
356	Cyanobacteria (0.07% vs. 0.005%).

357	We compared the microbial communities of the biofilms with the ones detected in a
358	previous microbial field survey of the sediments used in this study (57). When looking at each
359	phylum/class individually, no significant Spearman correlations were found between the biofilm
360	and sediments, suggesting that, across the different samples, the relative abundance of
361	particular taxa in the sediment was not predictive of its relative abundance in the biofilm. When
362	comparing the relative abundance of all phyla/classes across pairs of samples, significant
363	Spearman correlations were found between sediments and their associated biofilm, but also
364	between almost all biofilm-sediment pairs, indicating that the relative community composition
365	at the phylum/class level was not more similar when comparing a sediment sample with its
366	associated biofilm than a random biofilm-sediment pair. Similarly, when comparing Unifrac
367	distances, the biofilm bacterial communities were not more similar to their associated sediment
368	bacterial communities, than to other sediment bacterial communities. Altogether, these results
369	indicate that biofilm microbial communities could not be predicted from the sediment
370	microbial communities and that some selection of microorganisms had occurred because not all
371	microorganisms present in the sediment can live in a biofilm.
372	The number of OTUs detected in the microbial communities was highly variable among
373	replicate samples (Fig. S1). This variability precluded the identification of any significant
374	differences between the treatments. The number of OTUs was generally negatively correlated
375	with the different hydrocarbon indicators, but again, none of these trends were significant at
376	P<0.05.
377	

378 Biofilm activities

	379	Biofilm activities were measured by bacterial thymidine incorporation, chlorophyll a
	380	measurement, Biolog assays and Illumina mRNA sequencing. Bacterial production, as measured
-	381	by thymidine incorporation rates, was 206.6% higher in the biofilms exposed to sediments from
rin	382	the Firebag River (mid and lower) and the Ell's river (mid) (Fig.6), which were not among the
d ło	383	sediments having the lowest hydrocarbon concentrations. However, significant (P<0.05)
	384	negative correlations were observed between bacterial production and different hydrocarbon
nea	385	compounds, with the strongest negative correlations being with the concentration of total
ah	386	aromatic compounds, EPA-PAHs and alkylated PAHs (Table 2).
ine	387	The active community composition, based on the taxonomic affiliation of the sequenced
onl	388	mRNA in MG-RAST, was dominated by Proteobacteria, mainly the Alpha-, Beta-, and
₽0	389	Gammaproteobacteria classes (12.9-20.6%, 11.7-19.2% and 17.1-22.8% of total activity,
isha	390	respectively) (Fig. 4b and Table S2). The Firmicutes and Cyanobacteria were much more active
ldu	391	than expected based on their relative abundance in 16S rRNA gene libraries (10.4-17.2% vs. 0.9-
S PI	392	4.8% and 3.6-13.4% vs. 0.0-0.4%, respectively)(Fig. 4a vs. 4b). The Cyanobacteria were
pto	393	significantly less active (by 56.4%) when exposed to the sediments from the Reference Site, the
CCE	394	lower Ell's River, and the mid and Lower Steepbank River (Fig. 4b and Table S2), and showed
Å	395	significant negative correlations (P<0.001) with EPA-PAH, alkylated PAHs and aromatic
W	396	compounds concentrations (Table 3). The activities of <i>Firmicutes</i> were also significantly (P<0.05)
AE	397	and negatively correlated with TPH, TAH, EPA-PAH, alkylated PAHs and aromatic compounds
	398	concentrations, even though most of the differences between treatments were not significant
	398	concentrations, even though most of the differences between treatments were not significant

399 (Table 3). Alphaproteobacteria and Betaproteobacteria were 7.6% and 21.3% more active,

respectively, in biofilms exposed to sediments containing higher concentrations of 400

401	hydrocarbons (black lines) when compared to the other treatments (white and grey lines) (Fig
402	4b and Table S2), which resulted in significant positive correlations (P<0.001) between the
403	activities of these two groups and EPA-PAH, alkylated PAHs and aromatic compound
404	concentrations (Table 3). The relative activity of Actinobacteria was significantly (P<0.05) and
405	positively correlated with the concentration of naphthenic acids (Table 3).
406	Chlorophyll a and photosynthesis-related transcripts were 33.3% and 19.5% less
407	abundant, respectively, in the samples exposed to the sediments containing the highest
408	concentration of hydrocarbons (black bars) when compared to the other treatments (white and
409	grey bars) (Fig.6). Chlorophyll a was significantly (P<0.001) and negatively correlated with the
410	concentration of total aromatic compounds, EPA-PAHs and alkylated PAHs (Table 2). Similarly,
411	the expression of photosynthesis-related genes was significantly (P<0.01) and negatively
412	correlated with the concentration of total aromatic compounds, EPA-PAHs and alkylated PAHs
413	(Table 2). A large majority of the Cyanobacteria families were negatively correlated to the
414	concentrations of TPH and total aromatic compounds, while almost as many families were
415	positively and negatively correlated to naphthenic acids and n-alkanes (Fig. S2). Very few
416	phyla/classes showed a clear majority of families positively correlated to TPH, n-alkanes and
417	aromatic compounds, with only Verrucomicrobia and Actinobacteria having a clear majority of
418	families showing positive correlations (Fig. S2). In contrast, for naphthenic acids, most of the
419	phylum/classes had a majority of their families positively correlated with NA concentration (Fig.
420	S2).
421	The biofilms that developed in the presence of the Firebag Piver lower sediments

The biofilms that developed in the presence of the Firebag River lower sediments
degraded a higher percentage of the substrates in Biolog assays and clustered away from most

	423	other treatments (Fig. 5b). Within the other treatments, there was clustering of the Steepbank
	424	and Ell's River lower samples observed in the lower left quadrant of the PCoA ordination plot
	425	(Fig. 5b). The relative abundance of the different functions detected following mRNA
rint	426	sequencing was also used to create an ordination of the samples (Fig. 5c). The biofilms exposed
d j	427	to the Firebag River sediment were clearly distinct from the other samples, and this was partly
0 -0	428	due to a higher relative abundance of transcripts related to photosynthesis and lower relative
ЮÐ	429	abundance of transcripts related to phosphorus, fatty acids, aromatics, secondary metabolism
ah	430	and stress (Fig. 5c). The biofilms that developed in the presence of sediments from the
ine	431	Steepbank River, lower and upper Ell's River and Athabasca River Reference site and
lno	432	downstream of Suncor, clustered together on the left side of the first axis, having relatively
-0	433	higher expression of genes related to fatty acids, aromatics, potassium, secondary metabolism,
she	434	virulence, iron and amino acids and relatively lower expression of genes related to
ildu	435	photosynthesis, respiration and sulfur (Fig. 5c). The biofilms exposed to sediments from the
Dd	436	upper Steepbank River, the mid Ell's River and upstream of Suncor clustered together, with
pts	437	relatively more transcripts associated with sulphur metabolism, photosynthesis, respiration and
Ce	/38	carbohydrates and fewer related to potassium, virulence, iron, amino acids and mobile
Åc	420	elements (Eig. Ec). For the most part, photosynthesis related functions were negatively
5	435	esements (fig. 5C). For the most part, photosynthesis-related functions were negatively
	440	correlated to different hydrocarbon indicators (Fig. 53), while the relative abundance of
	441	functions related to potassium were mostly negatively correlated to TPH and naphthenic acids
	442	and mostly positively correlated to n-alkanes (Fig. S3). For the other functional groups
	443	(carbohydrates, N, P, Fe and S metabolism), a majority of functions were positively correlated

to TPH, naphthenic acids, n-alkanes and aromatic compounds (Fig. S3). 444

445	No significant pairwise differences among the treatments were observed for the relative
446	expression of alkane monooxygenase genes (Fig. 7). Similarly, very few significant pairwise
447	differences were observed between treatments for the various classes of aromatic ring-cleaving
448	dioxygenases (Fig. 7). For the extradiol type dioxygenases, the only significant difference was
449	between the lower Ell's River treatment and the Firebag River treatments (Fig. 7). For the
450	intradiol type dioxygenases, the Suncor Upstream treatment induced significantly less
451	expression than the Reference site, the lower Ell's River and the lower Steepbank River
452	treatments (Fig. 7). For the gentisate/homogentisate type dioxygenases, the lower Steepbank
453	River treatment induced significantly more expression than the Suncor Upstream treatment
454	(Fig. 7). The relative expression of alkane monooxygenase genes was not correlated to any of
455	the chemical parameters measured, while the expression of cytochrome P450 alkane
456	hydroxylase (CYP153) was significantly (P<0.05) and negatively correlated to the concentration
457	of n-alkanes (Table 2). The expression of aromatic ring-cleaving dioxygenase genes was
458	significantly (P<0.05) and positively correlated to the concentration of a variety of chemical
459	compounds, with the strongest correlations often being observed with EPA-PAH, alkylated
460	PAHs and aromatic compounds (Table 2).

462 Discussion

463	In the present study, biofilms were grown in rotating annular reactors to provide a
464	representation of the periphyton of the Athabasca River and its tributaries. Biofilms form at a
465	specific location in response to local environmental conditions; as such they make an ideal
466	resident community for environmental monitoring. They also regulate the physical and
467	chemical microhabitat and contribute to ecosystem processes as a whole (2). In addition there
468	is recruitment of populations to form the biofilm that represents the selection pressure for
469	those conditions and location (4). Therefore the biofilm community is more representative of
470	what would occur within a region of the river and in/on the sediment in particular than the
471	planktonic community. Thus we focused our attention on these communities. Our results
472	suggest that variation in bituminous compound content of the river sediments leads to major
473	differences in biofilm microbial communities. In agreement with our initial hypothesis, two
474	mechanisms, namely inhibitory and increased energy and carbon effects, appear to be at play
475	during the exposure of biofilm microbial communities to bitumen-containing river sediments.
476	Firstly, inhibitory effects were observed as the river sediments having the highest
477	concentrations of bituminous compounds generally led to the development of less productive
478	biofilms, where photosynthetic organisms were particularly repressed as compared to biofilms
479	that developed from river sediments having lower bituminous compound concentrations.
480	Secondly, within the microbial communities, some taxonomic groups (mainly Proteobacteria)
481	and functional genes (ring-opening dioxygenases) increased their relative abundance and
482	activity with increasing concentrations of hydrocarbon compounds. So, for general inhibition of
483	the microbial communities, some microorganisms appeared to be stimulated by higher

484 hydrocarbon concentrations, either because they could take advantage of this carbon source or

485 because they were more tolerant to the inhibitory effect of some bituminous compounds.

486

487 Inhibitory effects

488 Constant exposure of sediments to higher concentration of bituminous compounds resulted in a decrease in all the productivity indicators (thymidine incorporation, chlorophyll a, and 489 photosynthesis gene expression) and reduced biofilm thickness. These results suggest that the 490 491 hydrocarbons found in the Athabasca watershed negatively affect the indigenous biofilm-492 forming microbial communities. Several compounds present in bitumen are inhibitory to 493 organisms. Naphthenic acids (NA) are generally thought to be the most toxic components (10, 494 19), and were shown to not only negatively influence plants, birds, fish, toads, frogs and rats 495 (11, 16, 32, 41, 45) but also to negatively influence bacteria (15, 21), algae (20, 31), cyanobacteria (42) and protozoa (46). However, in the present study, the strongest negative 496 497 correlations were often observed with aromatic compounds, while very few significant correlations were found with NA and alkanes, suggesting that the aromatic fraction of bitumen 498 499 might be the most inhibitory or the most available for microorganisms. Aromatic hydrocarbons 500 are recognized to be toxic to a variety of microbial processes. For instance, methanogenesis in sludge was 50% inhibited by a variety of aromatic compounds at concentrations ranging from 501 3.4 to 57.3 mM (5mM≈500 ppm) (47). For nitrification in soils, the no-observed-effect 502 concentrations (NOECs) ranged from 22 to 1,100 mg kg⁻¹ (51). However, when directly 503 504 confronted with aromatic compounds, bacteria appeared to be more sensitive with half 505 maximal effective concentrations (EC50) of luminescent bacterial assays for different PAHs

506	ranging from 0.53 to 24.39 ppm (μ g mL ⁻¹) (14, 34). In contrast, the EC50 of naphthenic acids in
507	luminescent bacterial assays was reported to range from 41.9 to 64.9 ppm (mg L^{-1}) (15) and
508	even the more toxic aromatic alkanoic naphthenic acids and their degradation products had
509	EC50 ranging from 9.4 to 69.2 ppm (mg L^{-1}) (23). In the current study, NAs were measured as a
510	class using LC-MS-MS and there is no speciation data available, but the concentrations
511	estimated in the reactors (≤0.2ppm, assuming a complete dissolution in the re-circulated water)
512	are considerably lower than those reported in the above toxicological tests. In contrast, for
513	aromatic compounds, the concentrations estimated in the reactors (e.g. EPA-PAH $pprox$ 1ppm,
514	assuming a complete dissolution in the re-circulated water) are within the range reported as
515	inhibitory in laboratory assays. This might explain the greater number and the higher
516	correlation coefficients of negative correlations between our microbiological indicators to
517	aromatic compounds compared to other hydrocarbon compounds. However, although
518	estimated concentrations of PAH and NA were mostly lower than the levels reported as
519	inhibitory in toxicology tests, a long term cumulative exposure to a persistent suite of
520	contaminants in the environment might affect microbial communities regardless of relatively
521	low concentration.
522	The activities of photosynthetic organisms were strongly repressed when exposed to
523	sediments having the highest content of bituminous compounds. A previous field survey of the
524	bacterial and archaeal communities in sediments from the Athabasca River, its tributaries and
525	oil sand tailings ponds revealed a significant decrease in Cyanobacteria relative abundance with
526	increasing sediment hydrocarbon content (57). Cyanobacteria appear to be particularly
527	sensitive to environmental disturbance as exposure of reactor grown biofilms to some

528	pharmaceutical products also resulted in a reduction of the relative abundance of
529	Cyanobacteria and a reduction of the expression of photosynthetic genes (58). Cyanobacteria
530	could thus potentially be used as a bio-indicator to follow the impact of oil sands mining
531	operations. This might be, however, confounded by the apparent insensitivity of some algae to
532	PAHs (13). In aquatic ecosystems, Cyanobacteria are involved in major processes (C and N
533	fixation) that are at the base of ecosystem productivity. The lowered photosynthetic activity
534	observed in most biofilms exposed to sediments having higher bituminous compound content
535	could cascade effects on the entire microbial community as well as on higher trophic levels.
536	This is consistent with the generally lower productivity and biomass in these biofilm samples.
537	One indication of this cascade effect on higher trophic levels is the lower abundance of
538	protozoa in reactors inoculated with sediments having high bituminous compound
539	concentrations. However, a reduction in protozoa also results in diminished grazing pressure on
540	the microbial communities (40), which would lead to thicker biofilms if nothing else was
541	influencing the microbial community.
542	
543	Increased carbon and energy
544	The microbial communities present in the Athabasca watershed are constantly exposed to
545	various components of bitumen through erosion of the oil sands by the river flow and
546	atmospheric deposition through the activity of bitumen upgrading (24-26). One of our
547	hypotheses was that these microbial communities were adapted to this constant flow of
548	organic compounds and were taking advantage of this increased carbon and energy input. The
549	concentration of TPH observed could represent an important carbon and energy source for the

5	50	microbial community as, in the sediments containing the highest concentrations of TPH, a large
5	51	portion of the organic matter was due to the presence of bituminous compounds (up to
5	52	12.76%, Table 1). However, in the case of an increased carbon and energy effect, we would
5	53	have expected the biofilms developed from sediments containing higher concentrations of
5	54	bituminous compounds to produce more biomass, which was not the case. In fact, increased
5	55	bituminous concentrations had mainly inhibitory effects on biofilms, with lowered thickness,
5	56	lower bacterial, cyanobacterial and algal biomass and lower bacterial productivity. The
5	57	decrease in biomass/productivity indicators could also be related to an increased selection
5	58	pressure for the specialist subset of the microbial community that can use bituminous
5	59	compounds as carbon sources, which might be less productive than other members of the
5	60	community. In fact, the relative expression of functional genes related to extradiol ring-opening
5	61	dioxygenases and the relative abundance and activities of Alphaproteobacteria and
5	62	Betaproteobacteria was positively correlated with hydrocarbon concentration. Microorganisms
5	63	of the Athabasca watershed are known to be able to degrade bituminous compounds, many of
5	64	which belong to the Proteobacteria (12, 52, 53). The Betaproteobacteria class and the
5	65	Proteobacteria phylum were previously shown to be positively correlated to various
5	66	hydrocarbon indicators in a field survey of sediments from the Athabasca River, its tributaries
5	67	and oil sands tailings ponds (57). Alternatively, an increased proportion of bituminous
5	68	compounds among carbon sources could reduce biofilm productivity as many bituminous
5	69	compounds are difficult/recalcitrant substrates.
5	570	The Athabasca river near the oil sands mining operations is considered to be both

nitrogen and phosphorus limited based on periphyton assessments (7), and an increased

572	carbon and energy source might not have an impact if microbial communities are otherwise
573	limited. The carbon and energy effect and the inhibitory effect due to bituminous compounds
574	simultaneously influence Athabasca watershed microorganisms, and inhibitory effects are
575	probably more visible when growth is limited by available nutrients and the input of carbon
576	compounds from bitumen cannot be fully exploited. It appears that in the first 8 weeks of
577	biofilm formation, the inhibitory effects of bituminous compounds override any potential
578	increases in carbon and energy, as all productivity indicators were negatively correlated to
579	bituminous compound concentration. However, in the longer term, the relative increases
580	observed in some bacterial taxa (e.g. Alpha- and Betaproteobacteria) and in the expression of
581	hydrocarbon degrading genes with increasing bituminous compound concentrations might lead
582	to an adapted community and potentially to biofilms of similar thickness and productivity than
583	those exposed to lower bituminous compound concentrations.
584	Inhibitory effects and increased carbon and energy effects of bituminous compounds
585	were not the only mechanisms influencing biofilm microbial communities, as the correlation
586	coefficients observed with hydrocarbon concentrations were not perfect and some of the

587 biofilms exposed to sediments did not behave exactly as other biofilms exposed to similarly

589 upper Steepbank River, Suncor downstream and Athabasca Reference site where TPH and NA

contaminated sediments. For instance, cyanobacteria, algae and bacteria were lower in the

590 concentrations were also low, while bacterial production was higher in the lower Firebag River

591 where hydrocarbons were higher. Other mechanisms that were not explored here are

592 differences in N and P concentration of the sediments, highly tolerant microorganisms in the

593 original sediment microbial population, sediment granulometry or interactions with other

594	biota. This is illustrated by the clustering of samples coming from the Firebag River in some of
595	the ordinations shown in Fig. 5. The incomplete solubility and organic matter binding of the
596	bituminous compounds, especially PAHs, could also explain some of the discrepancies
597	observed, as the concentrations in the sediments do not perfectly reflect the concentrations
598	available to the biofilms in the reactors. Even with all these confounding factors, several highly
599	significant correlations, with correlation coefficients below -0.7 and P-values well below 0.001,
600	were found between biological indicators and the concentration of various bituminous
601	compounds. Since most of these correlations were negative, this clearly indicates that biofilm
602	forming organisms in the Athabasca watershed are strongly inhibited by increasing
603	concentrations of bituminous compounds.
604	In conclusion, the results presented here showed that after 8 weeks of incubation,
605	increased exposure to bituminous compounds reduced biofilm productivity and biomass while
606	stimulating particular microbial taxa and some aerobic hydrocarbon degrading genes. Natural
607	and anthropogenic increases in bituminous substance release in the Athabasca watershed will,
608	in the short term, strongly reduce microbial productivity, but, in the longer term, could lead to
609	the stimulation of already occurring microbes that can utilize the carbon present in bituminous
610	compounds for growth and partly restore productivity, if other nutrients are not limiting.
611	

612 Acknowledgments

- 613 This Project was undertaken with the financial support of Environment Canada's Strategic
- 614 Applications of Genomics in the Environment (STAGE) Program.

615 References

616 Baker, G. C., J. J. Smith, and D. A. Cowan. 2003. Review and re-analysis of domain-specific 16S 1. 617 primers. J Microbiol Meth 55:541-555. Battin, T. J., L. A. Kaplan, J. Denis Newbold, and C. M. E. Hansen. 2003. Contributions of 618 2. 619 microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439-442. 620 3. Bell, T. H., E. Yergeau, C. Maynard, D. Juck, L. G. Whyte, and C. W. Greer. 2013. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient 621 622 disturbance. ISME J 7:1200-1210. 623 4. Besemer, K., H. Peter, J. B. Logue, S. Langenheder, E. S. Lindstrom, L. J. Tranvik, and T. J. 624 Battin. 2012. Unraveling assembly of stream biofilm communities. ISME J. 6:1459-1468. 625 5. **Blakley, E. R.** 1978. The microbial degradation of cyclohexanecarboxylic acid by a β -oxidation 626 pathway with simultaneous induction to the utilization of benzoate. Can. J. Microbiol. 24:847-627 855. 628 6. Blakley, E. R. 1974. The microbial degradation of cyclohexanecarboxylic acid: a pathway 629 involving aromatization to form p-hydroxybenzoic acid. Can. J. Microbiol. 20:1297-1306. 630 7. Chambers, P., A. Dale, G. Scrimgeour, and M. Bothwell. 2000. Nutrient enrichment of northern 631 rivers in response to pulp mill and municipal discharges. J. Aquat. Ecosyst. Stress Recovery 8:53-632 66. 633 8. Chambers, P. A., J. M. Culp, N. E. Glozier, K. J. Cash, F. J. Wrona, and L. Noton. 2006. Northern 634 rivers ecosystem initiative: Nutrients and dissolved oxygen - issues and impacts. Environ. Monit. 635 Assess. 113:117-141. 636 9. Chronopoulou, P.-M., A. Fahy, F. Coulon, S. Païssé, M. Goñi-Urriza, L. Peperzak, L. Acuña 637 Alvarez, B. A. McKew, T. Lawson, K. N. Timmis, R. Duran, G. J. C. Underwood, and T. J. 638 McGenity. 2013. Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing 639 bacteria in mudflat mesocosms. Environ. Microbiol. 15:242-252. 640 10. Clemente, J. S., and P. M. Fedorak. 2005. A review of the occurrence, analyses, toxicity, and 641 biodegradation of naphthenic acids. Chemosphere 60:585-600. 642 11. Crowe, A. U., A. L. Plant, and A. R. Kermode. 2002. Effects of an industrial effluent on plant 643 colonization and on the germination and post-germinative growth of seeds of terrestrial and 644 aquatic plant species. Environ. Pollut. 117:179-189. 645 12. Del Rio, L. F., A. K. M. Hadwin, L. J. Pinto, M. D. MacKinnon, and M. M. Moore. 2006. 646 Degradation of naphthenic acids by sediment micro-organisms. J. Appl. Microbiol. 101:1049-647 1061. 648 13. Djomo, J. E., A. Dauta, V. Ferrier, J. F. Narbonne, A. Monkiedje, T. Njine, and P. Garrigues. 649 2004. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic 650 sediments on Scenedesmus subspicatus. Water Res. 38:1817-1821. 651 14. El-Alawi, Y. S., B. J. McConkey, D. G. Dixon, and B. M. Greenberg. 2002. Measurement of Short-652 and Long-Term Toxicity of Polycyclic Aromatic Hydrocarbons Using Luminescent Bacteria. 653 Ecotoxicol. Environ. Saf. 51:12-21. 654 15. Frank, R. A., R. Kavanagh, B. Kent Burnison, G. Arsenault, J. V. Headley, K. M. Peru, G. Van Der 655 Kraak, and K. R. Solomon. 2008. Toxicity assessment of collected fractions from an extracted 656 naphthenic acid mixture. Chemosphere 72:1309-1314. Gentes, M.-L., C. Waldner, Z. Papp, and J. E. G. Smits. 2006. Effects of oil sands tailings 657 16. 658 compounds and harsh weather on mortality rates, growth and detoxification efforts in nestling 659 tree swallows (Tachycineta bicolor). Environ. Pollut. 142:24-33.

660	17.	Gilde, K., and J. L. Pinckney. 2012. Sublethal Effects of Crude Oil on the Community Structure of
667	10	Estuallie Phytopialikton. Estualies Coasts 55 .055-001.
662	10.	namady, M., C. Lozupone, and K. Kinght. 2010. Fast Omriad. Tachicating high-throughput
664		phylogenetic analyses of microbial communities including analysis of pyrosequencing and
665	10	Han V M D Mackinnan and I W Martin 2000 Estimating the insitu biodegradation of
666	19.	hall, A., W. D. Wackingon, and J. W. Waltin. 2009. Estimating the in situ biouegradation of
667	20	Hapittienic actus in on sands process waters by HPLC/HKIVIS. Chemosphere 70.05-70.
669	20.	neadley, J. V., and D. W. Wiciwartin. 2004. A review of the occurrence and fate of haphthemic
660	21	Actus in aquatic environments. J. Environ. Sci. Health, Part A 53, 1969-2010.
670	21.	nanhthanic acide hy microbial nanulations indigenous to oil cands tailings. Can J. Microbial
671		40: 467-477.
672	22.	Holden, A. A., R. B. Donahue, and A. C. Ulrich, 2011. Geochemical interactions between
673		process-affected water from oil sands tailings ponds and North Alberta surficial sediments. I.
674		Contam. Hydrol. 119: 55-68.
675	23.	Johnson, R. J., B. E. Smith, P. A. Sutton, T. J. McGenity, S. J. Rowland, and C. Whitby, 2011.
676	-01	Microbial biodegradation of aromatic alkanoic nanothenic acids is affected by the degree of
677		alkyl side chain branching. ISME J 5: 486-496.
678	24.	Kelly, E. N., D. W. Schindler, P. V. Hodson, J. W. Short, R. Radmanovich, and C. C. Nielsen.
679		2010. Oil sands development contributes elements toxic at low concentrations to the Athabasca
680		River and its tributaries. Proc. Natl. Acad. Sci. USA 107: 16178-16183.
681	25.	Kelly, E. N., J. W. Short, D. W. Schindler, P. V. Hodson, M. Ma, A. K. Kwan, and B. L. Fortin.
682		2009. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River
683		and its tributaries. Proc. Natl. Acad. Sci. USA 107:16178-16183.
684	26.	Kurek, J., J. L. Kirk, D. C. G. Muir, X. Wang, M. S. Evans, and J. P. Smol. 2013. Legacy of a half
685		century of Athabasca oil sands development recorded by lake ecosystems. Proc. Natl. Acad. Sci.
686		USA 110: 1761-1766.
687	27.	Larson, C. A., and S. I. Passy. 2013. Rates of species accumulation and taxonomic diversification
688		during phototrophic biofilm development are controlled by both nutrient supply and current
689		velocity. Appl. Environ. Microbiol. 79: 2054-2060.
690	28.	Lawrence, J. R., M. R. Chenier, R. Roy, D. Beaumier, N. Fortin, G. D. W. Swerhone, T. R. Neu,
691		and C. W. Greer. 2004. Microscale and molecular assessment of impacts of nickel, nutrients, and
692		oxygen level on structure and function of river biofilm communities. Appl. Environ. Microbiol.
693		70 :4326–4339.
694	29.	Lawrence, J. R., G. D. W. Swerhone, and T. R. Neu. 2000. A simple rotating annular reactor for
695		replicated biofilm studies. J. Microbiol. Methods 42:215–224.
696	30.	Lawrence, J. R., B. Zhu, G. D. W. Swerhone, J. Roy, L. I. Wassenaar, E. Topp, and D. R. Korber.
697		2009. Comparative microscale analysis of the effects of triclosan and triclocarban on the
698		structure and function of river biofilm communities. Sci. Total Environ. 407:3307-3316.
699	31.	Leung, S. S., M. D. MacKinnon, and R. E. H. Smith. 2003. The ecological effects of naphthenic
700		acids and salts on phytoplankton from the Athabasca oil sands region. Aquat. Toxicol. 62:11-26.
701	32.	Lister, A., V. Nero, A. Farwell, D. G. Dixon, and G. Van Der Kraak. 2008. Reproductive and stress
702		hormone levels in goldfish (Carassius auratus) exposed to oil sands process-affected water.
703		Aquat. Toxicol. 87: 170-177.
704	33.	Manz, W., K. Wendt-Potthoff, T. R. Neu, U. Szewzyk, and J. R. Lawrence. 1999. Phylogenetic
705		Composition, Spatial Structure, and Dynamics of Lotic Bacterial Biofilms Investigated by
706		Fluorescent in Situ Hybridization and Confocal Laser Scanning Microscopy. Microb. Ecol. 37:225-
707		237.

708	34.	McConkey, B. J., C. L. Duxbury, D. G. Dixon, and B. M. Greenberg. 1997. Toxicity of a pah
709		photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna
710		gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ.
711		Toxicol. Chem. 16: 892-899.
712	35.	Meyer, F., D. Paarmann, M. D'Souza, R. Olson, E. M. Glass, M. Kubal, T. Paczian, A. Rodriguez,
713		R. Stevens, A. Wilke, J. Wilkening, and R. A. Edwards. 2008. The metagenomics RAST server - a
714		public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC
715		Bioinformatics 9: 386.
716	36.	Meyer, M., and M. Kircher. 2010. Illumina Sequencing Library Preparation for Highly
717		Multiplexed Target Capture and Sequencing. Cold Spring Harb Protoc
718		doi:10.1101/pdb.prot5448.
719	37.	Neu, T. R., G. D. W. Swerhone, U. Bockelmann, and J. R. Lawrence. 2005. Effect of CNP on
720		composition and structure of lotic biofilms as detected with lectin-specific glycoconjugates.
721		Aguat. Microb. Ecol. 38: 283–294.
722	38.	Neu, T. R., G. D. W. Swerhone, and J. R. Lawrence. 2001. Assessment of lectin-binding analysis
723		for in situ detection of glycoconjugates in biofilm systems. Microbiology 147 :299-313.
724	39.	Neu, T. R., S. Woelfl, and J. R. Lawrence. 2004. Three-dimensional differentiation of photo-
725		autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and
726		two-photon excitation). J. Microbiol. Meth. 56:161-172.
727	40.	Parry, J. D. 2004. Protozoan Grazing of Freshwater Biofilms. Adv. Appl. Microbiol. 54:167-196.
728	41.	Pollet, I., and L. I. Bendell-Young. 2000. Amphibians as indicators of wetland quality in wetlands
729		formed from oil sands effluent. Environ. Toxicol. Chem. 19:2589-2597.
730	42.	Quagraine, E. K., H. G. Peterson, and J. V. Headley. 2005. In situ bioremediation of naphthenic
731		acids contaminated tailing pond waters in the Athabasca oil sands region - Demonstrated field
732		studies and plausible options: A review. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst.
733		Environ. Eng. 40 :685-722.
734	43.	Quince, C., A. Lanzen, R. J. Davenport, and P. J. Turnbaugh. 2011. Removing noise from
735		pyrosequenced amplicons. BMC Bioinformatics 12:38.
736	44.	Robarts, R. D., and R. J. Wicks. 1989. [Methyl-3H] thymidine macromolecular incorporation and
737		lipid labeling: their significance to DNA labelling during measurements of aquatic bacterial
738		growth rate. Limnol. Oceanogr. 34: 213-222.
739	45.	Rogers, V. V., M. Wickstrom, K. Liber, and M. D. MacKinnon. 2002. Acute and subchronic
740		mammalian toxicity of naphthenic acids from oil sands tailings. Toxicol. Sci. 66:347-355.
741	46.	Scarlett, A. G., C. E. West, D. Jones, T. S. Galloway, and S. J. Rowland. 2012. Predicted toxicity
742		of naphthenic acids present in oil sands process-affected waters to a range of environmental
743		and human endpoints. Sci. Total Environ. 425:119-127.
744	47.	Sierra-Alvarez, R., and G. Lettinga. 1991. The effect of aromatic structure on the inhibition of
745		acetoclastic methanogenesis in granular sludge. Appl. Microbiol. Biotechnol. 34:544-550.
746	48.	Stewart, F. J., E. A. Ottesen, and E. F. DeLong. 2010. Development and quantitative analyses of
747		a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4:896-907.
748	49.	Strausz, O. P., E. M. Lown, A. Morales-Izquierdo, N. Kazmi, D. S. Montgomery, J. D. Payzant,
749		and J. Murgich. 2011. Chemical Composition of Athabasca Bitumen: The Distillable Aromatic
750		Fraction. Energy Fuels 25: 4552-4579.
751	50.	Strausz, O. P., A. Morales-Izquierdo, N. Kazmi, D. S. Montgomery, J. D. Payzant, I. Safarik, and
752		J. Murgich. 2010. Chemical Composition of Athabasca Bitumen: The Saturate Fraction. Energy
753		Fuels 24: 5053-5072.

754	51.	Sverdrup, L. E., F. Ekelund, P. H. Krogh, T. Nielsen, and K. Johnsen. 2002. Soil microbial toxicity
755		of eight polycyclic aromatic compounds: Effects on nitrification, the genetic diversity of bacteria,
756		and the total number of protozoans. Env. Toxicol. Chem. 21:1644-1650.
757	52.	Wyndham, R. C., and J. W. Costerton. 1981. Heterotrophic potentials and hydrocarbon
758		biodegradation potentials of sediment microorganisms within the Athabasca oil sands deposit.
759		Appl. Environ. Microbiol. 41: 783-790.
760	53.	Wyndham, R. C., and J. W. Costerton. 1981. In vitro microbial degradation of bituminous
761		hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands
762		deposit. Appl. Environ. Microbiol. 41 :791-800.
763	54.	Yergeau, E., S. Bokhorst, A. H. L. Huiskes, H. T. S. Boschker, R. Aerts, and G. A. Kowalchuk.
764		2007. Size and structure of bacterial, fungal and nematode communities along an Antarctic
765		environmental gradient. FEMS Microbiol. Ecol. 59:436–451.
766	55.	Yergeau, E., and G. A. Kowalchuk. 2008. Responses of Antarctic soil microbial communities and
767		associated functions to temperature and freeze-thaw cycle frequency. Environ. Microbiol.
768		10: 2223–2235.
769	56.	Yergeau, E., J. R. Lawrence, D. R. Korber, M. J. Waiser, and C. W. Greer. 2010. Meta-
770		transcriptomic analysis of the response of river biofilms to pharmaceutical products using
771		anonymous DNA microarrays. Appl. Environ. Microbiol. 76:5432-5439.
772	57.	Yergeau, E., J. R. Lawrence, S. Sanschagrin, M. J. Waiser, D. R. Korber, and C. W. Greer. 2012.
773		Next-generation sequencing of microbial communities in the Athabasca River and its tributaries
774		in relation to oil sands mining activities. Appl. Environ. Microbiol. 78:7626-7637.
775	58.	Yergeau, E., S. Sanschagrin, M. J. Waiser, J. R. Lawrence, and C. W. Greer. 2012. Sub-inhibitory
776		concentrations of different pharmaceutical products affect the meta-transcriptome of river
777		biofilm communities cultivated in rotating annular reactors. Environ. Microbiol. Rep. 4:350-359.
778		
770		
119		

	Org.	TPH	TPH/	TSH	TAH	NA	EPA	Total	Total	Total n-
	matter		total C				PAH	alkylated	aromatic	alkane
								PAHs	compounds	
	% (w/w)	µg/g	%	µg/g	µg/g	mg/ml	ng/g	ng/g	ng/g	ng/g
Athabasca River										
Reference Site	2.10	251.3	1.20	104.0	147.3	ND	1176.3	1235.3	1406.3	5831.7
Suncor Upstream	2.20	104.9	0.48	52.2	52.7	1	188.6	188.2	248.6	4241.7
Suncor	1.35	68.5	0.51	32.6	35.9	ND	127.7	130.9	172.8	1014.3
Downstream										
Tributaries										
Ell's River Upper	3.18	66.3	0.21	35.1	31.2	1	218.7	197.7	299.5	2252.2
Ell's River Mid	1.06	139.6	1.32	69.5	70.1	3	433.6	677.1	711.9	660.1
Ell's River Lower	2.19	2792.4	12.76	1638.4	1154.0	4	9497.4	14661.6	15138.0	2111.3
Firebag River	2.49	34.1	0.14	19.6	14.5	1	35.9	33.6	39.9	3576.2
Upper										
Firebag River Mid	12.96	129.1	0.10	87.1	42.0	1	89.4	73.0	100.6	7815.9
Firebag River	5.05	1995.4	3.96	977.9	1017.5	3	854.2	762.5	932.0	1703.5
Lower										
Steepbank River	5.53	121.2	0.22	52.7	68.5	4	82.3	105.4	125.7	4522.2
Upper										
Steepbank River	3.69	840.3	2.28	420.1	420.2	0	5854.3	8925.4	9525.8	1146.1
Mid										
Steepbank River	4.26	3879.8	9.12	1947.7	1932.1	3	9209.7	13348.1	13866.6	16570.7
Lower										

782 All values except NA are per dry weight of sediments. TPH: total petroleum hydrocarbon; TSH: total straight chain hydrocarbon; TAH: total

aromatic hydrocarbon; NA: naphthenic acids; EPA-PAH: US Environmental Protection Agency 16 priority polycyclic aromatic hydrocarbon; PAH:
 polycyclic aromatic hydrocarbon

785 ND: not determined. Data are modified from Yergeau et al. (57).

786 Table 2: Correlation coefficients between sediment chemical concentrations and biofilm

787 biological data

	TPH	TSH	TAH	NA	EPA-	Alkylated	Aromatic	n-
					PAH	PAHs	compounds	alkanes
Protozoa	-0.71	-0.69	-0.74	-0.74	-0.51	-0.56	-0.56	-0.01
Algae	-0.60	-0.55	-0.66	-0.24	-0.72	-0.75	-0.75	0.06
Cyanobacteria	-0.33	-0.32	-0.33	-0.02	-0.38	<u>-0.40</u>	<u>-0.40</u>	-0.06
Bacteria	-0.50	-0.47	-0.54	-0.22	-0.63	-0.66	-0.66	0.18
glc(NAc) ₂ , neuNAc	-0.22	-0.17	-0.28	-0.42	<u>-0.39</u>	<u>-0.43</u>	<u>-0.43</u>	0.25
Terminal β gal, galNAc	-0.08	-0.08	-0.09	0.05	-0.07	-0.09	-0.09	0.05
α man, α glc	0.18	0.17	0.21	0.26	<u>0.38</u>	<u>0.37</u>	<u>0.37</u>	-0.25
Terminal α or β galNAc	0.50	0.52	0.45	-0.01	0.29	0.27	0.27	0.11
α-L-fucose	<u>0.35</u>	<u>0.36</u>	0.28	-0.17	0.24	0.21	0.21	0.05
Thickness	-0.54	-0.50	-0.59	-0.36	-0.74	-0.77	-0.77	0.19
Bacterial productivity	-0.17	-0.15	-0.25	-0.15	-0.36	<u>-0.41</u>	<u>-0.41</u>	-0.23
Chlorophyll a	-0.28	-0.25	-0.33	-0.17	-0.55	-0.58	-0.58	0.15
mRNA								
Photosynthesis	-0.31	-0.30	-0.31	-0.03	-0.47	-0.48	-0.48	-0.14
Alkane monooxygenase	0.06	0.05	0.07	0.06	0.05	0.07	0.07	0.19
Cytochrome P450	-0.19	-0.25	-0.20	0.06	-0.19	-0.21	-0.21	-0.36
Extradiol	0.31	0.31	<u>0.37</u>	0.31	0.37	0.40	<u>0.40</u>	0.25
Intradiol	0.29	0.30	0.27	0.38	0.32	0.33	0.33	0.21
Gentisate/homogentisate	0.27	0.24	0.28	0.36	0.16	0.20	0.20	0.21
Sum aromatic deg. genes	<u>0.41</u>	<u>0.39</u>	0.42	0.49	<u>0.38</u>	<u>0.41</u>	<u>0.41</u>	0.23

788 Underline: P-value below 0.05; Italics: P-value below 0.01; Bold: P-value below 0.001

790 TPH: total petroleum hydrocarbon; TSH: total straight chain hydrocarbon; TAH: total aromatic

791 hydrocarbon; NA: naphthenic acids; EPA-PAH: US Environmental Protection Agency 16 priority

792 polycyclic aromatic hydrocarbon; PAH: polycyclic aromatic hydrocarbon

793

794glc(NAc)2: N-acetylglucosamine; neuNAc: N-Acetylneuraminic acid; terminal β gal: terminal β-galactose;795galNAc: N-Acetylgalactosamine; α man: α mannose; α glc: α glucose; terminal α or β galNAc: terminal α796or β-linked N-acetylgalactosamine.

797

Intradiol represents a sum of MG-RAST functions "Catechol 1,2-dioxygenase (EC 1.13.11.1)", "Catechol
 1,2-dioxygenase 1 (EC 1.13.11.1)", "Intradiol ring-cleavage dioxygenase (EC 1.13.11.1)",

800 "Protocatechuate 3,4-dioxygenase alpha chain (EC 1.13.11.3)", and "Protocatechuate 3,4-dioxygenase

801 beta chain (EC 1.13.11.3)"; Extradiol represents a sum of MG-RAST functions "catalytic subunit of meta

802 cleavage enzyme", "Catechol 2,3-dioxygenase (EC 1.13.11.2)", "extradiol dioxygenase large subunit",

803 "Protocatechuate 4,5-dioxygenase alpha chain (EC 1.13.11.8)", "Protocatechuate 4,5-dioxygenase beta

804 chain (EC 1.13.11.8)", "Biphenyl-2,3-diol 1,2-dioxygenase (EC 1.13.11.39)", and "1,2-

dihydroxynaphthalene dioxygenase"; Gentisate/homogentisate represents a sum of MG-RAST functions
 "Gentisate 1,2-dioxygenase (EC 1.13.11.4)" and "Homogentisate 1,2-dioxygenase (EC 1.13.11.5)".

⁷⁸⁹

	TPH	TSH	TAH	NA	EPA.PAH	Alkylated	Aromatic	n-alkanes
						PAHs	compounds	
16S rRNA gene								
Actinobacteria	-0.30	-0.30	-0.29	0.46	-0.51	-0.47	-0.47	-0.09
Bacteroidetes	-0.22	-0.22	-0.29	-0.05	-0.56	-0.59	-0.59	0.08
Cyanobacteria	-0.18	-0.17	-0.19	-0.05	-0.26	-0.27	-0.27	0.17
Firmicutes	0.00	0.07	-0.08	-0.41	0.10	0.04	0.04	<u>0.40</u>
Alpha-	0.56	0.51	0.60	0.29	0.70	0.73	0.73	-0.48
Beta-	0.21	0.24	0.25	-0.26	0.55	0.56	0.56	0.04
Gamma-	0.07	0.04	0.10	0.52	-0.15	-0.11	-0.11	0.14
Delta-	0.21	0.24	0.13	-0.08	0.05	0.01	0.01	-0.03
mRNA								
Actinobacteria	-0.04	-0.05	0.02	0.37	-0.28	-0.23	-0.23	0.17
Bacteroidetes	0.08	0.07	0.00	0.09	-0.12	-0.14	-0.14	0.36
Cyanobacteria	-0.27	-0.27	-0.28	0.03	-0.56	-0.57	-0.57	0.05
Firmicutes	-0.34	-0.32	-0.39	-0.05	-0.52	-0.54	-0.54	-0.16
Alpha-	0.30	0.29	0.30	-0.16	0.60	0.60	0.60	-0.12
Beta-	0.26	0.27	0.31	-0.21	0.58	0.59	0.59	0.06
Gamma-	0.25	0.21	0.26	0.24	0.26	0.29	0.29	0.01
Delta-	-0.10	-0.18	-0.09	-0.03	0.18	0.17	0.17	-0.39

Table 3: Spearman correlation coefficients between the most abundant phylum/class and sedimentchemical concentrations.

810 Underline: P-value below 0.05; Italics: P-value below 0.01; Bold: P-value below 0.001

811

812 TPH: total petroleum hydrocarbon; TSH: total straight chain hydrocarbon; TAH: total aromatic

813 hydrocarbon; NA: naphthenic acids; EPA-PAH: US Environmental Protection Agency 16 priority

814 polycyclic aromatic hydrocarbon; PAH: polycyclic aromatic hydrocarbon

816 Figure legends

Figure 1: Biofilm thickness and composition of the extracellular polysaccharide (EPS) matrix 817 818 based on lectin binding assays for biofilm grown in rotating reactors inoculated with sediments 819 from the Athabasca River and its tributaries. Values are mean of triplicate measurements and 820 different letters indicate significant differences in Tukey HSD post-hoc tests (at P<0.05). α man: 821 α mannose; α glc: α glucose; glc(NAc)₂: N-acetylglucosamine; neuNAc (N-Acetylneuraminic 822 acid); terminal α or β galNAc: terminal α - or β -linked N-acetylgalactosamine; terminal β gal: 823 terminal β -galactose; galNAc: N-Acetylgalactosamine. Sediment [TPH]: White fill: [TPH]<125 824 μg/g; Grey fill: 125 μg/g<[TPH]<750 μg/g; Black fill: [TPH]>750 μg/g

Figure 2: Montage of confocal laser scanning microscopy images of biofilm grown in rotating reactors inoculated with sediments from the Athabasca River and its tributaries. Images were selected based on their similarity to the mean results obtained for algal, bacterial and cyanobacterial biomass for each treatment so they are the images that best represent the results obtained for any treatment via image analyses of the stack. (Bacteria = green, exopolymer = red, Cyanobacteria+Algae = blue).

Figure 3: Amount of bacterial, cyanobacterial and algal biofilm components based on confocal
laser scanning microscopy imaging and numbers of protozoa based on direct counts over a
period of 8 weeks for biofilm grown in rotating reactors inoculated with sediments from the
Athabasca River and its tributaries. Values are mean of triplicate measurements and different
letters indicate significant differences in Tukey HSD post-hoc tests (at P<0.05). Sediment [TPH]:
White fill: [TPH]<125 µg/g; Grey fill: 125 µg/g<[TPH]<750 µg/g; Black fill: [TPH]>750 µg/g

Figure 4: Bacterial community composition based on Ion Torrent 16S rRNA gene amplicon
(~120 bp) sequencing (a) or on the taxonomic affiliation of the sequenced mRNA (b) for biofilm
grown in rotating reactors inoculated with sediments from the Athabasca River and its
tributaries. For each treatment, means of triplicates are presented. See Tables S1 and S2 for
ANOVA and Tukey test results.

842 Figure 5: Principal coordinate analysis of the (A) community composition based on 16S rRNA 843 gene amplicon sequencing (Unifrac values) (B) Biolog assay color intensity and (C) the functional 844 composition based on mRNA sequencing for biofilm grown in rotating reactors inoculated with sediments from the Athabasca River and its tributaries. Arrows indicate samples having the 845 846 highest values for that variable and were added as supplementary variables and are not 847 involved in the calculation of the ordination. AR: Reference site, US: Upstream Suncor, DS: 848 Downstream Suncor, EU: Ell's River Upper, EM: Ell's River Mid, EL: Ell's River Lower, FU: Firebag 849 River Upper, FM: Firebag River Mid, FL: Firebag River Lower, SU: Steepbank River Upper, SM: 850 Steepbank River Mid, SL: Steepbank River Lower. For (B), pol: polymer, sum of the color 851 intensity for α -cyclodextrin, Tween 40 and Tween 80; cb: carbohydrate, sum of the color

852 intensity for D-xylose, I-erythritol, glycogen, ß-methyl-D-glucoside, N-acetyl-D-glucosamine, D-853 cellobiose, α -D-lactose and D-mannitol; ca: carboxylic acid, sum of the color intensity for 2hydroxy benzoic acid, α -keto butyric acid, itaconic acid, D-malic acid, D-galactonic acid γ -854 855 lactone, D-glucosaminic acid, 4-hydroxy benzoic acid, γ -hydroxybutyric acid and D-galacturonic acid; aa: amino acid, sum of the intensity for L-threonine, glycyl-L-glutamic acid, L-856 phenylalanine, L-serine, L-arginine and L-asparagine; am: amine, sum of color intensity for 857 858 putrescine and phenylethylamine; ph: phosphorylated, sum of the color intensity for D,L- α -859 glycerol phosphate and glucose-1-phosphate; es: ester, color intensity for pyruvic acid methyl 860 ester.

Figure 6: Bacterial productivity, chlorophyll a content and relative abundance of mRNA related
to photosynthesis for biofilm grown in rotating reactors inoculated with sediments from the
Athabasca River and its tributaries. Values are mean of triplicate measurements and different
letters indicate significant differences in Tukey HSD post-hoc tests (at P<0.05). Sediment [TPH]:
White fill: [TPH]<125 µg/g; Grey fill: 125 µg/g<[TPH]<750 µg/g; Black fill: [TPH]>750 µg/g

Figure 7: Relative abundance of mRNA related to alkane monooxygenase and extradiol,

867 intradiol and gentisate/homogentisate type aromatic ring cleaving enzymes for biofilm grown in

rotating reactors inoculated with sediments from the Athabasca River and its tributaries.

869 Intradiol represents a sum of MG-RAST functions "Catechol 1,2-dioxygenase (EC 1.13.11.1)",

870 "Catechol 1,2-dioxygenase 1 (EC 1.13.11.1)", "Intradiol ring-cleavage dioxygenase (EC

871 1.13.11.1)", "Protocatechuate 3,4-dioxygenase alpha chain (EC 1.13.11.3)", and

⁸⁷² "Protocatechuate 3,4-dioxygenase beta chain (EC 1.13.11.3)"; Extradiol represents a sum of

873 MG-RAST functions "catalytic subunit of meta cleavage enzyme", "Catechol 2,3-dioxygenase (EC

1.13.11.2)", "extradiol dioxygenase large subunit", "Protocatechuate 4,5-dioxygenase alpha

chain (EC 1.13.11.8)", "Protocatechuate 4,5-dioxygenase beta chain (EC 1.13.11.8)", "Biphenyl-

2,3-diol 1,2-dioxygenase (EC 1.13.11.39)", and "1,2-dihydroxynaphthalene dioxygenase";

877 Gentisate/homogentisate represents a sum of MG-RAST functions "Gentisate 1,2-dioxygenase

878 (EC 1.13.11.4)" and "Homogentisate 1,2-dioxygenase (EC 1.13.11.5)". Values are mean of

879 triplicate measurements and different letters indicate significant differences in Tukey HSD post-

hoc tests (at P<0.05). Sediment [TPH]: White fill: [TPH]<125 μ g/g; Grey fill: 125 μ g/g<[TPH]<750

881 μg/g; Black fill: [TPH]>750 μg/g

