
Publisher’s version / Version de l'éditeur:

ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2005,
24, 3, pp. 869-877, 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

https://doi.org/10.1145/1073204.1073276

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

GoLD : interactive display of huge colored and textured models
Borgeat, Louis; Godin, Guy; Blais, François; Massicotte, Philippe; Lahanier,
Christian

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=a66d0c87-7b13-478b-81d5-e57573ab0e79

https://publications-cnrc.canada.ca/fra/voir/objet/?id=a66d0c87-7b13-478b-81d5-e57573ab0e79

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

GoLD: Interactive Display of Huge Colored and

Textured Models *

Borgeat, L., Godin, G., Blais, F., Massicotte, P., and Lahanier, C.
August 2005

* published in The Association for Computing Machinery (ACM) Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2005). July 31 - August 4, 2005. Los Angeles,

California, USA. NRC 48126.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

To appear in the ACM SIGGRAPH conference proceedings

GoLD: Interactive Display of Huge Colored and Textured Models

Louis Borgeat Guy Godin François Blais Philippe Massicotte ∗

National Research Council of Canada

Christian Lahanier †

C2RMF

Figure 1: GoLD can display both highly tesselated models and highly textured models at low or high resolution. These example models are
rendered at interactive rates. From left to right: a Byzantine crypt, a painting by Renoir (250M triangles, one day of scanning); Stanford’s
model of Michelangelo’s St. Matthew (372 M triangles), and a terrain from aerial surveying built from over 100 million data points and 6800
4M-pixel digital photographs.

Abstract

This paper presents a new technique for fast, view-dependent, real-
time visualization of large multiresolution geometric models with
color or texture information. This method uses geomorphing to
smoothly interpolate between geometric patches composing a hi-
erarchical level-of-detail structure, and to maintain seamless conti-
nuity between neighboring patches of the model. It combines the
advantages of view-dependent rendering with numerous additional
features: the high performance rendering associated with static pre-
optimized geometry, the capability to display at both low and high
resolution with minimal artefacts, and a low CPU usage since all
the geomorphing is done on the GPU. Furthermore, the hierarchical
subdivision of the model into a tree structure can be accomplished
according to any spatial or topological criteria. This property is
particularly useful in dealing with models with high resolution tex-
tures derived from digital photographs. Results are presented for
both highly tesselated models (372 million triangles), and for mod-
els which also contain large quantities of texture (200 million tri-
angles + 20 GB of compressed texture). The method also incorpo-
rates asynchronous out-of-core model management. Performances
obtained on commodity hardware are in the range of 50 million
geomorphed triangles/second for a benchmark model such as Stan-
ford’s St. Matthew dataset.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and object modeling—Geometric algo-
rithms, Object hierarchies

Keywords: Visualization, multi-resolution geometric modeling,

∗e-mail: firstname.lastname@nrc-cnrc.gc.ca
†e-mail: christian.lahanier@culture.gouv.fr

view-dependent rendering, out-of-core rendering, level-of-detail,
geomorphing, texture mapping

1 Introduction

While models composed of a fewmillion polygons were considered
as very large only a few years ago, current sensor-based modeling
techniques can gather enough information in a period of a few days
to construct models of hundreds of millions of primitives, with gi-
gabytes of texture information. Interactive display of such models
on commodity hardware requires the use of view-dependent multi-
resolution techniques that can handle the out-of-core management
of those large datasets or provide sufficient compression to main-
tain them in-core. Design goals for such methods include maxi-
mum rendering speed, adaptivity to various types of models, and
the capacity to avoid rendering artefacts associated with the view-
adaptive real-time transformation of the displayed dataset.

This paper introduces a new view-adaptive multi-resolution display
method called GoLD (for Geomorphing of Levels of Detail). Tri-
angular mesh models are first decomposed into a hierarchical level
of detail (LOD) tree structure where each leaf node is a patch of
geometry segmented from the original model; smooth continuous
geomorphing is applied between patches while maintaining global
continuity over the entire model during interactive navigation. The
method can be applied to both colored (color-per-vertex) and high-
resolution textured models of objects and scenes, and can render
the models at interactive rates with minimal visual artefacts at both
high and low resolution.

The GoLD method combines the following major advantages:

• Static pre-optimized geometry for high performance render-
ing. We use vertex-cache optimized strips as the primitives
of our view-dependent computations, resulting in a better
balance between GPU and CPU usage [Borgeat et al. 2003;
Cignoni et al. 2004]. Our method allows rendering of up to 50
million geomorphed triangles per second on a GeForce 6800
GPU for models such as the St. Matthew in Figure 1.

• The absence of visual artefacts provided by geomorphing.
One inconvenient of LOD based techniques is the “popping”

1

To appear in the ACM SIGGRAPH conference proceedings

Figure 2: Result of the recursive segmentation for two types of models. Top: Color-per-vertex model of a duck carving. The model is
recursively segmented in geometric space to produce more compact groups. Bottom: This model of a crypt contains much more texture than
geometry. It is first segmented so that each group corresponds to only one original digital photograph. The groups are then re-segmented in
texture parameterization space so that geometry groups map into rectangular subsets of similar size in the original image.

effect that occurs at changes in resolution levels. Even when
rendering at high resolution, LOD switching can still create
a noticeable visual artefact, potentially forcing an increase in
resolution that is not needed to improve image quality but as
a way to hide artefacts. It had been noted previously [Hoppe
1998; Lindstrom and Pascucci 2002] that errors as large as a
few pixels can go unnoticed if geomorphing is used to avoid
abrupt temporal transition artefacts. Smooth appearance can
then be obtained at lower geometric resolutions. This prop-
erty extends the method to more applications where all the
resources cannot be invested in high resolution rendering.

• Application-adaptive pre-processing. The method can be
adapted in order to optimize its pre-processing for different
types of models, including taking into account existing parti-
tions of the original dataset. This feature is particularly ad-
vantageous in the case of models with large quantities of high
resolution textures, such as those obtained from mapping dig-
ital photographs. The method avoids the need for techniques
that might become issues for an enormous dataset, such as
the generation of texture atlases, the use of multitexturing,
or reparameterization. With GoLD, geometric models can be
partitioned into a hierarchy of patches that respect the bound-
aries of individual texture images, and where the shape of the
patches is optimized for compactness in texture space. Con-
sequently, the original texture images can be directly used
without any resampling to build a simple and minimal-sized
hierarchical texture tree used for paging and rendering. Fur-
thermore, the method can be naturally extended to optimize
for criteria such as surface orientation or occlusion culling for
complex models, and to take into account heterogeneous mod-
els with parts characterized by different attribute types.

• Access to the original model at full resolution. For many vi-
sualization applications, it is important to be able to differen-
tiate with good certainty real features from artefacts caused
by the pre-processing or by the rendering. At full resolution,
the original geometric model and unaltered original texture
images are directly rendered.

• Minimal dependency on frame-to-frame coherency. Our im-
plementation performs pre-fetching and decompression of
out-of-core data in a separate thread, thus minimizing impact
on the frame rate. The amount of computations to be executed
in the main thread is otherwise independent of any change in
the viewpoint besides the direct upload of new vertex data to
the GPU.

• Limited CPU usage. All geomorphing interpolations are com-
puted on the GPU by a vertex program, and the real-time data
structure is mostly static.

1.1 Overview of the Method

During pre-processing, the triangular mesh model is converted into
a LOD hierarchy of optimized geometry patches and associated tex-
ture or attribute data. The first step of this preprocessing is to sim-
plify the entire model into a sequence of discrete LODs using an
algorithm based on vertex aggregation. The lowest resolution LOD
is decomposed into a set of triangle patches. The next higher reso-
lution level is then partitioned along the same boundaries, and each
group in this level is subpartitioned until the desired granularity is
reached. This process is applied in sequence to all levels of the
model, resulting in a hierarchy of group subdivisions spanning the
whole sequence of LODs (see Figure 2). Groups can be shaped ac-
cording to criteria such as compactness, common orientation, tex-
ture/viewpoint association, culling requirements, model structure,
existing partitions, and number of primitives per group. Groups are
individually converted into vertex-cache optimized triangle strips in
order to maximize rendering speed. These groups or patches con-
stitute the basic units for all the view-dependent computations.

At run time, a front in the LOD patch hierarchy is selected during
the culling process. Geomorphing ratios between selected groups
and their lower resolution parent are computed for each frame.
Seamless continuity between neighboring LOD groups is main-
tained at all time by geomorphing boundary points between groups
according to a specific set of rules while the other points are mor-
phed using a uniform ratio per individual patch. The geomorphing
is actually performed by a vertex program on the graphics process-
ing unit (GPU), leaving more CPU resources available for render-
ing or other tasks. Geomorphing is applied to space and texture
coordinates, normals and colors. Out-of-core pre-fetching is done
asynchronously on a different thread to minimize effects on navi-
gation.

The patches produced by the recursive segmentation are the basic
primitives for the view-dependent computations, the culling, the
rendering and the paging. The chosen segmentation criteria used to
create the patches can therefore significantly affect the display per-
formance. The proposed framework can accommodate any combi-
nation of spatial or topological criteria to produce the group struc-
ture. This high flexibility broadens the application scope of the
technique, as we will demonstrate for the particular case of large
textured models.

2 Related Work

Solutions to accelerate the rendering of large models are well es-
tablished in computer graphics (e.g. [Clark 1976; Funkhouser and

2

To appear in the ACM SIGGRAPH conference proceedings

Séquin 1993]). Visualization techniques for large models must typ-
ically address two key problems: view-dependent adaptation of the
model resolution, and efficient occlusion culling. However, the rel-
ative importance and efficiency of these two tasks depend on the
type of model: sensor-derived models are usually composed of a
relatively small number of highly tesselated triangular mesh sur-
faces, requiring mostly resolution adaptation, while CAD/synthetic
models often contain a large number of geometric components of
lower polygon count, benefiting mostly from efficient culling tech-
niques. The work presented here, even if well adapted to the im-
plementation of culling solutions, addresses mainly the problem of
real-time resolution adaptation for large mesh models.

Many different approaches for the interactive visualization of large
models of objects or scenes have been proposed in recent years. An
important family of techniques is based on the concept of vertex hi-
erarchies: typical examples include [Hoppe 1997] or more recently
[El-Sana and Bachmat 2002]. Such methods have the advantage
of bringing the view-dependent computations to the individual ver-
tex/triangle level, thus providing the possibility of creating a near-
optimal geometry subset for each generated frame. Other methods
expand classic LOD methods to the visualization of large models
by creating hierarchical LOD structures [Erikson et al. 2001]. More
recently [Cignoni et al. 2004] has proposed an algorithm that pro-
duces a regular tetrahedral subdivision LOD hierarchy structured to
maintain connectivity between rendered patches.

An alternative approach for fine-grained view-dependent render-
ing of large models is point-based techniques [Rusinkiewicz and
Levoy 2000]. These methods allow for simple and efficient view-
dependent computations, very compact representation of the model,
and offer a high rendering rate [Dachsbacher et al. 2003]. Initial re-
sults showed that these techniques tended to produce significantly
more visual artefacts than triangle based methods, but recent results
demonstrated that high quality images can also be obtained, how-
ever at the overhead cost of complex filtering techniques [Zwicker
et al. 2004].

With the rapid expansion of rendering capabilities of GPUs, many
techniques based on fine-grained view-dependent computations
have become significantly CPU bound. Work has been done to pro-
duce methods that would reduce the load on the CPU and better
exploit the faster GPUs by coarsening the granularity of the view-
dependent rendering. On current graphics hardware, the selection
of geometry patches instead of points/polygons as the finest level
of decomposition yields significant performance gains. First, the
geometry can be cached on the GPU memory, thus reducing band-
width requirements [Levenberg 2002]. Additionally, recent tech-
niques propose the use of pre-optimized patches of geometry as
the basis for the view-dependent computation [Borgeat et al. 2003;
Cignoni et al. 2003a; Cignoni et al. 2004]: the triangles composing
a patch are converted into strips and reordered to take advantage of
the vertex cache.

Techniques that operate at a coarser granularity for the view-
dependent computations bear the risk of creating more artefacts
since the viewed geometry will change less often but in a more
significant manner, thus causing effects such as popping and vis-
ible frontiers between neighboring groups at different resolutions.
Even the fine grained methods can produce noticeable artefacts as
geometry undergoes transformation. Geomorphing has been pro-
posed to hide transitional artefacts and consequently improve the
visual quality when rendering with view-dependent techniques. Its
usage is well established for terrain visualization applications [Fer-
guson et al. 1990] and is still an integral part of many methods such
as [Hoppe 1998; Duchaineau et al. 1997; Lindstrom and Pascucci
2002]. For objects and non-terrain scenes, geomorphing was intro-
duced as part of progressive meshes [Hoppe 1996; Hoppe 1997]. It

has since been applied to many other view-dependent algorithms,
based either on vertex hierarchies [Grabner 2001], or on different
simplification approaches such as wavelets [Azuma et al. 2003].
More recently, a proof of concept for the geomorphing of an opti-
mized geometric patch hierarchy was presented in [Borgeat et al.
2003]. Nonetheless, the use of geomorphing in the general 3D sur-
face case is still less widespread than for terrain applications.

The out-of-core management of large texture databases for view
dependent rendering has also received significant attention. Tree
structures similar to the ones used to represent geometry are usu-
ally applied [Döllner et al. 2000; Cignoni et al. 2003a]. In [Hwa
et al. 2004], the authors proposed a new texture representation that
reduces the necessity of blending the textures between levels of de-
tail. More advanced perceptual metrics [Dumont et al. 2001] re-
sulted in improved paging performance. Hardware solutions have
also been proposed, such as SGI’s clip textures approach [Tanner
et al. 1998] that creates virtual mipmaps from enormous texture
images that abstract the out-of-core management of texture from
the scene graph management.

Many techniques have focused on the problem of simplifying and
afterwards accessing meshes that exceed the size of main memory.
The approaches for simplification vary from segmenting the model
before simplifying it [Hoppe 1998], to restructuring the data so that
it can be maintained and accessed efficiently using the OS paging
system or a custom scheme [Cignoni et al. 2003b; Lindstrom and
Pascucci 2002]. Other techniques choose to stream the data pro-
gressively in main memory [Isenburg et al. 2003]. In [Isenburg and
Gumhold 2003] the model is efficiently compressed so it can be
fitted entirely in main memory. We refer the reader to [Isenburg
et al. 2003; Cignoni et al. 2003b] for recent reviews and classifi-
cations of the various techniques available for efficient out-of-core
processing.

3 Preprocessing

An interesting feature of our approach is that there are relatively
few constraints on the choice of methods used for the simplification
and segmentation of the model. In this section we first describe the
required steps and minimal constraints associated with the prepro-
cessing, we then discuss the segmentation issues associated with
patch-based rendering, and we finally describe the implementation
used to produce the results presented in this paper.

3.1 Requirements

The first step of the preprocessing is to construct a sequence of
levels of detail from the original mesh model. Any simplifica-
tion criterion can be applied, as long as the method is based on
merging vertices, such as vertex/edge collapse or vertex clustering
techniques. Methods based on vertex removal are less appropriate
since they do not provide a natural path for geomorphing to oc-
cur between LODs. By simplifying before segmentation, we avoid
all constraints related to maintaining coherent boundaries between
neighboring patches during the simplification process. As we sim-
plify the model, we must retain the vertex aggregation history be-
tween the levels since they will constitute the geomorphing paths
during rendering.

The second step consists of the recursive segmentation of the model
within the created sequence of levels of detail. This task is achieved
by first segmenting the lowest resolution level of detail into a set of
patches of the desired shape and size/granularity. Then, the next
higher resolution level is segmented along the same boundaries by

3

To appear in the ACM SIGGRAPH conference proceedings

Figure 3: Group subdivision in texture space. Left: contour of the
geometry associated with this image. Right: generated hierarchy of
rectangular texture units.

following the vertex aggregation paths kept from the original sim-
plification. Each subgroup of this higher resolution level is again
segmented according to a similar or new criterion until the desired
granularity is achieved. This process is repeated recursively up to
the full resolution original model. Figure 2 illustrates the resulting
patch hierarchy obtained with our implementation for two different
models.

As the groups are being segmented, we must also maintain
neighboring information between boundary points of the adjacent
patches. This information is needed by the real-time algorithm to
insure global continuity over the whole model during interactive
visualization. After the segmentation, each patch is individually
converted into a single triangle strip, and its vertices are reordered
for maximal use of the graphics card’s vertex cache. The tree struc-
ture, culling data, model-space error values, and group geometry
including neighboring and destination information are finally en-
coded into a disk file representation.

3.2 Segmentation

The pre-processing transforms the model into a group hierarchy
composed of triangle patches: these patches form the basic unit for
paging, culling, rendering and all view-dependent computations.
The behavior of the segmentation can have a significant impact on
the quality and performance of the visualization. More compact
patches will mean smaller bounding volumes and therefore more
precise view-dependent computations. Patches with more uniform
orientation will lead to efficient orientation culling. Patches of uni-
form memory size will lead to smoother and more predictable pag-
ing performance, etc. The actual optimal segmentation criteria are
likely to vary significantly from one context to another.

For non-textured models with a simple topology such as the St-
Matthew dataset or the Renoir painting of Figure 1, a segmentation
that does not take into account the actual shape or other surface
features may still yield acceptable results. Examples of recursive
spatial segmentation include octree-based subdivision or the tetra-
hedral subdivision that is at the base of the adaptive tetrapuzzles
method [Cignoni et al. 2004]. However, these techniques can poten-
tially divide surfaces along worst-case axes, creating long and com-
plex boundaries between the groups. Additionally, more serious is-

sues will arise when we try to address the case of more complex
or heterogeneous models. For a model composed of separate parts,
different texture images, or areas associated with different shading
programs, it is preferable to respect these natural boundaries in the
initial segmentation, thus resulting in the construction of homoge-
neous groups that will be more efficiently rendered. Another case
is the creation of synthetic textures for applications such as normal
mapping that could require a segmentation capable of producing
patches with a disk topology for parameterization purposes. For
complex models that would benefit from occlusion culling, the seg-
mentation should be able to assign naturally occluding parts to sep-
arate group. This paper does not aim at providing innovative seg-
mentation solutions for each category of models, but rather presents
a framework that can be easily adapted to these different applica-
tion contexts by integrating appropriate segmentation methods. We
have implemented two different segmentation strategies for produc-
ing the results in the paper: one for non-textured models built from
3D sensor data, and one for texture-mapped models made from 3D
sensor data and digital photographs containing more texture than
geometry information. We will describe both approaches to illus-
trate the importance of adapting the segmentation to the model type.

In the simpler case of the color-per-vertex models, we have cho-
sen to segment the models with the goal of maximizing only for
compactness. We applied a principal component analysis technique
similar to [Yoon et al. 2003]. The presence of sensor noise in the
data and of features at many resolution scales makes orientation
culling relatively inefficient on such model, so we did not take sur-
face orientation into account during segmentation. We recursively
subdivided the groups by computing the axis of maximum variation
and split the model in two segments of equal length along that axis.
This rule aimed at producing groups with smaller bounding spheres
and therefore making more precise the view-dependent computa-
tions.

Models created by combining 3D active sensors and digital cam-
eras often contain significantly more texture than geometry. This is
the case with the two textured models presented in the paper, and
will be in many digitized surface visualization applications. The
bottleneck in processing and visualizing such models lies mostly in
the management of the texture information. In the case of the crypt
illustrated in Figure 2, the lowest resolution level of the model was
first segmented manually in an editing software, creating a group of
geometry associated with each digital photograph (Figure 3, left).
The group boundaries were adjusted in order to minimize visible
transitions due to imperfect color adjustments between the pho-
tographs, and to select the best available texture in overlapping
areas. This first segmentation was provided to the pre-processing
software. Then, the model was simplified with the added constraint
that points bordering that initial segmentation would not move out
of their original texture. Each group was then recursively divided,
not in 3D space but instead in the texture parameterization space
(Figure 3, right). We have implemented a heuristic method that
quickly evaluates all possible axis-aligned cuts in texture space to
find a solution that optimizes simultaneously for three criteria: min-
imal texture area, similar texture size and squareness of the two gen-
erated textures. It also takes into account the necessity of scaling
up to the nearest power of two for older GPUs. This segmentation
approach leads to the following gains: original photographs are pre-
processed independently, the resulting texture tree for paging is of
minimal size, and less texture must be stored on the GPU at any
given time. We handled the case of the large landscape model of
Figure 1 in a similar manner, except that the initial segmentation
associating digital photographs to geometry groups was computed
automatically based on the distance to the image center in texture
space.

4

To appear in the ACM SIGGRAPH conference proceedings

3.3 Implementation

For the simplification phase, we have used the well known “Quadric
with attributes” method proposed by [Garland and Heckbert 1998],
combined with a simple parallelization scheme. We take as input
an indexed triangular mesh with attributes, and if available, tex-
ture data including texture coordinates or parameterization equa-
tions. Our simplification implementation relies on 64-bit process-
ing to address the challenges caused by the size of the dataset. This
was a natural choice since the construction of large models from
raw sensor data also strongly benefited from 64-bit processing, and
since such computers are now available as desktop workstations for
prices in the same range as their 32-bit equivalents. Obviously, this
largely simplifies the data management problem since the entire
model can be loaded in virtual memory, thus allowing the simple
following parallelized implementation.

Before each simplification pass, triangle indices and point/attribute
lists are reordered spatially according to a 3D grid in order to min-
imize page faults. This reordering stage is repeated between each
simplification pass to account for the changed distribution and gran-
ularity of the data. All the simplification is executed on a remote
cluster of 32-bit nodes, the 64-bit server only manages the data and
sends the appropriate blocks to the simplification nodes. Parallel
geometric simplification is implemented by having a set of moving
windows progressively traverse the spatial grid following an inter-
laced pattern, simplifying the model as they go, with each moving
window corresponding to a single processing node. The windows
progressively traverse the grid without ever intersecting each other.
Only pairs of vertices where one of them lies inside the window are
considered for contraction, but surrounding data is still available to
insure that no border effects are created. Currently, the quadrics
computed by the method are not preserved between the simplifi-
cation passes. Simplification is therefore memoryless [Lindstrom
and Turk 1998] between each level. Also, for textured models, sim-
plification is constrained so as to insure that points associated to
a texture image do not move out of the parametric bounds of the
associated image during the vertex aggregation. When the geomet-
ric simplification is completed, groups are recursively subdivided
as described in the previous section until they meet the following
criteria: the number of vertices in the patch is under a fixed bound,
the texture unit associated with the patch is under a fixed size, and
the bounding volume for the patch is sufficiently small.

One possible alternative to this implementation would be to sim-
plify the model during or after the segmentation. This would permit
to guide the simplification process to better control the exact shape
of the patches, allowing for example perfectly straight boundaries,
but at the cost of a longer pre-processing.

The pre-processing of texture images is naturally highly parallel:
each patch is treated independently, and the initial segmentation of
the model insures that each patch falls within a single texture im-
age. When textures are acquired with digital cameras, the texture
coordinates for all the source and destination points of the patch are
reprojected in texture space using pose and camera calibration pa-
rameters, including distortion terms. The image is then cropped to
the bounding box of all the texture coordinates. Finally, the image
is scaled down if necessary, according to the desired resolution for
that group. Geometry and attributes are compressed using simple
differential encoding, followed by quantization under the signifi-
cance threshold of the data, so that no actual information is lost.
The textures that are part of the models shown in figures and in the
accompanying video are compressed using the OpenGL S3TC ex-
tension and stored on disk in that format. If the ratio between the
error value for a level and its lower resolution counterpart is rela-
tively small (close to or lower than 2), it is possible and potentially

desirable for some applications to use the rectangular texture exten-
sion and apply mipmapping only to the lowest resolution groups,
relying on minification filtering for the in-between levels. Indeed,
if the levels are close to one another in resolution space, textures
will be replaced by their lower resolution counterpart before alias-
ing or shimmering occurs. One potential problem is that this can
limit the efficiency of anisotropic filtering, but with the advantage
of significant savings in storage and/or processing time. Textured
model sequences in the video demonstrate this idea, where only the
textures at the lowest resolution level are mipmapped.

4 Real-Time Processing

In this section, we first describe the scene graph traversal used for
culling, paging, and selection of the set of visible patches to be
rendered. We then describe how geomorphing ratios are computed
for visible points in order to allow smooth transitions and to insure
global continuity between visible patches. We finally describe how
the patches are actually geomorphed and rendered on the GPU and
provide details on our implementation.

4.1 Scene Graph Traversal

The real-time structure used to render the model is composed of a
hierarchical level-of-detail scene graph, with each level of the tree
corresponding to a resolution of the model, and each node of the
tree corresponding to a patch of the model at that resolution. The
node structure contains a bounding sphere for the patch, a normal
cone, the model space error value derived during the simplification
process, a reference to the patch’s data and the links to the sub-
groups in the next higher resolution level. This tree is maintained
in-core at all time, while attributes, texture, triangle indexes, and
connectivity information are stored out-of-core. At every frame,
the model is rendered by recursively descending into the tree struc-
ture as for a typical LOD scene graph.

During the traversal, nodes are tested for visibility using bounding
sphere culling against the viewing frustum, and orientation culling
based on the normal cone for the patch. If the node is visible, we
must still determine whether the desired level of resolution has been
reached. In our implementation we use the closest point on the
bounding sphere along the view axis to measure a worst-case pixel
size in model units. This value is then scaled using the chosen dis-
play resolution and compared with the model-space error value as-
sociated with the patch. If the node passes the test, it is selected for
display. Otherwise, its resolution being too low, all its children are
first tested for visibility. If all visible children are already loaded in
system memory, then they are themselves considered for display as
a replacement for the current node; if the visible children nodes are
not already loaded, instead of slowing down the rendering process
by loading them synchronously, the current node is kept for display
even if it is of insufficient resolution, and the visible children nodes
are put on a higher priority loading list in the out-of-core manage-
ment thread running in parallel. The traversal of the tree provides
the set of nodes that are to be displayed: but instead of rendering
them through the standard OpenGL pipeline, geomorphing with the
parent node is applied to each vertex on the GPU in order to elimi-
nate popping artefacts and connect with neighboring patches.

Pre-fetching of geometry and texture from disk is essential for
smooth navigation and progressive geomorphing. During the
culling and resolution adjustment phase, another hierarchical
culling pass is applied in parallel, using larger bounding spheres for
the patches. By growing the spheres, we naturally include groups

5

To appear in the ACM SIGGRAPH conference proceedings

Figure 4: Illustration of how geomorphing is used to maintain con-
nectivity along group boundaries by adjusting the geomorph ratio
of the border points. Top row: boundary of two patches at the same
LOD level. Bottom row: common boundary of patches separated
by one resolution level. Numbers separated by an arrow indicate
that the group is being geomorphed between these two levels.

immediately outside the viewing frustum, resulting in spatial pre-
fetching. This step also performs pre-fetching in resolution space:
since we use the distance to the bounding sphere along the view axis
to determine the worst-case pixel size, growing the sphere results
in selecting higher resolution geometry. The additional groups se-
lected by this pass are queued to the paging thread for asynchronous
loading. Patches that are loaded but have been culled in the current
pass are tested with an even slightly larger bounding sphere than the
one used for loading: if they are not included, they are unloaded.
Using slightly larger spheres for unloading eliminates load/unload
jitter effects when navigating at the boundary of a group’s loading
sphere.

4.2 Geomorphing and Global Connectivity

Geomorphing is continuously applied to triangle patches during the
entire interval over which they are selected for rendering. This very
progressive interpolation aims at smoothing the transitions between
levels of detail and at maintaining an almost constant on-screen res-
olution. For each node being displayed, morphing is applied to dis-
place the vertices of the rendered triangles along the trajectory of
the original vertex aggregation paths computed during the simplifi-
cation process. Other vertex attributes are all similarly interpolated.
Non-boundary vertices are all morphed according to a unique ratio
per patch, while boundary vertices are adjusted to maintain con-
nectivity as described in the next paragraph. Geomorphing is per-
formed directly on the GPU as part of the vertex program. When
LODs are computed using a simplification algorithm that properly
takes into account all vertex attributes, transitions become practi-
cally hidden even when displaying at low resolution, due to attribute
interpolation. We refer the reader to the accompanying video for a
demonstration.

The GoLD method maintains the connectivity between adjacent
patches as their levels of detail are selected and they undergo ge-
omorphing at different ratios. It takes advantage of the fact that,
even if neighboring groups are drawn as independent meshes at ren-
dering time, their shared boundary points are part of a model that
was simplified globally, rather than simplified on a per-group basis.
Therefore, corresponding shared boundary points of neighboring
groups are displaced between the different levels of detail along the
exact same paths, since they correspond to the same original point

in the global simplified model. The following rules are applied to
insure connectivity between corresponding points along boundaries
of neighboring groups:

1. Corresponding boundary points are of the same level: in this
simple case, illustrated in the first row of Figure 4, we simply
apply the highest morph ratio of the visible groups sharing the
point.

2. Corresponding boundary points are separated by one resolu-
tion level: in the case illustrated on the second row of Figure
4, we exploit the fact that a completely morphed point is at the
same location than its corresponding unmorphed destination
in the next level of detail. Points are connected by completely
morphing the boundary points of the high resolution LOD and
not morphing the boundary points of the low resolution one,
this independently of the selected morph ratio of each visible
group involved.

In the case where the neighboring points are separated by more than
one level, there is no way to reconnect them simply by geomorphing
the boundary points. Therefore this case must not occur during ren-
dering. If the culling/refinement phase leads to such a situation, we
simply promote the group that is at a resolution level that is more
than one level lower than any of its visible neighbors up to one
level below the level of the highest resolution neighboring group. It
is possible to define combinations of a segmentation method, error
metric and refinement criteria that insure that this situation will nat-
urally never occur, therefore avoiding this validation step. However,
since the number of patches we render per frame is relatively low,
performing a post-processing validation to promote groups takes a
negligible amount of time. In that context, the selected criteria to
choose the visible patches during the culling/refinement step does
not actually need to guarantee that this situation never occurs.

The step of boundary points adjustment is the most important CPU
overhead associated with our method, although it represents only
a small proportion of the rendering time. For every frame, it in-
volves assigning a ratio to each visible point, and making on av-
erage slightly more than two comparisons per boundary point to
determine whether its geomorphing ratio should be modified. A
byte per visible vertex must be transmitted to the vertex program
on the GPU, in the form of one vector per patch.

4.3 Implementation

Our real-time implementation is built on the OpenGL Performer
scene graph [Rohlf and Helman 1994], and is integrated within the
DIMENSION collaborative framework [Borgeat et al. 2004]. All
vertex programs used to morph and render the models were writ-
ten in the Cg language; the programs emulate the OpenGL lighting
model with the addition of the geomorphing of all vertex attributes.
Sources and destinations of points and attributes are cached in
graphics memory using OpenGL’s vertex buffer objects, and tex-
tures are managed using the texture object extension. A one byte
per vertex morph ratio is uploaded at every frame for all vertices
that are displayed using streamed vertex buffers. We currently have
two layers of in-core loading for geometry and attributes. First,
disk/network to system memory file access and decompression oc-
curs, as just described, in a separate thread. We then perform the
paging of data into the GPU memory by using the vertex buffer ob-
ject and texture object extensions of OpenGL at the beginning of
each frame in a synchronous manner. For geometry and attributes,
this paging is done simply by uploading the data when it is first
rendered, and unloading it as soon as it is no longer selected, al-
lowing more free memory for resident textures. Texture paging on
the GPUmemory is implemented using the OpenGL texture objects

6

To appear in the ACM SIGGRAPH conference proceedings

extension, that allows to set priority to textures to guide the graph-
ics drivers when deciding which texture to page out due to lack of
available memory.

5 Results

5.1 Preprocessing Performance

Our main preprocessing node is a Linux-based dual 1.6 GHz 64
bits AMD Opteron system with 8 GB of RAM and four swap parti-
tions located on four 7200 RPM ATA drives. The decimation nodes
are 1.6 GHz AMD Athlon PCs with 2 GB of memory. Only the
simplification step was parallelized. A single node was used to
decimate the small models, whereas four nodes where used for the
large ones. Processing time for the various models range from un-
der 15 minutes for models such as those of the duck or the crypt,
to respectively 8 and 10 hours for the 250 million triangles col-
ored model of a painting (Figure 5), and for Stanford’s St. Matthew
dataset [Levoy et al. 2000] which is composed of 372 million trian-
gles. For the large models, simplification accounted for 65% of the
processing time, the stripping and re-ordering of the patches took
another 30%, with the data reordering phase and the segmentation
taking most of the remaining 5%. Texture processing for the entire
terrain model required less than 10 hours on a four node cluster.

5.2 Visualization

We used two test systems for interactive visualization: a 2 GHz
AMD Athlon nForce2 PC with 1.5 GB RAM and a GeForce 6800
”Gamer Edition” GPU with 256 MB memory, and a dual 3.4 GHz
Intel Xeon workstation with a 256 MB NVIDIA QuadroFX 3400
graphic card on PCI Express. All system ran Linux with NVIDIA
drivers at version 1.0-6629.

The model in Figure 5 is of an oil painting on canvas made in 1883
by impressionist Pierre Auguste Renoir, titled “Femme nue dans un
paysage”, and conserved at the Orangerie Museum in Paris, (inv RF
1963-13). It was scanned using the National Research Council of
Canada’s color range sensor [Godin et al. 2002] at 50 µm lateral
sampling rate and 10 µm depth resolution. The scan was made in
collaboration with the French Museums Research and Restoration
Center (C2RMF). This sensor acquires a color sample with each
3D measurement, thus naturally producing color-per-vertex mod-
els. The painting model is composed of 250 million triangles and
is divided into a tree of about 75,000 nodes. The high frequency
contents in the color information and the very fine-grained nature
of the 3D information make this dataset an interesting challenge for
multi-resolution visualization algorithms: it cannot be easily sim-
plified and therefore requires a large number of triangles to be ren-
dered without any visual artefacts. The model of the duck (Figure
2 and video) was also produced using that sensor. The Byzantine
crypt model in Figure 1 was built using a commercial Mensi range
sensor combined with digital photographs, as part of a collabora-
tion with the University of Lecce, Italy [Beraldin et al. 2002]. The
texture parameterization was created from camera calibration data
and photogrammetric techniques. The landscape model displayed
in Figure 1 was produced from data gathered by Terrapoint [Ter-
rapoint 2005], using their proprietary airborne ALMIS350 LiDAR
system and a digital camera. The raw dataset was composed of
103 million data points and 6800 digital photographs of 4M pixels;
calibration was performed using their proprietary software. The fi-
nal model tree contains 120,000 patches and texture images, and
200 million triangles. The texture data, once compressed with the
S3TC EXT1 OpenGL extension, still occupies over 20 GB of disk
storage.

Figure 5: Rendering of the 3D model of a painting at two different
resolutions. The larger image was rendered at 1280x1024, filling
most of the screen. 1.83 million triangles are displayed at a rate of
50 million triangles/s. The insets contain 2.4 M triangles and are
shaded using a raking light source. They produce similar rendering
statistics.

Figure 6 illustrates the rendering performance and the amount of
data sent to the GPU in each frame during a sequence of navigation
on the St. Matthew dataset. The plotted rendering time includes
culling and view-dependent computations, upload to the GPU of
new data, deletion of old data, and rendering of visible data. Our
Xeon-based system offers about 15% less absolute graphics perfor-
mance but faster pre-fetching than the Athlon setup, providing a
globally better navigation experience. Groups at the lowest level of
detail do not need geomorphing, which explains the higher perfor-
mance at the beginning of the sequence, which starts far from the
model. All the visible data is undergoing geomorphing at the end of
the sequence. The graph illustrates the capability of the system to
maintain its frame rate even when large amounts of new data must
be uploaded. It also shows the overhead of applying geomorphing,
which is approximately a factor of 2 on both test systems. This is
explained by the fact that we need twice the number of attributes
per vertex for geomorphed groups. The CPU computation of the
boundary points morphing ratios accounted for 10% of the render-
ing time for the St. Matthew sequence.

7

To appear in the ACM SIGGRAPH conference proceedings

Figure 6: Rendering performance at 1600x1200 for a sequence with
rapid navigation. The bottom curve shows the amount of new data
uploaded to the GPU during that frame. The data rendered in pre-
vious frames is already cached on the GPU.

The amount of memory used for the application depends on the pre-
fetching outreach configuration, the chosen resolution, as well as
the type and number of attributes for the model. At high resolution,
if we double the size of the bounding spheres for pre-fetching, the
memory footprint for the painting model becomes approximately
500 MB for the whole application.

The benefits of geomorphing are hardly appreciable from still im-
ages. We refer the reader to the accompanying video for se-
quences of interactive navigation through the models and an an-
imated demonstration of the behavior of the method. The video
sequences, as well as the one used to produce Figure 6, were ren-
dered at 1600x1200 resolution, a standard setup for high-quality vi-
sualization. The video was generated by directly filming the LCD
display. Model space error values derived from simplification were
re-adjusted visually, toward optimized speed and image quality for
visualization at 1600x1200. The final result would produce no visi-
ble artefacts or noticable resolution loss in normal mode, but would
produce visible artefacts without using geomorphing. We used the
Xeon system to generate sequences on the video. All out-of-core
information in the models was accessed over a gigabit NFS con-
nection to a file server.

As discussed in Section 4, the out-of-core paging and decompres-
sion are implemented in a separate thread, and therefore only affect
the rendering thread by using a part of the system resources. On
the single CPU system, intensive group fetching during rapid nav-
igation will reduce the frame rate and eventually affect the quality
of the experience. On the dual Xeon system, the effect of paging
for geometric models was only detectable by looking at actual per-
formance statistics. The increased speed of the PCI Express bus
also reduces the impact of uploading the geometry on that system,
compared to the AGP 8X bus of the other system.

6 Discussion

Within GoLD, it would be possible to compute a different geo-
morph ratio for each point of a patch instead of having a uniform
one. By uploading to the GPU a model-space error value associ-
ated with the geomorphing of each individual vertex, the vertex pro-
gram could compute a ratio for each point individually. However, to
avoid popping effects, we would still need to insure that all vertices
are completely morphed before the replacement of the patch by its
low-resolution parent in the tree, and completely expanded before
switching to a higher resolution patch. The consequence of this last
constraint is that this extra processing would not replace the need
for specific computations for the borders, while requiring more data

to be uploaded to the GPU.

In the current implementation, we have chosen not to access the
destination information for vertices and attributes using the vertex
texture mechanism available on newer GPUs, even if it would in-
stantly lead to a significant reduction in bandwidth and GPU mem-
ory requirements. This gain would result from the fact that many
vertices merge to the same destination in a patch, and that without
vertex textures those destination values need to be repeated in ver-
tex attribute lists. However, performance numbers from NVIDIA
[Gerasimov et al. 2004] indicate that a GeForce 6800 can apply a
basic displacement mapping to a surface at the rate of 33 million
vertices/second. Since we would need many texture fetches per
vertex for an object with attributes, we expect we would obtain a
much lower performance for our application. However, assuming
continuing speed improvements in future GPUs, this feature could
become an interesting option for implementing the GoLD method.
Also, in the context where we would display at a sufficiently high
resolution to make transition effects acceptably small, it would be
possible to implement only patch connectivity instead of full ge-
omorphing at a very low resource cost, while still supporting arbi-
trary segmentation. Indeed, by exploiting instruction branching fea-
tures of new GPUs, vertex texture fetches would only be required
for boundary points.

The obvious downside brought by the coarser granularity of the
view-dependent resolution adaptation process is that we compute
an error metric which is a worst case for the whole patch. The main
consequence is the rendering of more triangle than necessary, but
this is largely compensated by the global increase in performance
brought by pre-optimization of patches. Another consequence is
that, for a real-time error target of less than one pixel and even for
slightly higher error targets, the fact that we render for a worst case
will create area where numerous triangles project onto the same
pixel, especially just before LOD transitions, potentially causing
flickering similar to using textures without mipmapping. By hav-
ing all the points and attribute values converging to their destination
before the transition point with the next LOD groups, the geomor-
phing approach can significantly reduce this effect.

7 Conclusion

We have presented GoLD, an efficient and versatile technique for
view-dependent rendering of very large mesh models with texture
or color. The method allows to display models at low or high res-
olution through the use of geomorphing, thus providing more con-
trol over the amount of real-time resources invested in the render-
ing process. By allowing arbitrary segmentation of the model, the
technique simplifies the management of texture derived from digi-
tal photographs, and can be adapted for very efficient rendering of
a wide variety of 3D model types.

Acknowledgments

We wish to thank our colleagues of the Visual Information Tech-
nology Group at the National Research Council of Canada, in par-
ticular Michel Picard, J.-Angelo Beraldin, Luc Cournoyer, Sabry
El-Hakim, John Taylor, Marc Rioux, Daniel Gamache and Jean-
François Lapointe. We also thank Prof. Virginia Valzano, of the
University of Lecce (Italy), for kindly granting us the permission
to use images of the crypt, Paul Mrstik and Kresimir Kusevic from
Terrapoint Inc., and finally Pierre-Alexandre Fortin and Denis Lau-
rendeau from Laval University.

8

To appear in the ACM SIGGRAPH conference proceedings

References

AZUMA, D. I., WOOD, D. N., CURLESS, B., DUCHAMP, T., SALESIN,

D. H., AND STUETZLE, W. 2003. View-dependent refinement of mul-

tiresolution meshes with subdivision connectivity. In AFRIGRAPH ’03:

Proceedings of the 2nd International Conference on Computer Graph-

ics, Virtual Reality, Visualisation and Interaction in Africa, ACM Press,

69–78.

BERALDIN, J.-A., PICARD, M., EL-HAKIM, S., GODIN, G., VALZANO,

V., BANDIERA, A., AND LATOUCHE, C. 2002. Virtualizing a Byzantine

crypt by combining high-resolution textures with laser scanner 3D data.

In Proceedings of the 8th International Conference on Virtual Systems

and Multimedia, 3–14.

BORGEAT, L., FORTIN, P.-A., AND GODIN, G. 2003. A fast hybrid ge-

omorphing LOD scheme. In SIGGRAPH 2003 Sketches & Applications

(electronic proceedings), ACM Press.

BORGEAT, L., GODIN, G., LAPOINTE, J.-F., AND MASSICOTTE, P.

2004. Collaborative visualization and interaction for detailed environ-

ment models. In Proceedings of the 10th International Conference on

Virtual Systems and Multimedia, 1204–1213.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO,

F., AND SCOPIGNO, R. 2003. Planet-sized batched dynamic adaptive

meshes (P-BDAM). In VIS 2003: Proceedings IEEE Visualization, IEEE

Computer Society Press, 147–154.

CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO, R. 2003.

External memory management and simplification of huge meshes. IEEE

Transactions on Visualization and Computer Graphics 9, 4, 525–537.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO,

F., AND SCOPIGNO, R. 2004. Adaptive tetrapuzzles: efficient out-of-

core construction and visualization of gigantic multiresolution polygonal

models. ACM Transactions on Graphics 23, 3, 796–803.

CLARK, J. H. 1976. Hierarchical geometric models for visible surface

algorithms. Commun. of the ACM 19, 10, 547–554.

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER, M. 2003.

Sequential point trees. ACM Transactions on Graphics 22, 3, 657–662.

DÖLLNER, J., BAUMAN, K., AND HINRICHS, K. 2000. Texturing tech-

niques for terrain visualization. In Proceedings IEEE Visualization 2000,

IEEE Computer Society Press, 227–234.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER, M. C.,

ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997. ROAMing

terrain: real-time optimally adapting meshes. In Proc. IEEE Visualiza-

tion ’97, IEEE Computer Society Press, 81–88.

DUMONT, R., PELLACINI, F., AND FERWERDA, J. A. 2001. A

perceptually-based texture caching algorithm for hardware-based render-

ing. In Proc. of the 12th Eurographics Workshop on Rendering, Springer-

Verlag, London, UK, 249–256.

EL-SANA, J., AND BACHMAT, E. 2002. Optimized view-dependent ren-

dering for large polygonal datasets. In VIS 2002: Proc. IEEE Visualiza-

tion, IEEE Computer Society Press, 77–84.

ERIKSON, C., MANOCHA, D., AND WILLIAM V. BAXTER, I. 2001.

HLODs for faster display of large static and dynamic environments. In

SI3D ’01: Proceedings of the 2001 Symposium on Interactive 3D Graph-

ics, ACM Press, 111–120.

FERGUSON, R., ECONOMY, R., KELLY, W., AND RAMOS, P. 1990. Con-

tinuous terrain level of detail for visual simulation. In Proceedings IM-

AGE V Conference, 144–151.

FUNKHOUSER, T. A., AND SÉQUIN, C. H. 1993. Adaptive display al-

gorithm for interactive frame rates during visualization of complex vir-

tual environments. In Proceedings of ACM SIGGRAPH 93, ACM Press,

New York, Computer Graphics Proceedings, Annual Conference Series,

ACM, 247–254.

GARLAND, M., AND HECKBERT, P. S. 1998. Simplifying surfaces with

color and texture using quadric error metrics. In Proceedings IEEE Vi-

sualization ’98, IEEE Computer Society Press, 263–269.

GERASIMOV, P., FERNANDO, R., AND GREEN, S. 2004. Shader Model

3.0 Using Vertex Textures. NVIDIA Corporation.

GODIN, G., BERALDIN, J.-A., TAYLOR, J., COURNOYER, L., RIOUX,

M., EL-HAKIM, S., BARIBEAU, R., BLAIS, F., BOULANGER, P.,

DOMEY, J., AND PICARD, M. 2002. Active optical 3D imaging for

heritage applications. Computer Graphics and Applications 22, 5 (sept.-

oct.), 24–35.

GRABNER, M. 2001. Smooth high-quality interactive visualization. In

SCCG ’01: Proceedings of the 17th Spring Conference on Computer

graphics, IEEE Computer Society Press, 87–94.

HOPPE, H. 1996. Progressive meshes. In Proceedings of ACM SIGGRAPH

96, ACM Press, New York, Computer Graphics Proceedings, Annual

Conference Series, ACM, 99–108.

HOPPE, H. 1997. View-dependent refinement of progressive meshes. In

Proceedings of ACM SIGGRAPH 97, ACM Press, New York, Computer

Graphics Proceedings, Annual Conference Series, ACM, 189–198.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its

application to terrain rendering. In Proceedings IEEE Visualization ’98,

IEEE Computer Society Press, 35–42.

HWA, L. M., DUCHAINEAU, M. A., AND JOY, K. I. 2004. Adaptive

4-8 texture hierarchies. In Proc. of IEEE Visualization 2004, Computer

Society Press, Los Alamitos, CA, IEEE, 219–226.

ISENBURG, M., AND GUMHOLD, S. 2003. Out-of-core compression for

gigantic polygon meshes. ACM Transactions on Graphics 22, 3, 935–

942.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND SNOEYINK, J.

2003. Large mesh simplification using processing sequences. In Proc.

IEEE Visualization, IEEE Computer Society Press, 465–472.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail rendering using

cached geometry. In VIS 2002: Proceedings IEEE Visualization 2002,

IEEE Computer Society Press, 259–265.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D.,

PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG,

J., SHADE, J., AND FULK, D. 2000. The Digital Michelangelo Project:

3D scanning of large statues. In Proceedings of ACM SIGGRAPH 2000,

Computer Graphics Proceedings, Annual Conference Series, ACM, 131–

144.

LINDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification simpli-

fied: a general framework for view-dependent out-of-core visualization.

IEEE Transactions on Visualization and Computer Graphics 8, 3, 239–

254.

LINDSTROM, P., AND TURK, G. 1998. Fast and memory efficient polyg-

onal simplification. In Proceedings IEEE Visualization ’98, IEEE Com-

puter Society Press, 279–286.

ROHLF, J., AND HELMAN, J. 1994. IRIS Performer: a high performance

multiprocessing toolkit for real-time 3D graphics. In Proc. of ACM SIG-

GRAPH 94, ACM Press, New York, ACM, 381–394.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: a multiresolution

point rendering system for large meshes. In Proceedings of ACM SIG-

GRAPH 2000, ACM Press/Addison-Wesley Publishing Co., Computer

Graphics Proceedings, Annual Conference Series, ACM, 343–352.

TANNER, C. C., MIGDAL, C. J., AND JONES, M. T. 1998. The clipmap:

a virtual mipmap. In Proceedings of ACM SIGGRAPH 98, ACM Press,

New York, Computer Graphics Proceedings, Annual Conference Series,

ACM, 151–158.

TERRAPOINT. 2005. Terrapoint Inc. http://www.terrapoint.com/.

YOON, S.-E., SALOMON, B., AND MANOCHA, D. 2003. Interactive

view-dependent rendering with conservative occlusion culling in com-

plex environments. In VIS 2003: Proceedings IEEE Visualization, IEEE

Computer Society Press, 163–170.

ZWICKER, M., RÄSÄNEN, J., BOTSCH, M., DACHSBACHER, C., AND

PAULY, M. 2004. Perspective accurate splatting. In GI ’04: Proceed-

ings of the Graphics Interface Conference, Canadian Human-Computer

Communications Society, 247–254.

9

