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Abstract

This paper argues that automated knowledge

acquisition for diagnosis has had limited success in both

failure-driven diagnosis and model-based diagnosis.

The paper describes fault-based and model-based rea-

soning for diagnosis and surveys some of the

approaches to knowledge acquisition in both areas. The

Diagnostic Remodeller (DR) algorithm I am currently

implementing for the automated generation of behav-

ioural models from fault-based knowledge is presented.

An example of fault-based knowledge from the Jet

Engine Troubleshooting Assistant (JETA) is used to

demonstrate how a behavioural model can be extracted

with DR.

Fault-Based Diagnosis

Fault-based reasoning (FBR) is used in many diag-

nostic systems. Knowledge in FBR is largely based on

maintenance manuals and interviews with experts

intended to capture heuristic knowledge about the main-

tenance and repair of a device or process. The knowl-

edge in these systems is often represented as hand-

coded rules or frames which are organized into trouble-

shooting hierarchies. At the top level of the hierarchy is

the general knowledge representing a problem with the

device. This general problem is refined systematically

until the leaf nodes of the hierarchy which represent

physical repairs to the device are reached. Once these

repairs are achieved by a human technician some diag-

nostic systems re-test to confirm that the symptoms and

diagnosed faults are cleared through backtracking in the

hierarchy.

FBR systems have evolved considerably since the

development of MYCIN [Scott et al. 77]. MYCIN was

developed to provide advice treatment for microbial

infections. The MYCIN programs started with hand-

coded rules which later evolved into meta-rules in NEO-

MYCIN to provide some structure to an otherwise flat
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knowledge base [Clancey 86]. The MYCIN approach

remains a very widely used approach in FBR systems as

described in the literature review of [Abu-Hakima 93].

Diagnosis is often referred to as a classification

problem. Chandrasekaran and his colleagues developed

MDX, a system that diagnosis a form of liver disease,

cholestasis [Chanrasekaran et al. 79]. MDX has a diag-

nostic hierarchy which is referred to as a conceptual

hierarchy since it guides the reasoner globally through

diagnoses clustered as concepts that establish local con-

texts. Local uncertainties and hand-coded knowledge

represented in frames are used to guide the diagnosis

[Chandrasekaran and Tanner 86]. MDX has served as a

model for many well-structured diagnostic systems

including RATIONALE [Abu-Hakima 88] and JETA

[Halasz et al. 92].

RATIONALE is a workstation diagnosis system

that reasons explicitly so that it may support the user

with sophisticated explanations of diagnoses that help

justify system behaviour and clarify reasoning. In it

many of the ideas advocated by Chandrasekaran for

structuring FBR systems and handling uncertainty are

applied. This approach was found to be ideal for explic-

itly representing knowledge so that it may be explained

[Abu-Hakima and Oppacher 90]. RATIONALE diag-

noses faults with Xerox workstations. It generates

dynamic and static template-based explanations that

include why, how and what-if responses. Explanation

remains a major objective of FBR systems and most

systems have why and how explanation but do not nec-

essarily generate hypothetical (what-if) ones. RATIO-

NALE’s knowledge is in hand-coded frames.

The Jet Engine Troubleshooting Assistant (JETA) is

a tool developed to assist a technician in diagnosing air-

craft engines using a hypermedia interface which pro-

vides contextual help. For a diagnostic application to

properly support hypermedia, one requires a structured

manner by which to represent the knowledge, reason

about it interactively, display it dynamically and explain



it to the user (see [Abu-Hakima et al. 93] for a thorough

description of JETA’s hypermedia interface). JETA’s

knowledge representation and reasoning strategies are

more flexible than those of other diagnostic systems

including RATIONALE’s.

JETA's troubleshooting knowledge is represented

as a diagnostic network that is hierarchical in nature.

Each node in the network corresponds to a decision

point in the troubleshooting process and the links repre-

sent relations directing the flow of control between

nodes. The overall network is much broader than it is

deep since there are many components and associated

symptoms. The number of nodes along a network path

varies from four to twelve in a network of approxi-

mately 200 nodes. Possible next moves in the network

are represented as children of a node. Any node can

have multiple parents since a component malfunction

may be due to many causes. The troubleshooting knowl-

edge is hand-coded at each diagnostic node as a frame

using a custom command language. In JETA as in

RATIONALE, advice generating slots are included in

the frame and their contents are output to the user as

diagnoses or procedures to follow to find a fault. In

JETA, advice is supported with a schematic or a graph.

An indexed database of schematics and graphs is kept so

that only pointers to the database are kept in the frame.

The current implementation of JETA links text, graphs

and schematics.

Model-Based Diagnosis

Model-based reasoning (MBR) for diagnosis con-

centrates on reasoning about the expected and correct

functioning of a device. A device is modelled based on

its components and their expected behaviour [Hamscher

and Struss 90]. Such models range from quantitative

ones to qualitative ones and all attempt to approximate

device behaviour as accurately as possible. Once a

device model is stabilized then a device’s observed

behaviour can be predicted from the model. If a discrep-

ancy in behaviour is detected then possible candidates

based on assumed component faults are generated.

These candidates are generated based on assumptions

that describe correct model behaviour. Sequential diag-

nosis is used to choose observations, augment a predic-

tion for the candidate faults and update the list of

candidates until a dominant candidate is found.

In MBR there are many conflicting definitions for

models. They range from causal models represented as

semantic networks with links specifying the relations

between component nodes to full blown numerical sim-

ulations for complex systems and processes that have

taken decades to perfect. Generating models is a key

problem in MBR. Some researchers generate causal

models, others generate models with structure and

behaviour while others generate functional models for

devices. Knowledge in models has thus far been hand-

coded by experts that understand device component

behaviour and function.

Davis was one of the earlier proponents of MBR. In

[Davis 84] he describes a theory to exploit reasoning on

the basis of device structure and behaviour. He defines

paths of causal interpretation. He also describes con-

straint suspension used to identify which components

are responsible for which faults. He argues that we need

to balance complexity versus model completeness in

diagnosis thus we need to enumerate and layer catego-

ries of failure. Quite a bit of work has followed Davis’

examples and theories.

De Kleer and Williams published a key paper on

MBR for diagnosis describing GDE, the General Diag-

nostic Engine [de Kleer and Williams 87]. GDE infers

behaviour from device structure and functionality. It is

applied to digital circuits and makes use of an ATMS

(Assumption-Based Truth Maintenance System). This

work forms the cornerstone of ATMS-based model-

based reasoning systems. It was followed by many

papers that criticized the approach as not computation-

ally practical in diagnosing faults with large complex

systems. Some of the papers criticizing GDE propose

the use of hierarchical fault-based reasoning to reduce

the computational complexity of de Kleer and Williams’

approach. Struss has developed GDE+ which handles:

simple dynamic aspects, multiple tests, hierarchical

knowledge and unreliable observations [Struss 89].

GDE+ is a migration back to heuristic or empirical diag-

noses using fault-based reasoning. Struss points out that

neither GDE nor GDE+ address: changing device struc-

tures, complex temporal behaviour (feedback), uncer-

tainty or the use of qualitative models in reasoning. In

[Struss and Dressler 89] the authors advocate the repre-

sentation of a fault view for each component. They point

out that a fault and a healthy view (state) for a compo-

nent cannot be true in the same time instant (consistent

belief rule). They also give the ‘no good inference rule’

where the node and its opposite which represents a fault

cannot be true at the same instant. The ATMS is then

modified to reason with the fault as well as the no-fault

behaviour of a device. Their work gives excellent

insight into combining model and fault-based diagnosis

to deal with GDE’s shortcomings.



Other MBR authors have argued about the defini-

tion of device functionality versus behaviour. Sticklen in

[Sticklen et al. 88] describes modelling a device’s func-

tionality by:

•decomposing the device into sub-devices,

•stating abstractly the functions, goals and purpose

of the device and

•representing the manner of achieving the device

functions, goals and purpose.

A good definition of functionality is one which

argues that function is the set of goals the device is

intended or designed to achieve [Malin and Liefker 91].

Automatic Diagnostic Knowledge Acquisition

Machine learning is a key approach in knowledge

acquisition for diagnosis. Machine learning includes

empirical and analytic learning. Empirical learning

focuses on learning for classification (including learning

rules from real or simulated data for diagnosis). Ana-

lytic learning addresses learning for problem solving

tasks which include planning, diagnosis, design, natural

language understanding, control and execution. There

has been an explosion of work in machine learning in

recent years. It is viewed as one of the key approaches

of reducing the knowledge acquisition bottleneck

[Boose 91; Gaines and Shaw 91].

The MOLTKE (MOdels, Learning and Temporal

Knowledge in Expert systems) testbed for diagnosis

under development at the University of Kaiserslautern,

Germany is described in [Althoff et al. 90]. The system

is designed to acquire device knowledge for diagnosis.

It has an MBR mechanism for acquiring device models

based on their components. A component of the model

includes a name, ports to other components (with

optional test costs), possible internal states (with

optional test costs), behaviour of the component (either

in state tables or rules that represent the constraints the

component sets up between its ports and states), sub-

parts and their interconnections (if the component is

non-atomic), typical malfunctions with name and effects

(model typical behavior when the component fails) and

a priori probability of failure). MOLTKE uses case-

based reasoning to acquire and refine knowledge that is

generalized to a fault-based hierarchy. It also uses expla-

nation-based learning to refine the rules in the fault-

based hierarchy to get the minimum reasoning paths for

a solution. MOLTKE has been applied to a Computer-

ized Numerical Control (CNC) machining center. It is

also under investigation for the problem of driving min-

ing machines.

Carnes and Fischer describe the use of supervised

learning for the placement of sensors in a thermal model

[Carnes and Fisher 92]. They use cluster analysis using

COBWEB to group together observations for diagnosis.

An explicit model of diagnosis (a model-based simula-

tion) is used to place the sensors by generating the vari-

ous states that need to be measured for design or

diagnosis. The approach is novel however sensor place-

ment is not a new issue tackled by machine learning

[Abu-Hakima 93].

Scotty is an expert system under development at

Rocketdyne for the Space Shuttle Main Engine (SSME)

[Modesitt 90]. It is aimed at automating the analysis car-

ried out on firing the shuttle engines. The FBR expert

system is based on the experience of propulsion engi-

neers and it consists of 125 manually derived rules and

1400 automatically induced rules from example runs

which are embedded in a distributed software environ-

ment. The rules are poorly structured and will be moved

to a relational database management system (RDBMS)

to improve the knowledge representation. The author is

also planning to enhance Scotty’s graphics and general-

ize the approach to other Rocketdyne engines. Rule

induction from data as a technique is not new but this

integration with FBR knowledge and its application is

somewhat novel.

ACES (Attitude Control Expert System) diagnoses

anomalies in the attitude control system of the DSCS-III

satellite [Pazzani 90]. ACES is fault-based (rules repre-

sented as Prolog predicates). A fault is confirmed or

denied by comparing the observed behavior to that pre-

dicted with a simulator. In the case where the simulation

denies the fault, the heuristic that proposed the fault is

expanded to include the tests that the simulator per-

formed to rule out the fault. ACES uses explanation-

based learning to identify the conditions under which

the heuristic will propose a fault that is denied. The

author concludes that failure-driven learning finds suffi-

cient conditions for ruling out a fault and success-driven

learning finds sufficient conditions for establishing a

fault (but not necessarily ruling others out). Pazzani’s

work is novel and very relevant to the refinement of

fault-based knowledge using model-based reasoning

and explanation-based learning.

Pearce describes two parallel approaches to acquir-

ing knowledge for FBR diagnosis [Pearce 88]. The first

is generated by a knowledge engineer who hand codes

rules form an expert. The second uses examples of fail-

ure from a simulation and applies AQ, Quinlan’s induc-

tion algorithm, to the data. The author concludes that the

second approach gives much better results. The only

drawback to the use of induction of rules from simulated



data is that one needs a good simulation of a device to

generate the examples from which the expert system is

induced. It is not always possible to find or generate

such simulations.

The collection of jet engine sensor data and its

interpretation while comparing multivariate linear

regression and instance-based learning is described in

[Turney and Halasz 92]. The results of the study indi-

cate that instance-based learning can be the basis for a

useful diagnostic tool for aircraft engine technicians.

The application of instance-based learning for generat-

ing libraries useful in jet engine diagnosis is novel. Such

an algorithm could be integrated with the Jet Engine

Troubleshooting Assistant [Halasz et al. 92] to provide a

technician with an on-line sensor monitoring and jet

engine diagnostic tool.

There has been tremendous activity in machine

learning in recent years. In empirical learning classifica-

tion algorithms such as ID3 and AQ have been used to

induce diagnostic rules from real or simulated data.

Classification learning extracts rules from positive and

negative examples. In analytic learning explanation-

based learning (EBL) has been used in the form of

speedup learning to generalize diagnostic rules and

shorten reasoning chains. I believe that neither classifi-

cation nor EBL addresses the problem of knowledge-

rich learning where structured knowledge is learned.

Such rich knowledge would result from learning to pro-

duce hypothesis hierarchies such as those described in

fault-based reasoning. In addition, learning from struc-

tured knowledge to produce new knowledge, such as

learning a device model from its fault hierarchy has not

been addressed. Learning complex structures especially

for diagnosis is by no means an easy problem but it is

one that needs to be further addressed by a combination

of researchers in both the machine learning and diagno-

sis fields. Some researchers which have combined learn-

ing (empirical or analytic) with FBR and MBR have met

with more success as exemplified by some of the com-

plex problems above. I believe that the key to resolving

the knowledge acquisition bottleneck in diagnosis lies in

the integration of various machine learning algorithms

with partially hand-coded knowledge bases used in FBR

or MBR.

Automatic Generation of Behaviour from Fault

Knowledge: the DR algorithm

Hypothesis

Humans use failure-driven reasoning for successful

device diagnosis and repair. As humans reason they

build primitive mental models of the devices they diag-

nose and repair. The hypothesis for the DR algorithm is

that knowledge of failure and repair embodied in most

structured diagnostic knowledge-based systems can be

used to derive rudimentary device models. The DR algo-

rithm will extract rudimentary device models from fault

knowledge. The device model represents structure and

behaviour and is driven by device functionality.

Motivation

A great deal of effort is expended hand-coding complex

knowledge bases for diagnostic FBR. The artifacts these

diagnostic systems are developed for are often expen-

sive machines which have been designed and continu-

ously modified so that no existing accurate schematic or

design of their behaviour remains. The J85-CAN-15 is a

jet engine which is the first application of JETA. The

J85-CAN-15 engine was designed in the 1950’s and has

easily had at least one modification a year since its

launch. As a result of modifications and stresses of daily

use (flying in the arctic and flying in desert heat) the jet

engine is a very different device than was originally

designed and sometimes displays inexplicable behav-

iour. No existing design schematics can completely cap-

ture the engines’s behaviour. It is also a very difficult

device to diagnose. For these reasons a tool such as

JETA was developed. As is typical with FBR systems,

JETA does not diagnose novel faults. Learning the

device component model, its behaviour and functional-

ity using the FBR knowledge provides the technician

with a tool that can achieve model-based diagnosis. For

these reasons it was concluded that the DR algorithm

should be implemented.

Background

If we follow the de Kleer [de Kleer and Williams

87] approach which represents a device with functional-

ity as a set of components with behaviour. The device

can be diagnosed by assuming a faulty component and

enumerating the behavioural states that the fault propa-

gates in the remainder of the device. This is compared to

the behaviour that a technician is observing in attempt-

ing to isolate a problem. Model-based diagnosis can

detect novel faults since the behaviour of the device is

the basis of its knowledge representation and reasoning.

Fault-based reasoning uses the faults of a device rather

than its actual behaviour, hence it cannot detect novel

faults. However, model-based reasoning can lead to a

combinatorial explosion in producing a diagnosis for

complex systems (for example, an aircraft engine) and it

does not lend itself to causal explanation.



I am currently implementing the DR algorithm

intended to address the automatic generation of a func-

tional model of a device from its fault knowledge. That

implies the automatic generation of MBR knowledge

from FBR knowledge. By extracting a functional model

both fault and model-based diagnosis can be pursued in

a single system gaining from the advantages of the two

approaches while minimizing the disadvantages. The

DR algorithm is being applied in the area of complex

electromechanical devices, specifically jet engines.

Objectives of DR Algorithm

DR is an algorithm that would take as input the fault

knowledge of a device. It may also be necessary to take

as input some background knowledge related to the

device to attempt to learn its full component structure

and connectivity. DR initially extracts from the fault

knowledge base all references to device components

and subsystems. Given these components the algorithm

backtracks through a diagnostic hierarchy of nodes to

generate hypotheses for component connectivity. To fur-

ther establish component connectivity, DR examines

symptomatic or parametric knowledge that activates the

diagnostic nodes. Symptomatic knowledge is knowl-

edge of device failure which can be used to generate

hypotheses about correct device function. This knowl-

edge will be used to derive behavioural knowledge

between components.

Approach to the DR Algorithm

The top level design of the DR algorithm is shown

in Figure 1. Two phases clearly divide the design of the

algorithm. In the first phase, I propose the use of an

existing knowledge base that diagnoses a complex elec-

tromechanical system as input to DR. The Jet Engine

Troubleshooting Assistant (JETA) is a system imple-

mented to diagnose faults with aircraft engines [Halasz

et al. 92]. Background knowledge referred to as a zero-

based model of the device will be the second input. This

background knowledge is general in nature, for example

it could include knowledge that a pump delivers some

liquid from a sink to a source and needs a pressure to

increase or decrease the flow of liquid. It could also

include some knowledge about feedback control in

moderating the flow of a liquid to a source based on the

level of the liquid at the source. It may also include

some relational knowledge about Pressures, Tempera-

tures and Volumes as defined in Physics.

To achieve the knowledge-rich learning proposed

as the output for DR one requires the use of a structured

and explicit knowledge representation that can ade-

quately represent diagnostic causality. I propose to use

the RATIONALE [Abu-Hakima 88] knowledge repre-

sentation which is explicit and provides diagnostic cau-

sality for the representation of the learned model. The

second phase of the DR algorithm compares the func-

tional knowledge of a device exemplified in its device

model of components and their behaviours with the

original fault knowledge. The purpose of the second

phase is to look for inconsistencies and gaps in the

knowledge. The gaps discovered in the fault knowledge

could then be used to diagnose novel faults.

The objective of the DR algorithm is to discover

and refine a behavioural model of a device whose fault

knowledge is represented. In the most general sense the

algorithm must identify the components of the device,

generate links between those components and generate

hypotheses for the behaviours between the components.

To achieve this the DR algorithm must:

1. identify the end nodes (components) in hierarchy

-these are nodes that have no child or sibling refine-
ments

-these are nodes explicitly labelled as replace or
repair-type in JETA as they explicitly refer to
device components

-tag appropriate nodes as physical components
based on semantic information

2. identify the end nodes in the diagnostic hierarchy

related to subsystem to be modelled

-perform a match with the name or any acronym
that could match the subsystem

3. identify the inheritance (direct) links between nodes

-backtrack from end node to parent node and tag

-tag shared parents of a node

-tag siblings of a parent

4. identify the indirect links between nodes

-tag nodes that activate other nodes without a famil-
ial link

-tag nodes that activate other nodes through the
evaluation of parameters

5. hypothesize about the relations (behaviours)

between the nodes

-cluster nodes related by direct or indirect links

-use semantic information (node names or parame-
ter ranges/values) to relate nodes

6. output the device model for verification to the user

-map out the identified components of the sub-
system

-relate the components through the hypotheses



Extracting a Model from JETA’s Fault Knowl-

edge: An Example

An analysis of the JETA fault knowledge shows

layers of knowledge which can be visualized as diag-

nostic trees. The topmost layer is an entry point to jet

engine faults and subsequent layers organize the faults

into various branches. The phases of operation branches

lead to various symptomatic nodes labelled as snags.

These snags in turn are refinable down to repair and

replacement nodes which form the bottom layer of the

diagnostic hierarchy1. If one examines the knowledge

encoded in these bottom nodes more closely one discov-

ers that they represent faults directly on physical engine

components. These physical component fault nodes can

be grouped into those affecting one of thirteen sub-

systems by their nomenclature. One can follow the six

steps of the DR algorithm introduced above to discover

1.  The diagnostic hierarchy is referred to as a network

since it includes relations that are not directly inherited

that allow the JETA reasoner to jump around between

nodes thus forming more of a network than a hierarchy.

the behavioural network for the main fuel system of the

jet engine:

Step 1

One can identify 9 replace nodes through the JETA node

frame slot ‘node-type’.

Step 2

If one takes a specific subsystem, the MFS (Main Fuel

System), one can extract the names of 5 fuel system

replacement nodes by pattern matching with the node

nomenclature *N-MFS-XXX (this is an internal repre-

sentation that was used by the knowledge engineer to

distinguish between nodes):

1. main fuel control (MFC)

2. overspeed governor for MFC (OSG)

3. MFC/ABFC signal line

4. main fuel pump supplying MFC

5. a pressurizing and drain (P+D) fuel valve

Step 3

For each of the 5 replacement nodes direct single and

shared inheritance links can be traced, for example:

• the MFC and MFC/ABFC signal line nodes share

the parent node no hesitation at acceleration area

FIGURE 1. Diagnostic Remodeller (DR) Algorithm Design
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• the P+D valve and main fuel pump share the engine

flameout parent node

• the main fuel control (MFC) delivers fuel to the

engine fuel nozzles

Step 4

Indirect links between the subsystem nodes can be iden-

tified by activation rules and evaluation of parameters.

Step 5

A causal topological network can be the basis for

hypothesized component-behaviour relations. Nodes are

clustered based on direct or indirect links. They can also

be clustered based on semantic knowledge such as

names and ranges of parameter values.

Step 6

The hypothesized device model that includes compo-

nent enumeration and behaviour can be output to the

user for verification. It can also be tested by ‘breaking’

the correct modes of operation as described for Phase 2

of the DR algorithm.

As a device model of hypotheses that link JETA’s

components is formed it is important to explain DR’s

results. This can be achieved by mapping the newly

learned components and behaviours into a set of

RATIONALE hypotheses so that the explanation strate-

gies can be output. This can be achieved by mapping

JETA’s knowledge representation for the causal compo-

nent nodes to RATIONALE’s.

Issues

There are five main issues that I will need to answer

in the implementation of the DR algorithm. The first is

what is the exact form of the learned model when some

or no background knowledge is used. If no background

knowledge is used is the model much more than a causal

model rather than a component-behaviour model? The

latter model is required to diagnose novel faults. Also,

what is the minimum background knowledge required

to learn a device model from FBR knowledge. That can

be extended to explore whether background knowledge

alone provides one with a device model. Can this model

in turn be used to derive FBR diagnoses?

A traditional simulation of a device or process

relates to a device model. A key question is what is

needed in addition to the simulation to generate a device

model or a FBR model which in turn can be used for

diagnosis?

The DR algorithm will be implemented as a general

algorithm useful in generating models for devices other

than jet engines. It is not obvious that its background

knowledge will make it specific for generating a particu-

lar model. However the FBR knowledge used as input

will make it specific to generating a model for a particu-

lar device. One question could be whether or not the

algorithm can be generalized further so that it diagnosis

abstract (e.g. software) versus physical (e.g. jet engine)

systems.

Finally, the DR algorithm requires a highly struc-

tured FBR knowledge base. One key question is what

criteria will allow it to extract a causal model from a

rule- versus a frame-based fault model.

Conclusion

This paper argues that automated knowledge acqui-

sition for diagnosis has had limited success in both fail-

ure-driven diagnosis and model-based diagnosis. The

DR algorithm for the automated generation of causal

models from fault-based knowledge is introduced. An

example of fault-based knowledge from the Jet Engine

Troubleshooting Assistant (JETA) is used to demon-

strate how a causal model of the main fuel system of a

jet engine can be extracted with DR from the fault

knowledge.
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