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Abstract

This paper describes a method of automatically per-

forming the registration of two range images that have

signi�cant overlap. We �rst �nd points of interest

in the intensity data that comes with each range im-

age. Then we perform a triangulation of the 3D range

points associated with these 2D interest points. All

possible pairs of triangles between the two 3D trian-

gulations are then matched. The fact that we have

3D data available makes it possible to e�ciently prune

matches. We do this pruning by using a simple and

e�ective set of compatibility tests between potentially

matching triangles and vertices. The best match is the

one that aligns the largest number of interest points

between the two range images. The algorithms are

demonstrated experimentally on a number of di�erent

range image pairs.

1 Introduction
Registration is the process of aligning images so

that they are in a common co-ordinate frame. When
building geometric models from dense 3D range im-
ages [1] it is necessary to acquire images from di�er-
ent viewpoints. The �rst step in the model building
process is the registration of these range images. This
registration step currently relies on accurate mechani-
cal positioning devices, or on manual processing. The
idea of using the 3D data itself to perform the reg-
istration automatically is attractive. The assumption
is that individual range images will have a signi�cant
overlap. When the registration between two images
is correct these overlapping portions of both images
should blend together with little error, since they rep-
resent the same surface region.

In practice, this type of data driven registration can
be further divided into two subclasses: constrained
and unconstrained. In the constrained case the as-
sumption is that the transformation between the two
range images is already approximately known. This
initial estimate of the transformation is then re�ned

with an iterative closest point (ICP) algorithm [2].
When there are no prior constraints on the transfor-
mation the standard ICP approach will often fail, since
it requires an approximately correct initial transfor-
mation to converge.

The problem of automating the registration of two
overlapping range images when there are no prior con-
straints on the transformation between them is far
from being solved. Some methods �rst triangulate
each range image, and then attempt to match the
triangulations. The di�culty is that the resolution
of the triangulations is selected heuristically and the
matching process is rather complex [3, 4]. Attempts
at making the ICP process itself more robust have had
some success [5]. However, they do not address the ba-
sic limitation of the ICP algorithm, that is the neces-
sity of a-priori having an approximate estimate of the
transformation. Without this estimate the ICP often
�nds a local minimum instead of the global minimum
which represents the best transformation. This is not
surprising since the ICP is searching a non-convex,
multi-dimensional space using a gradient descent algo-
rithm. It is possible to search this multi-dimensional
space using some kind of randomized search [6]. Such
a search process is very costly computationally, and
has not been shown to be practical for the problem of
unconstrained range image registration.

Other work on registering 3D points sets has been
done in the context of medical imagery [7], but this
does not seem to be applicable to range image reg-
istration because of the di�ering nature of the data.
The most successful methods so far in attacking the
problem of unconstrained range image registration use
the rigidity constraint. This constraint says that when
undergoing a rigid transformation the distances be-
tween 3D points is preserved. In [8], the rigidity con-
straint is used in conjunction with a random sampling
algorithm to �nd the registration between two range
images. This algorithm takes as input all the points



in both range images, and has a running time pro-
portional to the total number of 3D points. Since a
single range image may have up to 100K of 3D data
points the initial range images are sub-sampled to be
about 5k points. However, this means that the result-
ing transformation that registers the two range images
is not as accurate as it could be. It is also not clear how
much the range images must be sub-sampled for the al-
gorithm to be practical. The rigidity constraint is also
used in [9]. Here, 3D point triangles are matched us-
ing principal curvatures and the Darboux frame. This
method is applied to a number of range images, but
again since the running time is proportional to the to-
tal number of 3D points the images are sub-sampled to
be around 4K data points. A similar curvature based
approach for registration of rigid bodies has also been
proposed [10]. The problem is that the computation
of curvatures is known to be very noise sensitive.

We propose a new way to automatically register
two range images, without any prior knowledge of the
transformation between them. It is based on the fact
that for every range image, there is also a correspond-
ing intensity image which is in one to one registra-
tion with the range image. This intensity image rep-
resents the amount of light returned by the re
ected
laser beam. Since this intensity image is only obtained
at the frequency of the laser, it is not the same as a
standard broad spectrum intensity image. However,
the texture of the objects scanned by the range�nder
is still clearly visible. Such an intensity image has
previously been used to select matching features be-
tween two range images [11]. In the past this fea-
ture matching process was done manually. Our idea is
to automate this feature matching process to make it
possible to register two range images without requir-
ing any user interaction. The basis of our approach
is the rigidity constraint, which is also the basis of
other registration methods [8, 9]. Our method di�ers
because we �nd feature points in the intensity image,
and then use the associated 3D values of these feature
points in the range image to compute the registra-
tion. Since there are usually no more than 500 feature
points our approach is very e�cient. It does however,
require texture on the objects being scanned, which is
not a requirement of some other methods [8, 9]. How-
ever, we are able to handle geometrically symmetric
objects, which can not be said of methods that use
only the 3D data and ignore the corresponding inten-
sity images [8, 9]. Our method has been tested on
full sized 3D range images, which contain from 60K to
100K data points, as opposed to sub-sampled range
images. We therefore obtain more accurate registra-

tion results, and still do so in reasonable time. To our
knowledge, our approach is the only automated regis-
tration method which does not require that the range
images be signi�cantly sub-sampled.

Instead of using the intensity data of the laser
range�nder to �nd features it is possible to use the in-
tensity data of a separate colour digital camera. Such
a camera can be co-mounted with the laser range�nder
[12, 13]. Then a calibration process can be used to �nd
the associated range point for each pixel of the color
camera. This type of color image di�ers from the in-
tensity image that comes from the re
ected laser light
of the range�nder since it is a broad spectrum image.
It is therefore easier to �nd features in such a separate
color image. These features can also be used in our
registration algorithm, assuming the 2D and 3D sen-
sors are properly calibrated. In this paper we use only
the features that come from the intensity data associ-
ated with the laser range�nder data. This is a harder
test of our algorithm, but even in this case it is often
possible to successfully perform reliable registration.

Note that for our approach be successful there must
be at least 20% to 30% overlap between the two range
images in order for there to be enough common fea-
ture points. This is also a requirement of other data
based range image registration schemes [8, 9]. Our
algorithm uses corner-like features as the basis of the
matching process. Such features have been used with
2D intensity images to compute the fundamental and
essential matrix [14, 15] when there is no 3D data at
all. For these 2D matching algorithms to be e�cient
it is necessary that the viewpoints of the two inten-
sity images be relatively close together. This is be-
cause they gain their e�ciency by limiting the range
of possible correspondences of a feature point. The
assumption is that the matching feature point in the
other image is within a limited distance of the origi-
nal feature point, usually no more than one quarter of
the image size [15]. If there is no limit on the range
of possible correspondences for each 2D feature point
then these algorithms become computationally infea-
sible. Such a correspondence search limit is natural
if the 2D images are obtained from a video sequence,
since in this case they are acquired at a rate of 30hz.
By contrast, range images are normally acquired from
substantially di�erent viewpoints. Therefore, it is not
reasonable to make any assumptions on the set of pos-
sible correspondences for a given feature point. In
other words, we are solving the problem of uncon-
strained image registration, not the less di�cult prob-
lem of constrained image registration. The thesis of
this paper is the that when 3D data is available this



more di�cult problem can still be solved e�ciently
because the rigidity constraint makes it possible to
prune the vast majority of false matches. This is not
the case when using 2D data alone, since in this case
the rigidity constraint does not hold.

2 Algorithm Description
The registration algorithm has as its input two

overlapping range images along with their associated
intensity images. The output is the relative 3D trans-
formation between these two images. The algorithm
proceeds as follows:

1. Compute interest points in the intensity data of
each of the two range images.

2. Compute a 3D Delaunay tetrahedrization of these
interest points using their associated 3D range
points.

3. Find all the compatible triangle pairs between the
two range images. The compatibility criteria con-
sider both the triangles and the individual trian-
gle vertices.

4. For each compatible 3D triangle pair, compute a
transformation between the range images.

5. Return the transformation which aligns the
largest number of 3D interest points.

We will now describe each step in the registration
algorithm in more detail.

2.1 Compute interest points

Informally, an interest point is an area of an image
where there is a large change in the local intensity.
The procedure to compute such points is to �rst �nd
the local maxima of the intensity gradient [16]. Then
the maxima that are above a certain threshold are
classed as interest points. An example of a good in-
terest point is a corner, since it is clearly a maximum
of the gradient in both directions. By contrast, an
ordinary edge has a signi�cant intensity gradient only
in one direction, and is therefore not a good interest
point.

The number of interest points found by this process
depends on the threshold value of the interest opera-
tor, and also on the texture of the object. We will
show in our experiments that successful registration
results can be achieved using a wide variety of inter-
est operator thresholds. We do require that the ob-
jects have enough texture for a signi�cant number of
interest points to be found. The feature points found
by this interest operator in the intensity component of
the range image of a duck is shown in Figure 1.

Figure 1: Feature points in the intensity component
of the range image of a duck.

2.2 Compute Delaunay Tetrahedrization

Each interest point in the intensity data has an as-
sociated 3D data point in the range image. Three such
interest points therefore de�ne a 3D triangle. Match-
ing a single pair of triangles between two range images
is su�cient to compute the relative 3D transformation
between them. If there are m feature points, then

there are
�
m

3

�
possible triangles. Therefore if one im-

age has m feature points, and the other has n, then

the number of possible matching triangles is
�
m

3

��
n

3

�
.

Considering all such possible matching pairs of trian-
gles is computationally infeasible. Our idea is to �rst
compute a Delaunay tetrahedrization of the 3D co-
ordinates of the interest points in each image, and to
then only use the triangle faces of the tetrahedrization
as possible matches.

The Delaunay tetrahedrization of a set of 3D points
is both unique and invariant to viewpoint. We com-
pute it using an e�cient algorithm which runs in
O(n logn) expected time [17]. By considering only
pairs of triangles in the tetrahedrization as possible
corresponding triangles we greatly limit the search
space. This is because these triangles are a small sub-
set of all the possible triangles that can be created
from a set of 3D interest points.

Consider the Delaunay tetrahedrization of the in-
terest points that come from the overlapping region
of the two range images. If these computed interest
points are the same in each range image, then the tri-
angles of the tetrahedrization of these 3D points in
the overlapping region will also be the same. In prac-
tice, the interest points will di�er somewhat between
images, so the triangles will also di�er. Even so, it is
usually the case that a majority of the interest points
computed from the overlapping regions of each range
image are identical. So there is very likely to be at
least one matching pair of triangles between the two



Figure 2: The triangles in the Delaunay tetrahedriza-
tion of the 3D co-ordinates of the 2D feature points.

range images in this overlapping region. This makes
it feasible to consider only these triangles as potential
matches. The triangles in the Delaunay tetrahedriza-
tion of the 3D feature points of the duck is shown in
Figure 2. The 3D feature points are obtained from the
2D interest points that were shown in Figure 1.

2.3 Compatibility Measures between Tri-
angles

Typically, there are in the order of 250 feature
points, and around 5,000 triangle faces in the 3D De-
launay triangulation of the interest points. A brute
force algorithm to match these triangles is still not
practical, since there are in the order of 107 potential
matches. To make this triangle correspondence search
e�cient we make use of the rigidity constraint. This
constraint says that the length of each triangle edge
is unchanged after applying the transformation that
aligns the two range images. Therefore only triangles
that have approximately the same edge lengths need
be considered as potential matches. By using the ap-
propriate data structures it is possible to e�ciently
�nd such matching triangle pairs.

To do this we sort the edge lengths of each triangle,
from the largest to the smallest. Each of these lengths
is then quantized into k bits so that a triangle can be
represented by a 3k bit string. Then we sort all the
bit strings for the Delaunay triangles in each image.
All the triangles that have the same bit string are put
together in a linked list. Using this data structure
it is easy to �nd all the triangles with the same bit
string in both images. We only consider such pairs of
triangles as potential matches, all other triangle pairs
can be ignored. If there are a total of t triangles,
and their edge lengths are distributed uniformly, then

there are on the average t=(23k) triangles that have
the same bit string. Of course, this is the ideal case,
and in practice the edge lengths are more clustered.

Type of object

Compatibility test Duck Vase Exca Boat

Triangle edge length 118.2 64.0 321.3 273.7
Vertex face normal 15.4 31.5 63.2 94.0
Vertex inter-feature 25.8 50.4 66.6 64.3

Table 1: Comparison of the e�ciency of various com-
patibility tests: ratio of possible matches to accepted
matches, the higher the number the more e�cient the
test.

The value of k in our experiments is usually 5 or 6,
and is chosen so that the length represented by the
smallest bit is approximately equal to the resolution
of the range image.

The total number of possible triangle pairs is the
product of the number of Delaunay triangles com-
puted from each range image. The actual number of
triangle pairs that have the same bit strings is con-
siderably less. The ratio of the two numbers; the to-
tal number of possible triangle pairs over the actual
number of pairs that have the same bit string is an
indication of the e�ciency of the compatibility test.
This edge length compatibility test for pruning pos-
sible triangle matches is very e�cient, as is seen in
Table 1. In this table we show the e�ciency of the tri-
angle edge length test for the four range image pairs
that are discussed in the experimental section.

2.3.1 Compatibility Measures between Fea-

ture Points

Each pair of triangles that have approximately the
same edge length generates three potentially matching
vertices. We now describe some compatibility tests to
further prune these matching triangles by checking the
compatibility of these matching vertices. We use two
such vertex compatibility tests.

We know that each triangle vertex is also a 3D
point in the range image where it has a number of
local neighbours. An estimate of the surface normal
for each 3D point can be computed by �tting a plane
through the neighbours in a local window surround-
ing that point [18]. The angular di�erence between
the local surface normals of any two triangle vertices
is invariant to a rigid transformation. So for any two
potentially matching triangles this angle di�erence for
each vertex pair should be approximately the same. If
any vertex pair does not pass this vertex angle com-
patibility test it means that the triangles are not com-



Figure 3: Feature points in the overlapping regions of
two range images (the black dots) should have approx-
imately the same inter-point distances.

patible, even if they have the same edge lengths.

The �nal compatibility measure used to prune tri-
angle vertices is more involved. It is based on the
observation that the distances of a feature point to all
the other feature points in the overlapping portion of
each range image should be approximately the same.
In Figure 3 we show the feature points for two overlap-
ping range images. The feature points that are in the
overlapping region are drawn in black. Let all the 3D
feature points in the �rst range image be p1; : : : ; pm,
and in the second image be q1; : : : ; qn.

For every feature point in a single range image
we compute the 3d distances of all the other fea-
ture points in that image from the given point. Then
we sort these distances, from the closest to the far-
thest. When there are m feature points this will pro-
duce a vector (d1; :::; dm�1) of sorted distances. We
call such a vector of sorted feature distances with re-
spect to a given feature an inter-feature distance vec-
tor. Similarly, in the other image, when there are n
feature points, there is an inter-feature distance vec-
tor (d1; :::; dn�1) of sorted distances for each of these
feature points. The inter-feature distances should be
similar for matching 3D feature points. The degree of
similarity depends on the overlap of the range images,
and on the position of the particular feature point in
the overlapping region. Feature points that are closer
to the center of the overlapping region are more com-
patible than others.

To compute this compatibility between any two fea-
ture points in the two range images we compare their

sorted inter-feature distance vectors. If two features
match they are in the an overlapping region (see Fig-
ure 3), so some subset of the distances in their inter-
feature distance vectors should also be similar. Find-
ing out how many such distances are similar can be
done with a simple O(m+n) merge sort of their inter-
feature distance vectors. The larger the number of
similar distances then the more the likelihood that
these two feature points are a valid match. We re-
quire that all the vertices of a matching triangle pair
have more than a certain number of similar distances
in their sorted inter-feature distance vector. If any ver-
tex pair of the matching triangles does not pass this
test, then the triangle pair is rejected. Other com-
patibility measures have been proposed for matching
points in dense range image [9, 19]. However, these
measures are not suitable for a relatively sparse set
of 3D feature points. Also, these approaches have a
costly pre-processing phase in which it is necessary to
build the data structures required for the matching
process [19].

In the same way as for the triangle compatibility
test, it is possible to compute the e�ciency of these
two vertex compatibility test. The test e�ciency is
the ratio of the number of all possible matching ver-
tex pairs to the number of compatible vertex pairs.
The higher this number, the more e�cient the com-
patibility test. In Table 1 we show the e�ciency of
the local surface normal test and the inter-point fea-
ture compatibility test for the four range image pairs
that are discussed in the experimental section. Since
these tests are performed serially their e�ect is multi-
plicative, which means that the vast majority of false
matches are pruned.

2.3.2 Computing Transformation

Once both the triangle and vertex assignments passes
these compatibility tests the transformation that
aligns the two triangles is computed. If this transfor-
mation is correct it should also align all the matching
interest points in the overlapping regions of the two
range images. After the transformation has been ap-
plied to align the two images the quality of the match
can be determined by counting the number of interest
points in the �rst range image that are within a small
distance of an interest point in the second range im-
age. To do this e�ciently we use a voxel grid, which
has an occupied voxel for every interest point in the
second image. The grid resolution is simply set to the
resolution of the range image. The total compatibility
score for a transformation is the number of interest



points that are aligned correctly in this fashion.

2.4 Algorithm Summary

The pseudo-code for the entire algorithm is as fol-
lows:

for each of the two range images

-find the interest points in the intensity image;

-obtain the 3D range value for each such interest point;

-compute the 3D Delaunay tetrahedrization for all these 3D points;

-compute the bit length key for each Delaunay triangle;

-store the Delaunay triangles in a list associated with each key;

endfor

for all the triangles in one image with the same bit length key

-find all the triangles in the second image with the same key;

-if the surface normal differences of the triangle vertices match

and their inter-feature distance vectors are compatible

then

-compute the transformation that aligns the two triangles;

-apply this transformation to all the interest points

in the first image;

-count the number of interest points in the second image

that are close to an interest point the first image;

-save the transformation that aligns the largest

number of interest points;

endif

endfor

3 Complexity Analysis
The computation time to �nd the interest points is

proportional to the number of 3D points in the range
image. Since �nding the interest points requires only
simple local operations little time is taken for this step
[16]. If l interest points are found in the range image
then the time required to compute the Delaunay tetra-
hedrization is O(l log l). The computational time for
both these steps is much less than the time required
for the matching step. To analyze the complexity of
the matching step, assume that we have m 3D Delau-
nay triangles in one image, and n in the other. Also,
assume that the key length is k bits for each edge.
Then the average number of triangles in the �rst im-

age with a given key is m=(23k), and in the second is

n=(23k). All the triangles with matching keys in both
images are potential matches, which means that each

bit length key will have on the average mn=(26k) po-
tential matching triangle pairs. Each potential match-
ing triangle pair requires O(m) operations to evaluate
the number of interest points aligned by the associ-

ated transformation. Since there are (23k) possible
bit strings this implies that the time required on the

average to perform the matching step is m2n=(23k).
This analysis assumes that the Delaunay triangles are
equally distributed across the entire key set. It also
does not take into account the vertex compatibility
test, which reduces the number of matches. Neverthe-
less, it is fair to say that the overall running time is
a�ected by the actual distribution of the edge lengths
of the Delaunay triangles. If there are many triangles
of almost equal size, then the algorithm will be slower.

There is also the time taken for the two vertex com-
patibility tests. To compute the local surface normal
di�erence between the vertices is a very simple and
fast operation. To compute the inter-feature distance
compatibilities for a given vertex pair requires a merge
algorithm, which is O(m + n). Here m and n are the
number of feature points in both images. The compu-
tation of the inter-feature distance compatibility mea-
sure requires that we �rst sort the inter-feature point
distances for all feature points, which take O(n2 logn)

andO(m2 logm) time. This sorting operation needs to
be done only once before the matching process begins.
Computing the compatibility checks between triangle
vertices is therefore not a signi�cant computational
burden. Our conclusion is that assuming a reasonably
uniform distribution of triangle edge lengths, the av-
erage running time of the entire process is a low order
polynomial function of the number of interest points
in both images.

4 Experimental Results

In our experiments, we register overlapping range
images of a number of di�erent objects. The
range�nder used to take these images returns both the
3D range data and three channels of registered color
intensity data [20]. We convert these R,G,B color
channels to hue, intensity and saturation. We then
�nd the interest points in the intensity component and
currently ignore the hue and saturation components.

The �rst two objects in our experiments are a duck
and vase. In parts (a) and (b) of Figures 4 and 5
are the computed interest points in the intensity com-
ponents of the two overlapping range images of each
object. Part (c) of both �gures shows two renderings
of the correctly registered 3D range images. In these
renderings, each range image is distinctively shaded,
which demonstrates that the two views have been ac-
curately registered. It should be noted that the initial
registration obtained by our method has been further
re�ned by a fast ICP algorithm which operates only
on the interest points, not the entire image [2]. Note
that the two range images of the vase could not be
registered correctly using just the 3D data, since they
are rotationally symmetric. However, they were suc-
cessfully registered using the intensity features, which
are not rotationally symmetric.

As a further experiment we took all the range im-
ages of a number of objects and by hand selected those
pairs that had signi�cant overlap and attempted to
register only these pairs. We then classi�ed the reg-
istration results as successful (very accurate registra-
tion), partially successful (accurate enough for an ICP



Type of object

Results Duck Vase Head

Success 1 3 3
Partial success 1 1 2
Failure 1 3 2

Table 2: The results of range image pair registration
for di�erent objects.

post-processing step to converge), or failed (not close
enough for an ICP to converge). Table 2 below shows
the results for three objects which have di�erent de-
grees of texture. It seems that success depends on both
the object texture and the amount of overlap. Cur-
rently the range image acquisition is done in a fashion
which produces around 10% to 20% overlap per image
pair. Our registration algorithm requires at least 20%
to 30% overlap for success. Given the inherent advan-
tages in automating the registration process it is likely
that the data collection process will be modi�ed in the
future so that the range images have more overlap.

If there is not su�cient texture on the object, then
we can use the texture of the background to aid in the
registration. To demonstrate this we printed a pattern
of small randomly placed rectangles on a sheet of pa-
per, and placed an object to be scanned on the paper.
We have taken a small object, a toy excavator, and
rotated it by approximately 90% degrees. Since the
object is �xed to the paper, as the object rotates, so
does the background pattern. In this case the rotation
axis is �xed, but we do not make use of this fact in our
algorithm, nor do we assume that the background tex-
ture is coplanar. We also do not have self-identifying
targets in the background. Instead we use only the
corners of this random box pattern as feature points.
The experimental results are shown in Figure 6. In
parts (a) and (b) of the Figure we see the interest
points and in part (c) we see the two registered range
images. In this �gure there is no distinct shading of
the points from each range images, instead all the 3D
data points are simply drawn in their �nal location.

When there is not enough natural texture on the
object, or on the background, our registration method
will not work. In such cases one possibility is to
project texture using, for example, a set of projected
dot patterns. For now, we have conducted a simple
experiment which shows that the basic idea of texture
pattern projection will work. We have drawn by hand
on a toy boat without texture some black dots using

a marker, in order to simulate a set of projected dots.
Our goal is simply to show that the registration pro-
cess does work when using only these dot patterns on
an object that has no signi�cant texture. The results
of this experiment is shown in Figure 7. In parts (a)
and (b) we see the interest points obtained from the
black dots. In part (c) we see the two registered range
images drawn as a set of 3D points.

In terms of execution time each registration took on
the order of thirty seconds to three minutes on a Sili-
con Graphics Indigo R4000 workstation. The required
time grows with the number of interest points. When
there are up to 500 interest points the execution time
is still reasonable. Of course, if we add more a-priori
constraints on the registration transformation, such
as a limited amount of rotation, then the execution
time decreases signi�cantly. In all these experiments
there was very little tuning of the thresholds of the in-
terest operator. Examination of the feature points in
Figures 4 and 5 shows that this operator does not pro-
duce identical points of interest in each range image.
Since we only require a single Delaunay triangle pair
to be in correct correspondence, such di�erences in the
interest points can easily be handled by our approach.
By performing an exhaustive search we are very likely
to �nd at least one correctly matching triangle pair.
For this reason our method is relatively insensitive to
the threshold settings of the interest operator, and the
triangle and vertex compatibility tests.

In these examples the two range images have signi�-
cant rotational di�erences. Since the algorithm makes
no assumptions about the transformation between the
two images it can still �nd the correct transformation
even under these conditions. Success does depend on
there being su�cient texture and overlap in the range
images. While these experiments show the method
has promise, more systematic experiments are neces-
sary to accurately quantify the performance.

5 Conclusions

This paper has presented a method of registering
range images by �nding interest points in the corre-
sponding intensity data of each range image. The ba-
sic idea is to triangulate the 3D co-ordinates of these
2D interest points, and then to only match the re-
sulting 3D triangles. Putative matches are pruned us-
ing a set of compatibility tests derived from the rigid-
ity constraint. The best match is the one that aligns
the largest number of interest points between the two
views. It is found using an exhaustive search of the
possible matching Delaunay triangle pairs. We be-
lieve that exhaustive search is practical when 3D data



is available. The fact that a rigid transformation pre-
serves distances (the rigidity constraint) means that
simple compatibility tests can be used to prune many
false matches. These compatibility tests are very e�-
cient, as was shown in Table 1, especially since their
e�ect is multiplicative. The fact that the rigidity con-
straint holds for 3D range data is one of the main
advantages of processing such data. The rigidity con-
straint does not hold for 2D data, since the projection
operator used to create 2D images does not preserve
distances.

Using only 3D interest points, and furthermore us-
ing only the Delaunay triangles computed from these
interest points to do the matching, greatly reduces the
computational requirements of the registration algo-
rithm. We have demonstrated that our method works
on a number of experimental examples. We are able
to register range image pairs without assuming any
prior knowledge of the transformation between these
images. To use the automatic registration algorithm
there should be su�cient texture in both images, along
with at least 20% to 30% overlap between them. This
degree of overlap is not di�cult to ensure when col-
lecting range images. The next step will be to make
the method practical for objects that have no natural
texture by using projected texture to generate feature
points.
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(a)

(b)

(c)

Figure 4: (a) and (b) Feature points found in the in-
tensity component of two di�erent range images of a
duck. (c) The two duck range images registered to-
gether.

(a)

(b)

(c)

Figure 5: (a) and (b) Feature points found in the in-
tensity component of two di�erent range images of a
vase. (c) The two vase range images registered to-
gether.
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Figure 6: (a) and (b) Feature points found in the in-
tensity component of two di�erent range images of an
excavator model. (c) The two excavator range images
registered together.

(a)

(b)

(c)

Figure 7: (a) and (b) Feature points found in the in-
tensity component of two di�erent range images of a
boat model. (c) The two boat range images registered
together.


