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ABSTRACT
This paper presents an algorithm for decision-making in
multiple open ascending-price (English) auctions where the
buyer needs to procure a complete bundle of complemen-
tary products. When making bidding decisions, the utility
of each choice is determined by considering the buyer’s ex-
pected utility of future consequential decisions. The prob-
lem is modeled as a Markov decision process (MDP), and the
value iteration method of dynamic programming is used to
determine the value of bidding/not bidding in each state. To
ease the computational burden, three state-reducing tech-
niques are employed. When tested against adaptations of
two methods from the literature, results show that the algo-
rithm works significantly better when sufficient information
on the progress of other concurrently running auctions will
be available when future bidding decisions are made.

Keywords
multiple auctions, bundle purchasing, decision analysis, ex-
pected utility, Markov decision process, dynamic program-
ming

1. INTRODUCTION
As the volume of e-commerce completed through online auc-
tions rises, so does the need for efficient and effective decision-
making systems that can analyze several options and help a
potential buyer make rational bidding decisions. Several on-
line auction sites such as eBay have grown considerably over
the past few years by mainly targeting the consumer, but
recent research has shown that more and more businesses
are integrating online auctions into their supply chains [13].
As a consequence, there is a growing need for services that
can assist the Internet buyer in making effective decisions
on which auctions to pursue as well as how much to bid.
Since the space of auctions in which one can participate on

the Internet can be vast and diverse, these services must
use efficient computational methods for analyzing auction
data and buyer preferences in order to determine an opti-
mal course of action. Such a computational method is the
focus here.

In this paper, a decision-making algorithm is presented for
use by an agent that needs to purchase one of possibly many
bundles of products, where items are sold individually in
auctions. In our context, we consider a bundle to be a user-
defined set of complementary products. There may also be
alternatives for certain products, and consequently several
acceptable bundles. For example, a box of nails N may
require the use of a hammer, but there may be two differ-
ent acceptable hammers H1 and H2. Thus, each of NH1

and NH2 might be acceptable bundles. The agent may also
have preferences over the set of bundles (e.g. if H1 is more
durable than H2). We consider open ascending-price (En-
glish) auctions where the start time, finish time, opening bid
and minimum bid increment are fixed and known in advance.
There is no restriction on auction times (i.e. time periods for
some auctions may overlap). The goal is to analyze the in-
complete information on current and future auctions and
make bidding decisions that give the agent the best chance
of ultimately procuring the best bundle in terms of bundle
preference and cost.

Bidding decisions can be quite difficult in this model since
typically only the buyer’s values for entire bundles are known.
If each of the items is auctioned off individually, then it is
difficult to ascertain the value of each item and thus the
amount to bid, if any. Instead, decision analysis must be
used to consider the current bid and expected outcomes
of other current and future auctions in order to determine
whether the expected utility of bidding is higher than the
expected utility of not bidding. Previous work (see Byde
et al. [7] and Preist et al. [12], for example) has analyzed
the problem of determining the expected utility over sets
of auctions, but this work bases the decision of whether or
not to participate in an auction on whether or not the auc-
tion is part of the best set, based on the expected outcomes
of the auctions. The values of choices at future decisions
are not considered. Boutilier et al. [3] consider the setting
where bundle purchasing is done over a number of sequen-
tial first-price sealed-bid auctions, and compute the value of
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Figure 1: (a) Current bid progress for an auction
up until time t1, indicating the range of possible fi-
nal outcomes at tf given the bid at t1. (b) Bidding
progress made in the same auction up until t2. Un-
certainty of the final outcome is decreased.

a bid based on future decisions by modeling the problem as
a Markov Decision Process (MDP). This works well since
the expected utility of bidding is determined based on the
expected utility of subsequent bidding decisions.

In our model however, since we consider open-cry auctions
that may be occurring simultaneously, there is much more
information to process at each bidding decision point. Specif-
ically, when a decision is made, the current leading bids in
other concurrently running auctions are known. While the
ultimate winning bids for these auctions may not be known
for certain, they likely can be predicted more accurately
than if no information was available at all. Thus this in-
formation is used in determining the value of each choice
(bidding or not bidding) when a decision must be made.
Since the value of a choice depends on the values of subse-
quent choices that will arise as a result, the value of future
choices must be accurately assessed. This requires consid-
eration of that fact that new information (i.e. the current
bids) will be known at that time. For example, when de-
ciding whether to bid on the box of nails for which either
hammer H1 or H2 will need to be purchased, the expected
outcomes of the hammer auctions must be considered. If a
bidding decision on H1 will be made while the auction for
H2 is running, we must consider that the current bid for
the auction for H2 will be known when that decision on H1

is made. While this information may not be complete, it
will give the decision-maker some added insight as to the
expected outcome of the auction, particularly if it is close to
the end of the auction. For example, Figure 1(a) shows the
progress made in an auction up until time t1, and indicates
the space of possible winning bids when the auction closes
at tf . Figure 1(b) shows the progress made in the same
auction up until time t2, and forecasts the winning bid from
that point. Since t2 is later than t1, one can predict the final
winning bid in an auction with more certainty if the current
bid at t2 is known. Therefore, while the current bid at t2
might be unknown now (if t2 is in the future), if we know
that decisions about other auctions will be made at t2, we
should consider that this extra information will be available.
Considering this extra information on future auctions when
making decisions about current auctions is the focus of this
paper. While previous work [4] first introduced this con-
cept, this paper formally lays out the algorithm and gives
experimental and theoretical analyses of its performance.

The paper is organized as follows. In section 2 we define
the problem formally, and in section 3 we briefly introduce
the purchase procedure tree as a structure that graphically
depicts the sequence of future auctions and decisions. In
section 4 the model is formulated as an MDP, and three
effective state-reducing techniques are demonstrated. The
dynamic programming model used for solving the MDP is
then given. In section 5 we discuss the performance of our
algorithm compared with two algorithms similar to those by
Byde et al. and Boutilier et al. mentioned above. Neither
of these algorithms was built for this exact auction model,
and thus adaptations are used. Section 6 gives an idea of
the scalability of the algorithm. Section 7 discusses related
work, while section 8 offers a few conclusions and outlines
plans for future work.

2. PROBLEM DEFINITION
Let A be a set of single-unit English auctions where each
a ∈ A is an auction for product pa. Some auctions in A
may be currently running, while others may begin at some
future time. For all a ∈ A, the start time sa, finish time
fa and current bid cba are known. The current bid cba is
defined to be the minimum amount that one needs to bid
in order to hold the leading bid. If the previous bid was
cb′a, then the current bid is cba = cb′a + inca where inca is
the minimum increment (which may simply be one currency
unit if an increment is not specified). When an agent bids,
the new current bid is announced. If the auction has not yet
started (or if no bids have yet been submitted), then cba is
the starting bid. At time fa, the leading bidder is awarded
pa in exchange for the given bid amount.

Let P = {pa | a ∈ A} be the set of products to be auctioned
in A, and let B ⊆ 2P be a set of bundles. Note that two
identical products sold in different auctions are treated as
different elements of P . Each bundle is specified by the
buyer as being a satisfactory and complete set of products.
To specify the buyer’s preferences over bundle purchases,
assume that a utility function u : B×C → < is given, where
C denotes the set of possible bundle costs. The problem is
to decide, for each auction a, whether or not to bid cba on a,
with the goal of ultimately obtaining all resources in some
bundle b ∈ B at cost c such that the buyer’s overall utility
u(b, c) is maximized.

In our model we assume that the buyer only participates in
the auction that will close next. If two auctions close at the
same time, then one is chosen at random to be considered
first. Thus the value of bidding (and not bidding) in any
running auction can be determined at any time simply by
acting as if the auction is about to close. One drawback of
this is that the model does not allow an agent to bid in sev-
eral auctions at once. Participating in only one auction at
a time is however a common strategy, especially with those
who choose to always bid at the last minute. Nonetheless,
we do concede that this is a limitation, and defer the con-
sideration of multiple simultaneous bidding to future work.

3. THE PURCHASE PROCEDURE TREE
In order to structure the decision process, we use a purchase
procedure tree (PPT) [5]. This tree graphically depicts the
process of decisions to be made and auctions in which to
participate in order to procure a complete bundle purchase.
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Figure 2: (a) An example purchase procedure tree.
(b) The new purchase procedure built if A is pur-
chased.

Auctions are sorted by finish time (earliest to latest). The
set of products auctioned on a path in the tree uniquely
corresponds to a bundle in B, and all elements of B are
represented by some path. Figure 2 depicts two examples.
Starting at the root node, the buyer proceeds toward the
leaf nodes, bidding in auctions at auction nodes and making
decisions at decision nodes. Auction nodes are represented
by upper case letters and decision nodes by lower case d’s.
At each decision node there are two choices: participating in
the auction that will end next, which is always represented
by the left child of the decision node, or allowing it to pass.
When the auction ends, if the buyer is the winner then ex-
ecution moves through the left child (which represents the
auction just won), else execution moves to the right. Once
a terminal node is reached, the buyer will have procured a
complete bundle.

The example PPT in Figure 2(a) represents the problem
where there are bundles B = {AB, AC, AE, DF, DG} and
the auction for A ends first. The current decision (d1) to
be made is whether or not to bid on A. The PPT shows
the consequential decisions and auctions which result from
each choice. Note that a new PPT is built for each decision.
For example, if A is purchased and D ends before C, the
tree in Figure 2(b) would be built. The new tree would also
include any new options that may have arisen. Note that
this tree still contains bundles that do not include A, since
it may be possible that such products could be so valuable
or obtainable cheaply enough to justify their consideration,
even if their acquisition could mean that A would be wasted.

4. MODELING THE PROBLEM AS A MAR-
KOV DECISION PROCESS

To determine the expected utility of each option, the se-
quence of auctions and decisions is modeled as a Markov de-
cision process (MDP), and the optimal policy in the MDP is
determined using the value iteration method of dynamic pro-
gramming. Each state in the MDP is a 5-tuple 〈P, c,Acur,
cb, t〉 where P is the set of purchased products, c is the total
amount spent on purchases, Acur is the set of auctions that
are currently running, cb : Acur → < maps each auction in
Acur to its current bid, and t is the time. The set of actions
is Q = {bid, notbid}. Each terminal state has an associated

reward, equal to the utility u(b, c) of purchasing the bundle
b = P at cost c. The value v(s) for a state s is computed as
the expected utility of s. The problem is to determine v(s)
for each reachable state s in order to find the optimal policy
π : S → Q. For a state s′ at which a bidding decision must
be made, π(s′) advises the course of action, either bidding
or not bidding, that maximizes expected utility.

Because of the stochastic nature of auctions, for many ac-
tions it is not known for certain what the next state will
be. However, we assume that the buyer will have some idea
of what the outcomes of an auction will be (by examin-
ing auction history, market history, estimation of competi-
tors reserve values, etc.). We model this information in the
form of a prediction function Fa(c, t, t′). For an auction a,
Fa(c, t, t′) takes a bid c and times t and t′ (where t < t′),
and returns a probability distribution p on the outcomes for
the current bid at time t′ given that the current bid at time
t is c.

4.1 Reducing the State Space
The problem with modeling the decision problem in this
way is that there will be too many states in the MDP for
solution to be computationally feasible. At any given time,
there may be several auctions open, each of which with sev-
eral possible outcomes for the current bid. Also, there may
be several different combinations of items already purchased
by the buyer, and several possible costs for those purchased
goods. An important contribution of this paper lies in how
we deal with this computational complexity without losing
too much of the important information. Three methods that
can be used together to reduce the size of the state space are
demonstrated. Note that our model still works when these
restrictions are not in place. However, it is likely to be unrea-
sonably slow for any interesting set of auctions. Therefore
we show how the state space can be significantly reduced in
such a way that the resulting MDP is still powerful enough
to produce good results. In section 5, we show that our re-
duced model can work significantly better than adaptations
of other techniques from the literature.

4.1.1 Reducing the Set of Time Points
The first reduction method reduces the set T of time points
to contain only those points where an auction is about to
end. Specifically, T = {fa | a ∈ A}. Thus the model
assumes that the agent will only choose to bid in an auction
at the very end. Since this will be the last bid, if the agent
bids, it wins. Realistically, with this strategy the bidder runs
the risk of not having a bid accepted before the deadline if
there are one or more bidders attempting to bid at the same
time, otherwise it would be the optimal strategy. But this
is not necessarily the true strategy to be used by the buyer.
It is only the assumption made about future actions in the
MDP model to ease the computational burden. The buyer
is free to bid earlier in an auction if the expected utility of
doing so is higher than the expected utility of waiting until
the end. As a result, since the utility of winning an auction
with an earlier bid is always at least as good as winning
it with a later bid (since bids never go down), the buyer’s
true expected utility is at least as high as that predicted
by the algorithm (given that the prediction functions are
sufficiently accurate).



Outcome xi p(xi)
x1 = the x such that P (X > x) = .95 .185
x2 = the x such that P (X > x) = .5 .63
x3 = the x such that P (X > x) = .05 .185

Table 1: Outcomes for the PT three-point approxi-
mation

4.1.2 Using the Purchase Procedure Tree
The PPT shows the sequence of decisions and auctions that
follow from any choice. States in the MDP can be envisioned
as occurring at some point in the tree. For example, in
the PPT in Figure 2(a), any state with purchased products
P = {A} and time t = fB can be thought of as occurring
at decision node d2, since these are possible states that the
buyer could occupy when a decision on whether or not to
buy B is being made. The PPT is used to reduce the state
space in two ways. First, for any state s at that can occur
at node n in the PPT, the set P in s is always equal to the
set of ancestor purchases in the PPT. Thus we would never
consider a state at time fB where both A and D had been
purchased, for example. It might still be possible to reach
such a state, but it is unlikely since no bundle contains both
A and D.

Second, an auction a is in Acur in a state s at time t only if s
occurs at some decision node d, d is an ancestor of the node
representing a, and a is running at t. Thus, when a deci-
sion is being made, only the current bids are considered for
auctions that appear as descendents of that decision node.
For example, if the auctions running when the decision at
d3 needs to be made in Figure 2(a) are C, F and G, only
the current bids for F and G would be considered.

4.1.3 Reducing the Number of Bid Outcomes
The number of possible current bids for a set of auctions
can be quite numerous. For example, if the possible current
bid for an auction at a given time could be any integer be-
tween 101 and 200, then there are 100 different outcomes.
If there are 10 similar auctions open at the same time, then
there are 10010 possible joint outcomes for the current bids
in these auctions. The number of states in the MDP can be
greatly reduced by reducing the number of possible bid out-
comes. To accomplish this, we employ the Pearson-Tukey
three-point approximation (PT-approximation) [9, 11]. The
approximation works as follows. For a random variable X
the space of outcomes is reduced to {x1, x2, x3}, each with
probability p(xi) as given in Table 1.

The PT-approximation is used to limit the number of out-
comes given by the prediction function that will have posi-
tive probability. Let pta(c, t, t′, i) be a function that takes a
bid c, times t and t′, and an integer i ∈ {1, 2, 3}, and returns
outcome xi at t′ according to Table 1, given that the bid at
t is c. These values are found using the probability distri-
bution given by the prediction function Fa(c, t, t′), inducing
a new prediction function F ′a(c, t, t′) = p′ where p′ assigns
positive probabilities to the three PT-approximation values.
The set of possible outcomes using the PT-approximation
for the current bid in an auction at a given time is deter-
mined as follows. Let {t0, t1, . . . , tm−1, tm} be the set of time

     100 
 
 
           105             120                130 
 
 
  110   125   138   125   145   160   136   171   190 

Figure 3: A tree giving the set of possible current
bid outcomes specified by F ′a

points that occur during an auction a represented by node
n in the purchase procedure tree, where t0 = sa, tm = fa,
and t1, . . . , tm−1 are the decision times for ancestor decision
nodes of n. The set C(a, n, ti) of possible outcomes for the
current bid at time ti is as follows:

C(a, n, ti) =




{c0} if i = 0
{pta(c, ti−1, ti, j) |

c ∈ C(a, n, ti−1), j = 1, 2, 3} if 1 ≤ i ≤ m
C(a, n, tm) if m < i

(1)

where c0 is the starting bid for a. For example, consider an
auction with starting bid of 100 and an example prediction
function Fa. Also assume that the auction starts at time
0 and ends at 2. The possible outcomes for current bids
can be viewed as a tree, as given in Figure 3. 100 is for
sure the current bid at time 0. This particular prediction
function Fa dictates that if 100 is the bid at time 0, then
at time 1 there is a 5% chance the leading bid will be 105
or below, a 50% chance it will be 120 or below, and a 5%
chance it will be 130 or higher. Thus, F ′a(100, 0, 1) = p′1
where p′1(105) = .185, p′1(120) = .63 and p′1(130) = .185. In
a similar fashion, F ′a(105, 1, 2) = p′2 where p′2(110) = .185,
p′2(125) = .63 and p′2(138) = .185 (as given by the children
of 105). Thus there are at most three possible outcomes at
time 1, and at most nine possible outcomes at time 2.

4.2 Specifying the Reduced State Space
Given these reduction techniques, we formally specify the
state space for the MDP as follows. Each state is a 5-tuple
〈P, c,Acur, cb, t〉 where P is the set of purchased products,
c is the total amount spent on purchases, Acur is the set of
auctions that are currently running, cb is a mapping from
Acur to their current bids, and t is the time. The state space
S is determined by finding the possible states at each time
t, which is done as follows. Let N be the set of decision
and/or terminal nodes in the purchase procedure tree such
that each n ∈ N has critical time (decision or termination
time) equal to t. Let Sn

t be the set of states that the bidder
can occupy at node n in the purchase procedure tree. The
set St of states that include t is then the union of the sets
Sn

t for all n ∈ N . Then

Sn
t = {P} × C × {Acur} × CB × {t} (2)



where P , C, Acur, CB and t are as follows:

• P is the set of purchased products (i.e. the set of
products that label auction nodes on the path from
the root to n in the tree). P is common in all states
in Sn

t .

• C is the set of possible outcomes for the total cost
of purchased products. Let cpre be the amount spent
on products purchased before the root decision time
(i.e. money already spent). Then c ∈ C if c is the
sum of cpre and possible outcomes for the winning bids
for products in P . To state more formally, for each
pj ∈ P = {p1, . . . pm}, let nj be the node in the PPT
associated with pj and let aj be the auction. Then

C = {cpre +

m∑
j=1

cj | (c1, . . . , cm) ∈ C(a1, n1, t)×
C(a2, n2, t)× . . .× C(am, nm, t)}

(3)

• Acur is the set of pertinent auctions. The pertinent
auctions for a node n at time t are those auctions that
are running at t and are represented by descendents of
n in the PPT. Thus these are the important running
auctions. More formally, a ∈ Acur iff a starts before t
and the node representing a is a descendent of n. Acur

is common in all states in Sn
t .

• CB is the set of all possible mappings from Acur to
their possible current bids at t. That is,

CB = {cb | cb(aj) = cj where

(c1, . . . , cm) ∈ C(a1, n1, t)× . . .× C(am, nm, t)}

(4)

• t is the time.

The set St is then the union of all Sn
t , and the state space

for the MDP is thus the union of all St.

Since many possible states are eliminated from the MDP,
it is likely the agent will find itself in states for which an
action is not specified by the optimal policy π. However,
since constructing a new MDP with the current state as the
initial state will be much faster as a result of this reduction,
it can be done in real time each time a decision needs to
be made. The action specified by the optimal policy for the
current state is then advised.

4.3 The Transition Probability Function
The transition probability function Pr(s′|s, q) takes states
s and s′ and an action q and returns the probability of oc-
cupying s′ directly after q is performed in s. In the PPT,
if the agent chooses to bid at a decision point, then the
product is purchased and execution would move to the left
child. Otherwise execution would move to the right child.
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Acur = {A, B, D, E}
Adone = {B}
Aopen = {D, E}
Anew = {F}
A′

cur = {D, E, F}

Figure 4: An example partial purchase procedure
tree where Acur, Adone, Aopen, Anew and A′cur are in-
dicated.

Let s = 〈P, c,Acur, cb, t〉 be a state and let d1 be the node
in the tree where s would take place. Let d2 be the node in
the tree where the next state is encountered after the action
q is performed in s. Let t′ be the time for the states that
occur at d2. Let Adone be the auctions that are represented
by nodes on the path from d1 to d2 (i.e. the auctions that
the buyer will buy from as a result of the action taken), let
Aopen be the auctions that were pertinent and open at d1

and are still pertinent and open at d2 (i.e. are descendents
of d2), and let Anew be the products for new pertinent open
auctions (i.e. for each a ∈ Anew, a starts after t and its node
is a descendent of d2). Figure 4 depicts an example partial
purchase procedure tree where Acur, Adone, Aopen, Anew

and A′cur are indicated. Dashed lines enclose the auctions
that will be running when the decision node at the top of the
enclosure is encountered. Finally, let α be a mapping from
Adone ∪ Aopen ∪ Anew to {1, 2, 3}. Then Pr(s′|s, q) assigns
positive probability to s′ = 〈P ′, c′,A′cur, cb

′, t′〉 where

• P ′ is the set of products purchased before d2 is en-
countered.

• c′ = c +
∑

a∈Adone

pta(cb(a), t, t′, α(a)).

• A′cur is the set of open auctions pertinent at n′ (i.e.
A′cur = Aopen ∪ Anew).

• cb′ gives a new current bid for all auctions in Aopen ∪
Anew where cb′(a) = pta(cb(a), t, t′, α(a)) for all a ∈
Aopen and cb′(a) = pta(c0, sa, t′, α(a)) for all a ∈ Anew

• t′ is the time at d2

The probability of s′ resulting from performing action q in
s is

P (s′|s, q) =
∏

a∈Aall

zα(a) (5)

where Aall = Adone ∪Aopen ∪Anew and z1 = .185, z2 = .63
and z3 = .185.



4.4 Rewards
Rewards are associated only with terminal states. When
an entire bundle b is purchased, the reward is the utility of
buying b for the total cost c. We assume the use of the von
Neumann-Morgenstern theory of utility [14], and use the
bilinear two-attribute utility function as given by Keeney
and Raiffa [10]:

u(b, c) = kbub(b) + kcuc(c) + kbcub(b)uc(c) (6)

where ub : B → < and uc : C → < are the buyer’s utility
functions for bundles and costs, respectively, and kb, kc and
kbc are scaling constants.

4.5 The Dynamic Programming Model
The value iteration method of dynamic programming is used
to determine the optimal action at each state. This optimal
action is the one that maximizes expected value (in this case
value is utility). Let v : S → < be the value function that
assigns to each state its value, let π : S → Q be the optimal
policy and let s = 〈P, c,Acur, cb, t〉 be a state. Then

v(s) =





u(P, c) if P ∈ B
max

q∈{bid,notbid}

∑

s′∈S

v(s′)P (s′|s, q) otherwise (7)

and

π(s) =





null if P ∈ B
arg max

q∈{bid,notbid}

∑

s′∈S

v(s′)P (s′|s, q) otherwise (8)

5. RESULTS
Testing was performed on a set of auctions with the goal
of demonstrating how well our algorithm (referred to here-
after as the “tree-based” algorithm) performs with varying
information available at each decision point. The algorithm
was tested against adaptations of two algorithms from the
literature. The first algorithm is an adaptation of that used
by Byde et al. [7]. While their model allows for multiple
simultaneous bidding in several types of auctions, when de-
termining the expected utility of a choice it does not consider
information over future decisions. The algorithm advises an
agent to bid in an auction simply if that auction is part of
the set of auctions that will yield the bundle with greatest
expected utility. Since the algorithm tends to pursue the op-
tions that are deemed to be the best at that given moment,
we refer to this as the “greedy” algorithm1. The second al-
gorithm is an adaptation of that proposed by Boutilier et
al. [3]. In their model, only sequential auctions are consid-
ered, and thus there are never any other auctions running
each time a bidding decision is made. Also, all auctions
are first-price sealed-bid. The algorithm uses dynamic pro-
gramming to determine the bid amount for each auction that
maximizes expected utility, given the auctions that follow.
We adapt this algorithm to our model as follows. First,
rather than determine the optimal bid, since auctions are

1Note that their algorithm does however allow for simulta-
neous bidding, which we do not allow here.

pa sa fa

A 0 70
B 80 176
C 86 186
D 120 218
E 124 224
F 126 230

Table 2: Initial start and finish times for auctions in
testing

open-cry in our model dynamic programming is used to de-
termine the maximum bid such that the expected utility of
bidding is greater than the expected utility of not bidding,
given the auctions that follow. Second, auction start times
are considered to be later to avoid overlaps. For example if
auction a runs from time 10 to 20 and auction b runs from
time 15 to time 30, if b is the next auction to finish after a
then we act as if the auction for b runs from 20 to 30. Note
that in testing, if a bidding decision is made on a while b
is running, the current bid for b is considered and the ex-
pected outcome is computed accordingly. The fact that they
overlap is just not considered when looking at future deci-
sion points. This algorithm is referred to as the “sequential”
algorithm.

Tests were run using the product set P = {A, B, C, D, E, F}
and the bundle set B = {AB, CE, DF}. The initial auc-
tion times for the various products are given in Table 2.
The purchase procedure tree is shown in Figure 5. An
agent employing each algorithm was tested against 8 dummy
agents who had reserve price and start time chosen at ran-
dom for each auction. Bundle utilities for experiments were
set at u(AB) = .5, u(CE) = u(DF ) = .53, utility for
money uc(c) = 260−c

100
and overall bundle utility u(b, c) =

.5ub(b)+ .5kcuc(c). Dummy reserve values were chosen from
various distributions with mean $100, and the times at which
they commenced bidding were chosen uniformly over the
span of the auction. Dummy activity was initially observed
for each auction so the agents could learn the prediction
function. Fixed-increment bidding (i.e. agents always sub-
mit the minimum bid) was used in auction simulations.

The hypothesis of the test was that the tree-based method
would perform better in relation to the other methods as
the time period for auction C was moved later. As C is
moved later, information as to the eventual outcomes for
the auctions for D, E and F becomes more certain, since the
decision on whether to bid on C moves closer to the other
auctions’ finish times. This changes the expected utility of
not buying A, since the expected utility of not buying A is
dependent on the consequential decision of whether or not
to buy C. The consequences of incrementally pushing back
C’s start and finish time back 2 time points at a time are
demonstrated by the data in Table 3, and graphically in
Figure 6.

A paired t-test indicates that the tree-based algorithm per-
forms better than the sequential algorithm with significance
p = .05 when C ends at 206 or later. The tree-based method
performs significantly better than the greedy method for all
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 Figure 5: Purchase procedure tree used in tests.

C’s auction Tree Seq Greedy
86-186 .5025 .5029 .5013
88-188 .5028 .5030 .5013
90-190 .5030 .5031 .5014
92-192 .5032 .5032 .5014
94-194 .5034 .5033 .5015
96-196 .5039 .5035 .5015
98-198 .5040 .5038 .5016
100-200 .5047 .5040 .5016
102-202 .5047 .5043 .5017
104-204 .5053 .5044 .5018
106-206 .5057 .5046 .5018
108-208 .5061 .5047 .5019
110-210 .5062 .5050 .5020
112-212 .5065 .5052 .5021
114-214 .5069 .5053 .5022
116-216 .5071 .5054 .5022

Table 3: Average utility achieved by each method
over 2000 runs for each auction period for C. Tree-
based algorithm performs better than sequential at
significance level p = .05 when C ends at 206 or
later. Tree-based performs significantly better than
greedy for all C.
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Figure 6: Graphical representation of the data from
Table 3.

C at p = .05. Notice however that the tree-based method
seems to perform worse than the sequential method when
C finished earlier than 192. This is because not enough in-
formation will be known at C’s decision point to give the
tree-based method the advantage. In fact, since the tree-
based method uses approximation techniques, when this is
the case it will estimate the expected utility less accurately
than the sequential algorithm, and thus make poor deci-
sions. Thus the tree-based algorithm can be quite powerful,
but should be used only when sufficient information will be
known at future decision points.

6. SCALABILITY
The number of states in the MDP, given the reductions dis-
cussed in section 4.1, is equal to the sum of the states that
can occur at each decision and terminal node. For a termi-
nal node n with termination time t, the possible states are
Sn

t = {P}×C×{Acur}×CB×{t}. Since P and t are com-
mon in all states in Sn

t , and Acur = φ and thus CB contains
only one (empty) function, then |Sn

t | = 1 × |C| × 1 × 1 × 1
and is thus bounded by the number of possible outcomes for
the auctions for P .

If n is a decision node with decision time t, since P , t
and Acur are common in all states in Sn

t , then |Sn
t | =

1 × |C| × 1 × |CB| × 1. |CB| is equal to the number of
joint outcomes for all auctions in Acur at t, which is deter-
mined as follows. For each ai ∈ Acur, let xi be the number
of ancestor decision nodes d of n such that ai begins be-
fore d’s decision time occurs. Then by equation 1, ai has
at most 3xi possible outcomes at time t, according to the
PT-approximation. The number of joint outcomes for all
ai ∈ Acur is then less than or equal to

|Acur|∏
i=1

3xi = 3
∑|Acur|

i=1 xi (9)

and thus the number of possible states at a node n with
occuring at time t is

|Sn
t | ≤ |C| × 3

∑|Acur|
i=1 xi (10)

where C is the set of possible total costs for the items repre-
sented by ancestors of n in the PPT, and xi is the number
of ancestor decision nodes d of n such that ai begins before
d’s decision time occurs. Thus the algorithm scales well as
the number of auctions increases, as long as |Acur| and/or
xi stay small. As |Acur| and xi grow, the MDP can become
unmanageably large and approximation techniques such as
the use of factored MDPs (see Boutilier et al. [1] or Guestrin
et al. [8], for example) may be needed.

7. RELATED WORK
Research on bidding decisions and strategies in multiple on-
line auctions has been a growing field in recent years. New
problems induced by the possibility of monitoring and par-
ticipating in several auctions at a time have stretched the



limits of classical auction theory, and have been moving into
the domain of computer science. As discussed previously,
the idea of using dynamic programming to make bidding de-
cisions was used by Boutilier et al. [2, 3] to determine how
much to bid where the products were auctioned in sequence.
Those authors also considered the problem of purchasing
bundles, however in their model no auctions overlapped. In
order to formulate distributions of the bid outcomes, they
also examine multi-round auctioning where bid distributions
can be learned over time. Byde [6] used dynamic program-
ming to make bidding decisions in simultaneous auctions
where the bidder is only interested in obtaining a single
product. Byde et al. [7] analyzed the problem of determin-
ing the optimal set of auctions for purchasing multiple units
of a single product, and Preist et al. [12] gave a method
that determines the optimal set of auctions when bundles of
products are needed, and simultaneous bidding in multiple
auctions is permitted.

8. CONCLUSIONS AND FUTURE WORK
In this paper we present an effective algorithm for mak-
ing bidding decisions in multiple English auctions where the
buyer needs to procure one of possibly several bundles of
products. We accomplish this by modeling the problem as
a Markov decision process (MDP), and use a dynamic pro-
gramming algorithm to find the optimal action at each de-
cision point. To ease the computational burden, we reduce
the number of states in the MDP by limiting the number
of decision time points, enforcing the Pearson-Tukey three-
point approximation on the transition probability function,
and utilizing a purchase procedure tree to determine ex-
actly what needs to be analyzed at each state. The dy-
namic programming algorithm determines the expected util-
ity of each choice (whether to bid or not to bid) based on
the expected utility the bidder would have at consequen-
tial decision points. We compare our method with adapta-
tions of two algorithms from the literature, and show that
our method performs significantly better when future bid-
ding decisions will be made when the results of auctions are
known with more certainty. Our algorithm uses the knowl-
edge of this future information availability and more accu-
rately determines the expected utility of current options.
This results in better decision-making.

For future work, we plan to test our method on sets of actual
online auctions, such as eBay. This will involve monitoring
auctions for a period of time in order to determine a pre-
diction function for similar future auctions, and then simu-
lating these real actions with our bidding agent. This will
give an idea not only of how well our technique performs
in real auctions, but also how accurately these prediction
functions can be determined. We also plan to extend the
model so that bids can be submitted to several auctions at
the same time. Considering such possibilities will make the
problem more computationally complex, but we have shown
in this paper that such complications can be overcome with
creative state-reducing techniques.
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