

NRC Publications Archive Archives des publications du CNRC

Fundamentals and applications of laser-induced incandescence Smallwood, Gregory J.

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=a1de71a6-84c6-4161-b77c-b61ea8a8709d https://publications-cnrc.canada.ca/fra/voir/objet/?id=a1de71a6-84c6-4161-b77c-b61ea8a8709d

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC · CNRC

Institute for Chemical Process and Environmental Technology

Fundamentals and Applications of Laser-Induced Incandescence

Gregory J. Smallwood

Institute for Chemical Process and Environmental Technology National Research Council Canada Ottawa, ON, Canada K1A 0R6

> 1st Asian Workshop on Laser-Induced Incandescence 30 October 2009 Hefei, China

National Research Council Canada Conseil national de recherches Canada

RC-CRC Institute for Chemical Process and Environmental Technology

- Background
- Laser-Induced Incandescence (LII)
 - Basics
 - Autocompensating LII
- Applications
- Summary

Institute for Chemical Process and Environmental Technology

Why LII?

What is soot?

- dry solid particles produced through incomplete combustion of hydrocarbon fuels
- terminology varies by scientific field
 - elemental carbon, black carbon, refractory carbon, carbon black
- LII is effective at measuring all of these

- there was a need for substantially improved instruments to quantify nanoparticle characteristics
 - laser-induced incandescence technique for the quantitative measurement of soot nanoparticles
 - concentration, active surface area, and primary particle diameter
 - species selective technique
 - good sensitivity

•

- enhance the state of measurements for practical applications
 - nonvolatile particulate matter emissions

Institute for **Chemical Process** and Environmental Technology

What are the issues with soot?

Assess the ecological and health impacts of combustion

Institute for Chemical Process and Environmental Technology

TEM Images of Nanoparticles Sampled From a Flame

NRC-CNRC

Institute for Chemical Process and Environmental Technology

TEM Images of Nanoparticles Sampled From a Flame

- particulate matter properties of interest:
 - concentration
 - active surface area
 - primary particle diameter distribution
 - aggregate size distribution
 - optical properties
 - volatile fraction
 - composition

- Background
- Laser-Induced Incandescence (LII)
 - Basics
 - Autocompensating LII
- Applications
- Summary

Institute for Chemical Process and Environmental Technology

What is Laser-Induced Incandescence (LII)?

- laser-induced incandescence is a generic name for the physical process of rapidly heating refractory nanoparticles with a laser to the point that the radiative emission from the particles is discernable from the background
- many variants of LII have appeared
 - high fluence (most common)
 - particles are heated to their sublimation temperature
 - low fluence
 - particles are heated to lower than sublimation temperature
 - remote *in situ* nonintrusive measurements (some instruments)
 - fundamental studies on open flames
 - extractive sampling (most instruments)
 - engine and combustor development and emissions measurement

NRC-CNRC

Institute for Chemical Process and Environmental Technology

Further LII Variants

- pulsed laser or cw laser
- time-resolved (TiRe-LII) or gated
- single (narrow or broadband), two, or multiple wavelengths
- 0-D (point measurements); 1-D (line measurements); 2-D (area measurements); or 3-D (volume measurements)
 - iso-concentration surfaces in a turbulent non-premixed flame

[Hult et al., Experiments in Fluids 33, 2002]

NRC-CNRC

Institute for Chemical Process and Environmental Technology

What Does LII Do?

- quantitative measurement for soot:
 - concentration (0.01 ppt 10 ppm volume; 20ng/m³ 20g/m³ mass)
 - active surface area $(50 200 \text{ m}^2/\text{g})$
 - primary particle diameter (typically 5-50 nm)
 - number density of primary particles
- properties are for an ensemble of particles
- measurement features:
 - very high precision and repeatability
 - transient concentration
 - nonintrusive (dilution unnecessary)
 - wide range of applicability
 - potential standardized method
 - measures soot
 - high selectivity

[Schulz et al., Applied Physics B 83, 2006]

Institute for Chemical Process and Environmental Technology

Time-Resolved Laser Induced Incandescence

Institute for Chemical Process and Environmental Technology

10

8

2

(x 10,) (x 10,)

LII Calibration – Correlation to Other Flame Measurements

calibration by comparison of the LII signal to the SVF 140 mm profiles obtained by laser extinction 60 mm LII data laser extinction/scattering data 10 mm -2 Û 2 6

RADIAL POSITION (mm)

[[]Ni et al., Applied Optics 34, 1995]

Institute for Chemical Process and Environmental Technology

LII Calibration – Comparison to Other Instruments

[Schraml et al., SAE Paper No. 2000-01-2002, 2000]

Institute for Chemical Process and Environmental Technology

Determination of Primary Particle Diameter

•

numerically

modelled LII signal

particle diameter

decay of soot at STP

nm
nm
nm
signal decay rate
varies with primary

[[]Schraml et al., SAE Paper No. 2000-01-2002, 2000]

- Background
- Laser-Induced Incandescence (LII)
 - Basics
 - Autocompensating LII
- Applications
- Summary

Institute for Chemical Process and Environmental Technology

Auto-Compensating LII (AC-LII)

- two-color pyrometry coupled with LII to determine the timeresolved particle temperature
 - permits use of low-fluence
 - particles are kept below the sublimation temperature
- this new technique *automatically compensates* for any changes in the experimental conditions
 - fluctuations in local ambient temperature
 - variation in laser fluence
 - laser beam attenuation by the particulate matter
 - desorption of condensed volatile material

Institute for Chemical Process and Environmental Technology

Particle Emission Intensities

[[]Smallwood, Ph. D. Thesis, Cranfield University, 2009]

- blackbody and soot particle emission intensity
 - over range of temperatures encountered in LII over the UV-VIS-NIR spectral range
- emissivity

$$\varepsilon_p = \frac{4\pi d_p E(m)}{\lambda}$$

• soot particles are calculated for $d_p = 30$ nm and E(m) = 0.4

Institute for Chemical Process and Environmental Technology

Soot Concentration from Two-Color Pyrometry

- temperature is determined from the spectral radiance signals at two wavelengths
 - varies with relative E(m) at the two wavelengths

$$T = \frac{hc}{k} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right) \left[\ln \left(\frac{V_{\exp_1} \lambda_1^6}{\eta_1 E(m_{\lambda_1})} \right) - \ln \left(\frac{V_{\exp_2} \lambda_2^6}{\eta_2 E(m_{\lambda_2})} \right) \right]^{-1}$$

- soot volume fraction is determined from the temperature and the spectral radiance signal at either one of the wavelengths
 - depends upon absolute value of E(m) at the selected wavelength

$$f_{V} = \frac{V_{EXP_{\lambda}} \rho}{\eta_{\lambda} w_{b}} \frac{\lambda^{6} \left(e^{\frac{hc}{k\lambda T}} - 1\right)}{12 \pi c^{2} h E(m_{\lambda})} = V_{EXP_{\lambda}} \frac{K_{1}}{E(m_{\lambda})} \left(e^{\frac{K_{2}}{T}} - 1\right)$$

[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

NRC-CNRC

Institute for Chemical Process and Environmental Technology

Experiment: LII Optical Apparatus

[Smallwood et al., SAE Paper No. 2001-01-3581, 2001]

Institute for Chemical Process and Environmental Technology

Absolute LII Signals

[Smallwood, Canadian Section of the Combustion Institute, 2005]

Institute for Chemical Process and Environmental Technology

Real-time Temperature

[Smallwood, Canadian Section of the Combustion Institute, 2005]

Institute for Chemical Process and Environmental Technology

Impact of Low Fluence

[Smallwood, Canadian Section of the Combustion Institute, 2005]

Institute for Chemical Process and Environmental Technology

Impact of Low Fluence

[Smallwood, Canadian Section of the Combustion Institute, 2005]

Institute for Chemical Process and Environmental Technology

Demonstration of Fluence Effects in LII

^{1.2}0.50 mJ/mm² Peak # mence

3.75 mJ/mm²

© Greg Smallwood

Institute for Chemical Process and Environmental Technology

Experiment: Optimum Analysis Interval

[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

- for high quality AC-LII measurements, the optimum analysis interval was found to be approximately 50-100 ns after the peak of the laser pulse
 - maximum soot volume fraction and single exponential temperature decay
 - interval is dependent upon experimental conditions

NRC-CNRC

Institute for Chemical Process and Environmental Technology

LII Precision

- single-shot precision of LII in measuring soot concentration and primary particle diameter is good
- standard deviation is about 5% for these examples acquired above a quenched laminar diffusion flame

[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

NRC-CNRC

Institute for Chemical Process and Environmental Technology

Single-shot vs. Multipulse Averaging

[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

ABOVE

 single-shot (left) and 50shot average (right)

0.05

0.0

RIGHT

 effect of averaging on measurement validation rate

NBC-CNBC

Institute for **Chemical Process** and Environmental Technology

AC-LII Issues

- AC-LII does not always agree with gravimetric •
 - need improved knowledge of E(m) as a function of temperature and wavelength
 - SVF determined by AC-LII varies with fluence

2.0

1.8

1.6

1.4

1.0

1.2

- Background
- Laser-Induced Incandescence (LII)
 - Basics
 - Autocompensating LII
- Applications
- Summary

NRC-CNRC

Institute for Chemical Process and Environmental Technology

LII Applications: Present and Future

- process control of carbon black:
 - aggregate size distribution
 - higher sensitivity to changes in surface area
- air quality monitoring (urban and global):
 - greater concentration sensitivity
 - 0.05 parts-per-trillion (1 femtogram) detection limit
- engine emissions (manufacturers):
 - single-shot transient response
 - determination of volatile organic compound fraction
- vehicle emissions (regulators)
 - improved repeatability
 - on-road emissions measurements

Institute for Chemical Process and Environmental Technology

LII Applications: Artium Technologies Instruments

- Artium Technologies takes an active role, with NRC's support, in working with customers who have purchased the LII 300 (top) or LII 200 (bottom) instruments
 - Easy to use
 - Low maintenance system
 - Low operating costs
 - Very high sensitivity
 - Compact rugged and portable instrument
 - Built-in computer and display, touchscreen control
 - Completely enclosed laser, optics, and sampling cell
 - Built-in pneumatics controller and sampling system
 - Includes real-time pressure and temperature measurements to reduce data to STP
 - Fail safe valve prevents sample from entering cell if purge air or power are off
 - Technologies protected by US Patents 6,154,277 and 6,181,419 under license from National Research Council (NRC) Canada

NRC-CNRC

Institute for Chemical Process and Environmental Technology

LII Measurement of Diesel Nonvolatile Particulate Emissions

[Smallwood et al., 8th International ETH-Conference on Combustion Generated Particles, 2004]

NRC-CNRC

Institute for Chemical Process and Environmental Technology

LII Measurement of Diesel Nonvolatile Particulate Emissions

[Smallwood et al., 8th International ETH-Conference on Combustion Generated Particles, 2004]

Institute for Chemical Process and Environmental Technology

HD Diesel – Steady State

[Smallwood, Canadian Section of the Combustion Institute, 2008]

Institute for Chemical Process and Environmental Technology

HD Diesel – Steady State – 6 Repeats

[Smallwood, Canadian Section of the Combustion Institute, 2008]

Institute for Chemical Process and Environmental Technology

HD Diesel – Transients and Sensitivity

© Greg Smallwood

Institute for Chemical Process and Environmental Technology

HD Diesel – Transients and Sensitivity – 4 rep.

Real-Time On-Road Particulate Measurements

Institute for Chemical Process and Environmental Technology

VW TDI: Stop-Start Urban Driving

[[]Witze et al., 14th CRC On-Road Vehicle Emissions Workshop, 2004]

Institute for Chemical Process and Environmental Technology

Comparison to Thermo-optical: EC

- AC-LII measurements of soot concentration compared to elemental carbon concentration determined by the NIOSH 5040 method
 - error bars represent single shot precision

© Greg Smallwood

 AC-LII measurements of soot emissions from a heavy-duty truck on a chassis dynamometer compared to total particulate matter (TPM) and nonvolatile particulate matter (EC) emissions

[Huai et al., 16th CRC On-Road Vehicle Emissions Workshop, 2006]

Institute for Chemical Process and Environmental Technology

Photoacoustic and AMS – Ambient and Denuded

Urban Air Quality - Toronto - 16 Aug 07

NRC-CNRC Institute for Chemical Process and Environmental Technology LII and A and Denvironmental

LII and AMS – Ambient and Denuded

Urban Air Quality - Toronto - 16 Aug 07

© Greg Smallwood

Institute for Chemical Process and Environmental Technology

Experiment: High Sensitivity LII

- optimize all aspects of the laser-induced incandescence method
- use Lagrangian invariant principle to constrain design of collection optics and receiver
- resulting design was over 500 times more sensitive (ng/m³ level)

[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

Institute for Chemical Process and Environmental Technology

Urban Air Quality – High Sensitivity

Laser-Induced Incandescence - 88 Albert Street - 13 June 2007

© Greg Smallwood

- Background
- Laser-Induced Incandescence (LII)
 - Basics
 - Autocompensating LII
- Applications
- Summary

- a significant contribution has been made to improving the real-time measurement of nonvolatile particulate matter emissions
- autocompensating laser-induced incandescence (AC-LII) addresses some of the limitations of conventional LII, but also introduces new issues
- AC-LII was demonstrated to be highly repeatable, precise, selective, and linear with respect to some other particle measurement techniques
 - real-time measurements and high sensitivity also demonstrated
- LII however has shown uncertainty in the absolute concentration when compared to other methods

Institute for Chemical Process and Environmental Technology

International Workshops on LII

2005

2006

2008

4th International Workshop and Meeting on Laser-Induced Incandescence 19-20 April 2010, Lake Como, Italy

Institute for Chemical Process and Environmental Technology

International Workshops on LII

Fourth International Workshop on Laser-Induced Incandescence: Quantitative interpretation, modeling, and application 18 - 20 April 2010 Villa Monastero, Lake Como, Italy

Institute for Chemical Process and Environmental Technology

NRC-ICPET

- Dave Snelling
- Kevin Thomson
- Fengshan Liu
- Hongsheng Guo
- Bob Sawchuk
- Dan Clavel
- Daniel Gareau
- Reg Smith
- Fazil Baksh
- Ron Jerome
- Dashan Wang

Carleton University

- Prof. Matt Johnson
- Brian Crosland
- James McEwen

Acknowledgements

- Heriot-Watt University
 - Prof. Doug Greenhalgh
 - Vivien Beyer
- Universities of Waterloo
 - Profs. Kyle Daun and James Sloan
- British Columbia
 - Profs. Ruth Signorell and Steve Rogak
- Funding
 - PERD AFTER Program
 - PERD P&E Program
 - PERD UPAIRI Progam
 - NRC/NSERC/BDC Nanotechnology Initiative Program
 - NRC/Helmholtz Program

NRC CNRC

Institute for Chemical Process and Environmental Technology

National Research Council Canada Conseil national de recherches Canada

