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Abstract

Applications for 3D models of objects and scenes are
rapidly growing in number. Active sensors are the most
commonly used means of acquiring geometric models. The
current acquisition process of view planning, sensing, regis-
tration and integration requires a high level of intervention
by 1maging specialists with extensive training and experi-
ence. Automation would improve productivity, freeing hu-
mans for higher level tasks. While progress has been made,
general purpose, automated model acquisition remains an
open problem. View planning, the process of determining
a suitable set of sensor viewpoints, is subject to numerous
competing constraints. This paper presents a theoretical
framework and concept for automated view planning. The
goal is to automatically obtain geometric models of a single
object with a triangulation-based active range sensor.

{Keywords: wview planning, range sensors, object recon-
struction, geometric modelling}

1 Introduction

The imaging environment comprises three main elements:
object, geometric sensor and sensor-object positioning sys-
tem. View planning, also known as the next-best-view
(NBV) problem, involves several challenges, including the
following. The optical baseline of a triangulation sensor
is often significant with respect to the stand-off distance,
with the consequence that shadow effects are an impor-
tant consideration. Calibration will remove most system-
atic errors within the calibrated sensor frustum, however
there are residual random errors and biases. These non-
isotropic effects typically vary quadratically with range,
linearly with lateral displacement from the camera bore-
sight and inversely in proportion to the cosine of the graz-
ing angle. Reflectance or geometric discontinuities intro-
duce measurement biases. Wild measurements (outliers)
can result from several phenomena.

Viewing perspective can be changed by varying either
the sensor or object position. Positioning systems are
subject to mechanical positioning uncertainty ( greater or
lesser than sensor measurement precision), limited range
of motion and, frequently, limited degrees of freedom.
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Figure 1: The Geometric Imaging Environment

Surface topology and geometry of real physical objects
can be quite complex, with multiple holes, concavities,
protrusions and edges. Consequently, the object will self-
occlude in complex ways with variation in sensor view-
point. Furthermore, shape complexity dictates multiple
object views for all aspect coverage.

For all these reasons, any solution to the NBV problem
must satisfy several requirements, including the following:

e meet specified modeling goals while being efficient,
robust and self-terminating,

e demand limited a priori object knowledge and impose
few constraints on object shape,

e incorporate a realistic sensor measurement perfor-
mance model, and

e accommodate a positioning system with a many de-
grees of freedom and incorporate associated con-
straints and a positioning performance model.

No current method meets these requirements.

2 View Planning Survey

Conventional non-model-based view planning methods
(Figure 2) can perhaps best be categorized by the domain
of reasoning about viewpoints - that is, based on surface,
imaging volume or global attributes. Some methods com-
bine multiple techniques.
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Figure 3: Occluding Edges in Geometric Images

Surface-Based Methods The most commonly ex-
ploited NBV mechanism is a geometric jump or occlu-
sion edge [5]. As illustrated in Figure 3, the premise is
that jump edges internal to an image indicate surface ar-
eas not yet sampled, while boundary jump edges represent
the boundary of the unobserved volume. Once having lo-
cated a portion of the object, contour following [8] involves
“painting” the object surface with the sensor by keeping
it in close proximity at all times. The technique has been
applied to a unique range sensor sub-class with a limited
sensing volume where collision avoidance is inherently a
primary concern. Uncertainty in fitting parameterized su-
perquadrics to segmented range data [11] has been used to
guide viewpoint selection.

Volumetric methods Two vozelization methods are
in wide usage - voxel occupancy grids and octrees. Re-
cent work [1] selects the NBV oriented to the centroid
of the cluster containing the largest number of unknown
voxel faces. Voxelization has also been employed [4] with
a NBV objective function incorporating a weighted sum
of visibility and quality terms. Earlier work [2] employs

Mass Vector Chain

Intermediate Space

octrees to more efficiently encode voxel occupancy. The
method selects a NBV as the one able to acquire the most
information about the unseen imaging volume based on ei-
ther a global or local visibility analysis. Space carving [6]
has been applied to the same class of reconstruction prob-
lem as contour following. The sensor is swept through the
imaging work space in a pre-planned methodical manner,
diverting around obstacles, with the objective of reliably
labeling work space voxel occupancy. Standard solid ge-
ometry algorithms available with most CAD packages have
been used to model object knowledge [9].

Global View Planning Methods A few methods
derive view planning cues from global rather than local
characteristics of the geometric data. In [12], NBV selec-
tion is based on a global analysis of the mass vector chain
for the object surface. The intermediate space technique
[7] has been used to separate visibility analysis of the ob-
ject surface from that of the sensor. As yet, ezpert system
approaches have been restricted mainly to view planning
for conventional intensity imaging tasks. In a prototype
industrial digitization system [3], the view planning strat-
egy devised by a human operator is implemented semi-
automonously by lower level automated scanning primi-
tives using a contouring following scheme after a rough
model is first constructed by space carving.

Open Problems As presently developed, none of the
current view planning methods are suitable for high perfor-
mance automated object geometric reconstruction for the
following principle reasons: highly constrained viewpoint
space, inadequate sensor and positioning system perfor-
mance characterization, overly simplistic sensor and posi-
tioning system models, and excessive computational com-
plexity (even for a highly constrained viewpoint space).
The main open view planning problems are efficiency, ac-
curacy and robustness.

3 Theoretical Framework

View planning is the process of determining a suitable
set of viewpoints and associated imaging parameters for
a specified object reconstruction task using a geometric
sensor. The process concerns geometric relationships be-
tween two spaces of differing dimensions - the two dimen-
sional ! surface space S C R? of the target object and a
multi-dimensional imaging work space, or viewpoint space
V. For the class of problem addressed by this work, S
forms a closed space with complex geometry and possibly
complex global topology. A generalized viewpoint (v, As)
includes sensor pose v ( position and orientation) plus a set
( possibly null) of controllable sensor parameters As such
as power and scan length. In general, therefore, a view-
point has a minimum of six geometric degrees of freedom,

IWhile the surface of a 3D object is strictly a subset of 3,
a segmented surface always admits a 2D parameterization.



which we show as V' C R®*. In practice, viewpoint space
V' is subject to constraints - typically, an inner bound-
ary determined by collision avoidance considerations, an
outer boundary determined by the sensor maximum stand-
off range and positioning system limitations with respect
to range of motion and possibly degrees of freedom.

Visibility analysis is important, but is not the sole is-
sue. Several factors exacerbate this already computation-
ally difficult task. First, triangulation-based geometric
sensors are inherently bi-static, requiring a target region
to be simultaneously visible to both the optical transmit-
ter and receiver. Additionally, reconstruction and hence
view planning involves measurability not visibility, neces-
sitating models of the measurement physics, an inherently
noisy process. Finally, for metrology applications, it is ap-
propriate to specify objective modeling goals in addition to
all-aspect coverage.

The object surface space S and viewpoint space V can
be discretized into suitably small elementary regions, s;
and v; respectively. How discretization takes place is im-
portant, but we leave that aside for the moment.

By definition, performance-oriented object reconstruc-
tion begins with a set @ = {qr ;k € K} of quality fac-
tors such as sampling density and measurement precision.
The overall reconstruction quality specification Q will be
a user-defined function of quality factors appropriate for
the application. Quality lies in the eye of the beholder
and can be specified in a variety of ways - analogue or
binary, linear or non-linear, uniform or non-uniform. In
the uniform case, @ = Q(Q). Where quality needs vary
for special interest regions such as high curvature zones,

Additionally, we can think of the quality specification
as a function or filter operating on individual surface mea-
surements. Let ¢;jx be the estimated quality of an single
surface sample s; from viewpoint v; with respect to quality
factor k. For example, ¢;j1 could be estimated local sam-
pling density and §;j» estimated local measurement preci-
sion. Then, the quality of a single measurement from a
specific viewpoint can be expressed as follows:

Gij = Q({ Gijr sk € K}) (1)
Example specifications include quality as an analogue
figure of merit with weighting factors
Gij = w1giji + w2 Gij (2)
or as a composite binary pass/fail variable:
Gij = (Gij1 2 q1) (Gij2 > q2) (3)
Measurability information can be assembled into a mea-
surability matrix [10] M as illustrated in Figure 4
M = M(S x V, Q) (4)
where S xV = {(si,v;) | ss € S,v; €V} and Q is the
quality specification for the modeling task. Then,

M = [m;] (5)

VISIBILITY / MEASURABILITY MATRIX

P

/ ST .
=1 Visibility Matrix:
> Bool Visible(S, VP)

Surface
points.

|

Measurability Matrix:
Analogue [estimated_precision, estimated_sampling_density, ...] (S, VP)
Bool Spec_Compliant (S, VP)

Figure 4: Measurability Matrix

where the elements of M are measurability estimates

mij = Gij (6)

It is instructive to partition M into a set of column
vectors M5 ; and row vectors M; . The set S; of surface
elements measurable by a single viewpoint v; is defined by
the corresponding column vector Mg ; of the measurability
matrix. This can be expressed as a measurability mapping

vj M, S; as follows:

S = Asi}; (7)
= {si | my >2q,v; €V} (8)
= M(S,Vj ,Q) (9)

Similarly, the region V; of viewpoint space from which
a given surface element s; is measurable is defined by the
corresponding row vector M; v of the measurability ma-
trix. This can be expressed as an inverse measurability

M71
mapping s; — V; such that

Vi = Avi} (10)
= {Vj | m;; > q, Si € S} (1].)
= Mfl(si ,V,9) (12)

As illustrated in Figure 5, both M and M™" are one-to-
many ( possibly null) mappings. M defines regions of the
object surface measurable from a given viewpoint, whereas
M carves out regions of viewpoint space from which a
given surface element is measurable. M partitions V into
regions of equivalent measurability within which measura-
bility typically varies smoothly but non-linearly and which
are bounded by abrupt transitions defined by occlusion and
measurement phenomena.

The initial work on measurability matrices by Tarbox &
Gottschlich [10] was applied to inspection, in which case a
detailed object model is available a priori. They compute
a measurability matrix encoding a complete visibility anal-
ysis over the set of all viewpoints and all surface elements.
This conceptually compact representation offers numerous
possibilities for intelligent view planning. However, the
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Figure 5: Measurability Mapping

conventional form of a measurability matrix suffers from
prohibitive time and memory complexity, even at fairly
coarse resolution of object and viewpoint space.

None-the-less, this representation allows us to immedi-
ately formulate a compact expression for the view planning
problem and from it draw an important conclusion. The
view planning task, then, is to find a set of viewpoints
measuring ( or covering) the object surface:

Find{v;}st.{S;} 28 (13)

From equation 13, it is evident that the view planning
problem is isomorphic to a set covering problem and is
therefore NP-complete, as has been observed by [10]. Con-
sequently, an optimal solution is achievable only by an
exhaustive search, which is impractical. This motivates
the creation of practical, sub-optimal NBV algorithms that
satisfy a set of given reconstruction objectives.

The measurability mapping v; M, S; embeds all infor-
mation essential to solve the view planning task. The is-
sue is how to efficiently represent this construct in com-
putational terms, noting the complexity inherent in a
R+ — % mapping®. Contrasting inspection, in recon-
struction the object surface S is not only unknown but is
the task objective. Viewpoint space V' is defined but it is
unclear how best to partition it. These are some of the
issues to be addressed to apply the measurability matrix
representation to object reconstruction.

4 Multi-Stage Model-Based

View Planning

4.1 Overview

Current view planning methods for object reconstruction
attempt to incrementally build a model following an itera-

2Representative quantization levels for high quality recon-
struction are |S| & 105 and |V| & 1019,
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Figure 6: Multi-stage Model-based View Planning

tive cycle. They take an image, acquire some new informa-
tion, decide on the NBV and repeat the process. We pro-
pose a different approach, a multi-stage model-based view
planning strategy of progressive model refinement. The
process begins and ends with a closed object model - the
first embodying the relevant and available a priori object
knowledge; the last satisfying specified object reconstruc-
tion goals. One or more intermediate models represent
points on the continuum of spatial resolution and geo-
metric accuracy. Each stage of the process builds upon
the global geometric knowledge of the previous stage until
a model satisfying the specified requirements is achieved.
Our approach is also incremental, but at the model rather
than the image level. Within each level, our process is
inherently parallel.

In addition to being multi-stage, the strategy applies a
variety of techniques at various planning stages and utilizes
the principle of least commitment with respect to the most
difficult view planning problems. By design, we employ a
divide and conquer strategy; endeavoring to scan most of
the object surface using fast and simple techniques. The
most powerful computationally heavy weight techniques
are reserved for small sub-sets of the surface and of view-
point space, when and if problems are encountered with
simpler methods. Thus, the proposed view planning pro-
cess is layered in two senses - first in the spatial resolution
of the problem domain and secondly in the computational
cost of the techniques used.

Although additional stages could conceivably be uti-
lized, the present concept envisions a two step object re-
construction process, separating the exploration and pre-
cision measurement processes. Knowledge embedded in
the a priori model is first used to guide fast data acquisi-
tion to create an intermediate rough model capturing the
essence of the object’s shape. The rough model is subse-
quently used to plan high precision, high resolution sur-
face scanning to create the desired output model at the
desired level of geometric resolution, the fine model. Only
the fine model is retained, the rough model being discarded
once it has served its purpose. Consequently, the proposed
multi-stage model-based view planning strategy (Figure 6)
involves two stages, each with an associated problem reso-
lution sub-stage:



e a rough modeling phase for scene exploration, and

e a fine modeling phase to precisely capture geometric
detail.

A Priori Model At the minimum, the problem begins
with some knowledge of the object’s bounding dimensions,
however approximate. This knowledge constitutes an ini-
tial object model, the a priori model. Experimentation will
examine the utility of a modest increase in prior knowledge,
such as the number and approximate location of holes and
major cavities.

Rough Model The function of the rough modeling
phase is to quickly and faithfully capture the object’s gross
topology and geometry. Spatial resolution and accuracy
requirements at this stage are kept to the minimum neces-
sary for it to serve as the basis of fine detail modeling in the
next phase. The level of resolution required at the rough
modeling stage is expected to depend on several factors,
including the size of the final model and the object’s topo-
logic and geometric complexity. Data acquisition will be
accelerated by acquiring sub-sampled sparse range images.
Problem resolution requirements at the rough modeling
stage will focus on ensuring the model is closed and has
the correct gross topology and geometry.

Fine Model Given a good but approximate rough
model, the function of the fine modeling phase will be to
sample the surface to a fine level of resolution and high
level of precision in compliance with the input specifica-
tion. This stage will again attempt to rapidly scan all or
most of the surface using computationally lightweight view
planning techniques. Patches of the rough model for which
these tactics fail will be passed to problem resolution mod-
ules employing more powerful but slower visibility analysis
view planning techniques.

4.2 3M Algorithm

Overview We will now briefly describe the modified
measurability matrix (3M) algorithm as applied at the fine
modeling stage. The essence of the view planning problem
is to efficiently gather sufficient information to encode the
measurability mapping at a level of detail satisfactory for
the next level of model building. Once that has been done,
selecting the NBV is straight forward and fast.

Reflecting on the v; M) S; measurability mapping and
measurability matrix constructs presented earlier, we can
observe that careful partitioning of S and V is both nec-
essary and achievable. Fairly coarse quantization of S will
be sufficient in the rough model for performance-oriented
view planning at the next stage, provided the rough model
correctly captures the object’s gross topology and geome-
try. Secondly, complex object features such as holes, cav-
ities and protrusions constrain views much more severely
than planar or gently convex regions. Thirdly, the physics

of the sensing process provides important clues as to opti-
mal viewpoints relative to surface features. Finally, since
large portions of the object are occluded from any given
viewpoint, it is clearly necessary to compute only a com-
paratively sparse measurability matrix.

Consequently, we follow a generate and test procedure
concentrating most of the effort on generation of a modest
number of well-chosen viewpoints. In outline form, the 3M
algorithm proceeds as follows at the fine modeling stage:

Segment the rough model by surface feature type
While ( Unscanned rough model regions)
Generate optimal candidate viewpoint set
Compute measurability; form measurability matrix
Select NBV(s)

Rough Model Segmentation The rough model is
segmented into the following surface feature types: cavity,
hole or planar/convex patch?®.

Viewpoint Generation For each surface patch, a set
of candidate viewpoints is generated that is most likely to
measure the surface feature in accordance with the speci-
fied criteria. Viewpoint generation is achieved by quantiz-
ing the optimal viewpoint zone for the specific sensor and
surface feature geometry.

Measurability Estimation Using an appropriate
sensor performance model, a measurability matrix is com-
puted for each patch. This is done by calculating the es-
timated measurement precision and sampling density at
each point on the targeted rough model surface patch from
each candidate viewpoint in the corresponding viewpoint
set. At this stage, measurability determination is based on
local visibility analysis only, - that is, considering only the
geometry of the target surface patch.

NBYV Selection Following a simple set covering algo-
rithm, one or more NBVs are selected as the viewpoint(s)
which collectively best sample all of the surface patch
within specification.

4.3 Comparison w. Current Methods

The 3M algorithm employs a separate measurability ma-
trix tailored for each segmented rough model surface patch.
This approach results in a number of measurability matri-
ces, each comparatively small, for a given object recon-
struction task. In contrast, the conventional measurabil-
ity matrix involves a single, monolithic matrix covering
all surface points and all candidate viewpoints. Figure 7
illustrates how the 3M algorithm results in a sharp net
reduction in the size of the composite matrix.

3Protrusions are not dealt with as a separate type at this
stage; rather, residual occlusions are dealt with at the problem
resolution sub-stage.



-a— Viewpoints —

A \ 2M Measurability
Matrix
S
EEEN ™ M~
Surface H 3M Measurability
points Matrices

T
y t

Figure 7: Measurability Matrix Comparison

While a more complete performance analysis awaits
completion of development and experimental activity, a
number of observations can be made at this time:

e Measurement performance should be superior to con-
ventional methods because:

— the process incorporates explicit sensor and po-
sitioning system performance models,

— the fine modeling process has the advantage of
approximate knowledge of object topology and
geometry in the form of the rough model,

— view planning is targeted and optimized for one
specific surface feature at a time, and

— candidate viewpoints are selected for high
prospective viewing quality from a small portion
of the imaging workspace.

e The algorithm should be fast relative to conventional
methods because:

— global occlusion analysis is employed, if at all,
only for sub-sets of the problem domain, and

— the domain of both generate and test operations
on the 3M matrix is much smaller than conven-
tional measurability matrices.

Efficiency is addressed by several means - problem de-
composition inherent to the 3M algorithm, surface segmen-
tation by major geometry feature, limited visibility anal-
ysis and generation of a limited set of near-optimum can-
didate viewpoints. Accuracy and robustness are achieved
through modeling of the imaging environment, objective
performance criteria and optimal viewpoint set generation.

5 Conclusion

This paper has described a view planning concept whose
goal is the automatic creation of high quality geometric
models of a single object. A review of current methods
identified the main open problems as efficiency, accuracy
and robustness. The importance of analyzing measurabil-
ity versus visibility stressed the need for realistic modeling
of imaging physics. A brief theoretical discussion framed
the problem in terms of geometric relationships between

the two dimensional surface space S C R? of the target ob-
ject and a multi-dimensional imaging work space, or view-
point space V C R*. Noting that all information required
for view planning is embedded in the measurability map-

ping v; M, S; and its inverse, led to the observation that
the view planning problem is isomorphic to a set covering
problem and therefore is NP-complete.

A new concept based on multi-stage, model-based view
planning using a modified measurability matrix (3M) al-
gorithm was outlined as a means of addressing the main
outstanding open issues. At the time of submission, algo-
rithms implementing the 3M view planning concept have
been developed in detail and prototype software is near
completion.
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