| hd |

NRC Publications Archive
Archives des publications du CNRC

DFEMwork: a parallel computing framework for material processing
Hétu, Jean-Francois; Audet, Martin; llinca, Florin

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=a0504b2a-27e5-4e53-9115-33a46b38a94 1
https://publications-cnrc.canada.ca/fra/voir/objet/?id=a0504b2a-27e5-4e53-9115-33a46b38a941

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de C d
Council Canada recherches Canada ana a

-

APCOM’07 in conjunction with EPMESC X1, December 3-6, 2007, Kyoto, JAPAN
Ar- 1FoST -G
CARC - UFEE8
DFEMwork: A parallel computing framework for material
processing
Jean-Frangois Hétu'*, Martin Audet', Florin Ilinca’

! Industrials Materials Institute, National Research Council of Canada, 75 de Mortagne, Boucherville,
Qc, J4B 6Y4, Canada

e-mail: jean-francois.hetu@cnre-nre.ge.ca, martin.audet@cnrc-nre.gc.ca, florin.ilinca@cnre-nre.ge.ca

Abstract This paper presents a description of dFEMwork - a parallel, fully distributed, and multi physics
finite element framework for the resolution of material processing problems. The framework constitutes
an infrastructure for scalable resolution of various non-linear coupled PDEs. Its object based structure
allows for high level abstractions while hiding most of the complexity of parallelism from the users. The
presented work addresses parallelization of the system components. All parallel objects are distributed
using the concept of ghost nodes and elements and communicate through message passing paradigm.
Particular attention is also given to low level data structures, coding practices and low complexity
algorithm and data structures were chosen to insure computational performance. Numerical results are
presented for free surface flows requiring dynamic domain redistribution and load balancing, Parallel
efficiency of the system, both computational and memory wise, are presented.

Key words: finite element method, molding simulation, parallel computation

1. INTRODUCTION

Full 3D finite element simulation of fabrication processes such as injection molding for real industrial
parts is computationally challenging. Many sources of difficulties have to be managed. These problems
are transient, non-linear, multiphysics and involve geometrically complex computational domains.
Furthermore, to achieve acceptable accuracy, elements should be concentrated in regions where large
changes of the solution occur, leading to large number of elements and, depending on the problem
discretization, to a large amount of time steps. In the end, parallel computing is impossible to
circumvent if one wishes to address such realistic industrial problems within reasonable time.

In principle, finite element methods can be parallelized and their data structures can be distributed quite
naturally. Also, the conceptual parallelization of the iterative algebraic systems is achieved although
somewhat more challenging. However, the development of an efficient and fully scalable
implementation is much more challenging when one has to consider 1) the limited amount of memory
available on each processor, 2) the work load dynamically changes and should be well balanced between

processors and 3) no single process has complete view of the problem since data is distributed between
computers,

Developing programs that can efficiently use large parallel clusters is a difficult endeavor. Several
parallel computing frameworks, such as POOMA[1,2], SIERRA[3] and PetSC[4], have been developed
during the last decade. These frameworks were essentially developed for two reasons: first, to harness
the full computational power of large distributed-memory clusters, and second, to facilitate the
development of scalable applications for code developers and researchers untrained in paraliel
computing. These frameworks are generally targeted toward specific fields of applications, designed for
specific numerical methods, or developed to investigate a specific field of computer science. Overall,
computational frameworks have proven to be successful within their field of applications, allowing

L4

researchers in this specific field to develop parallel applications without to much concern about parallel
issues.

DFEMwork is a computational framework that has been developed to facilitate the development of such
parallel applications. This framework is an integrated software system that is used for the development
of solvers. The motivating multiphysics applications for the framework described in this paper is an
ongoing project at NRC-Industrial Matenals Institute. The ultimate objective is to develop an integrated
software system, DFEMwork, for detailed simulation of injection molding of polymers and casting of
metals. The software system is nevertheless sufficiently flexible and modular and has been applied to
systems beyond polymer processing, such as the flow of rheologically complex fluids, and viscoelastic
stress analysis. We briefly overview the methodology and the software components of this system.

The remaining of this paper is organized as follows. Section 2 presents motivating applications, in
particular governing equations, finite element formulations for the simulation of the filling phase of an
injection molding process. Section 3 presents the framework architecture, overall design philosophy,
data structure design, data distribution concepts and algorithms as well as objects related to finite

element computations. Finally Section 4 presents parallel performance results for different types of
problems.

2. MOTIVATING APPLICATIONS

This work is motivated by the need to solve complex industrial mold filling applications. Such problems
involve the transient solution of free-surface flows coupled with heat transfer. In this section we present a

typical injection molding application. The aim is to illustrate and measure the parallel efficiency for the
solution of multi-physics, coupled PDEs.

The equations governing the incompressible flows are the Navier-Stokes and continuity equations:

. . [o du, .
P %4.“);% =_Ef,’,+i n ..Q.&.+_..{. , and %=0 (1)
at ax; dx; 0x; dx; ox ox;
Heat transfer is modeled by the -energy equation:
. ou, - du,
pcp ﬂ_’_uia_]:. =_.(_3_ kﬂz +l.n ﬂ.'.__" . 92‘_..'.._] . (2)
at ox; | ox; | dx f 2 |dx; ax dx; dx

In the above equations, ¢, u, p, T, p, i, ¢, and k denote time, velocity, pressure, temperature, density,
viscosity, specific heat, and thermal conductivity, respectively.

For mold filling applications, in addition to solving for the flow equations we have to track in time the
position of the interface between the filling material and the air/void inside the cavity. Front tracking is
done using a level-set method [5]. The boundary conditions complete the statement of the problem. On
the inlet section, both the velocity and inlet melt temperature are imposed. Non-slip boundary conditions
are generally imposed on the fitled cavity walls and a zero shear stress condition is specified on the free
surface.

The application presented in the present work involves the injection molding of a semi-solid metal, that
is a metal alloy at a temperature such that we found both the solid and liquid phases. The segregation of
particles forming the solid phase is modeled by the diffusive flux model of Phillips et al. [6]. The solid
fraction is therefore obtained by solving the transient advective-diffusive equation

%, N, @

ot ox, ax;
where the diffusive flux N is given by

N=N_+N,, (5)

4

with N¢ describing the interaction caused by varying collision frequency and N, describing the
_ interaction caused by spatially varying viscosity:

a(y d(ln

N, = —a2¢Kc —-g}ﬂ, N, = —azd)z}il(,l M (6)
ax, ? ax;

In the above equations a represents the radius of solid particles in the suspension, y = 1/2&9,}.:50,. is the

shear rate, and K., K|, are model constants. In the standard form proposed by Phillips et al. [6] they take

on the values K.=0.41, K,=0.62.

Model equations are discretized in time using a first order implicit Euler scheme. At each time step, the
global system of equations is solved in a partly segregated manner as described in refs [5,7-10]. The
incompressible Navier-Stokes equations (1) are solved using a Galerkin Least-Squares method [7], the
energy equation is solved by a combined SUPG/GGLS (Streamline Upwind Petrov-Galerkin / Galerkin
Gradient Least-Squares) method (7], and the front tracking equation is discretized by a SUPG method.
The solution algorithm was previously used by the authors to solve a variety of molding applications, as
die casting [5], polymer injection molding [8], gas-assisted injection molding [9], co-injection [7] and
injection of metal powders [10]. This body of work has shown the ability of the solution algorithm to
treat a large spectrum of flow regimes ranging from low velocity creeping flow to high velocity turbulent
flows, including heat transfer, free surface and multi-phase modeling.

3. FRAMEWORK CONCEPTS, ARCHITECTURE AND SERVICES
Design Philosophy

DFEMwork design results from an object oriented approach. The rationale for this is based on the belief
that an object oriented approach when used judiciously can lead to efficient code (speed and memory)
while at the same time delivering the usual benefits associated with object oriented programming that is
an increased separation of concerns, a lower level of redundancy, an increased cohesion and reduced
coupling between software units which in the end result in higher reusability and reliability. These
benefits are the consequences of the higher encapsulation and abstraction level provided by the object
oriented approach.

Concurrently, the framework has been designed to hide most of the parallel complexity from the
application so that the code developer implementing new PDEs solver is little concerned about parallel
computing issues. DFEMwork is implemented in C++ and based on a single-program-multiple-data
(SPMD) parallelism model using the MPI message passing standard.

Framework organization

The computational framework is organized into a Core library, an Analysis library and a Algebraic
System Solver library. The Core library includes all distributed objects and parallel data management
functionalities. Its primary function is to provide basic distributed objects for data such as mesh graphs,
Field vectors and boundary conditions. It also provides functionalities specific to distributed objects such
as dynamic data remapping, interprocess data transfer. The Analysis library includes all objects related
specifically to the resolution of PDEs using the Finite Element Method. It includes all the classes needed
for the data and algorithmic management of coupled multiphysics simulations. Finally, the Algebraic
System Solver library provides a collection of paralle! preconditioned iterative solvers.

1. Core Library
The Core library implements basic classes representing large amount of data such as Field vectors and

mesh graphs that must be distributed properly to allow effective parallel operations. This library tries to
hide the parailelism and the distributed nature of data by bringing on each process the appropriate

information (communications) and performing the necessary index renumbering so that on each process
the stored data appears almost as an ordinary “sequential” data structure.

A key concept: Distribution

The Distribution class describe how data is shared between processes. It is a key concept in the Core
library. It assumes a special relationship between the set of data components C and the set of processes P
expressed as follows: P(c)E S(c) for every component ¢ € C where P() is the ownership function
associating a process to every component and where S() is the storage function associating to every
component a non empty subset of processes on which the component is stored. The relation imply that
each component is stored on at least one process, the process which own the component. A component
can however be stored on other processes.

These two functions allows classifying components into numerous category notably the set of active or
local components representing respectively the subset of components owned or stored on a given
process. In addition, the set of interfacial (often called ghost) components for a given process is the set
of local components which are also local on another process. This later component subset allows to
define the neighbor subset for a given process as the subset of other processes with which local
components are shared. It is with its neighbors that a process communicate normally most.

A Distribution class therefore describe on each process the number of components in each category in
addition to identifying precisely the interfacial components shared with each neighbor. Distributions
moreover impose a storage order for the component on each process for simplicity and efficiency: the
isolated components first (i.e. the components stored only on this process) foltowed by the interfacial,
the active interfacial components being stored first.

With the Core library, it is important to note that a component set represents any data vector whose entry
type is representable by MPI (ex: non pointer scalar or POD struct). Nodal or elementary data vectors are
common example of vector distributed according to a Distribution.

Main classes:

In addition to Distribution, the Core library implements a few basic classes using an object based
approach {e.g. little inheritance and no polymorphism):

* Vector<T>: a generic distributed vector of components of type T (template) distributed
according to a Distribution object. Its main methods allow exchanging interfacial components
with its neighbors (in both directions). Often used to store nodal or elemental data.

* VectorProfile: a special distributed vector of integers used to hold component indices
referring to another distribution. Can be used to store node indices or element indices
(referring to the node or element distribution respectively) to represent for example a
boundary condition.

* SparseVector<T>: a generic distributed vector of type T corresponding and distributed
identically to a VectorProfile. It is used to store information associated with the VectorProfile
indices, the value of a boundary condition for example.

* MeshGraph : contains the connectivity tables for the elements and maintain consistent
distributions for the nodes and elements. The distribution for nodes and elements are
interdependent: local nodes are adjacent to local elements and. local elements are adjacent to
active nodes.

* Remap: establish bijective relationship between every (or subsets of) components of two
distributions. This class can be used to keep a connection between components before and
after components are redistributed and guide information transfer between the corresponding
sets of vectors.

The Core library also implements the following important functionalities involving those classes:

* Vector components transfer (in both directions) between two distributed vectors with D, , D,
distributions according to a compatible Remap object R,, : D, <> D, .

* Composition of two Remap objects: lets D, , D, and D, be three distributions and
R, :D, = D,, Ry, : D, <> D, two Remap objects between them, the composition Remap
R, oR,; = R, : D, <= D; associates components directly from distribution 1 and 3.

* From a VectorProfile distributed according to D,” containing component indices in
distribution D, and a Remap R, : D, < D, object, compute a new VectorProfile object
(including its new distribution D,") containing the indices of the same components (if any) in
distribution D, . Also compute the Remap object for the VectorProfile object itsclf
R, : D] < D;. Note that this new Remap object can be used to create a new SparseVector
corresponding to the new VectorProfile. This functionality is necessary to transfer boundary
conditions after a domain redistribution.

* From a MeshGraph and partition vector indicating on which process each active node should
now be active, redistribute the MeshGraph and compute the corresponding Remap objects for
nodes and elements.

When used with a graph partitioner, the Core library allows to relatively easily create basic distributed
data structures for finite element computations and to easily redistribute them to better equilibrate
computations. In this work we used the ParMetis [11] parallel graph partitioner to compute partitions.

Computational efficiency considerations

Data management classes of the Core Library have been designed to maximize computational efficiency
and are implemented using large vectors of POD similarly to what is done in more traditional languages
such as Fortran. The design is primarily an object based approach into which classes have little
inheritance and no polymorphism. This design choice, by opposition to arrays of small objects, allowed
us to:

* Minimize dynamic memory management overhead (time/space).

* Minimize the number of free memory blocks in the heap. This maintains the speed of each
individual dynamic memory operation since these operations takes a time proportional to the
number n of free blocks (ex: the common “best fit” algorithm have an O(log(n)) complexity).

* Generate more continuous memory access pattern.

* Keep the overhead of the object oriented approach low and outside of the main loops.

* Allows the compiler to perform more optimization.

In addition, it was decided to relax the data encapsulation principle and give access to the pointers on the
vectors. This allowed computational and data processing routines to manipulate data using low level
(and efficient) pointers constructs while allowing the classes themselves to concentrate on
communication, distrtbuted data management and essential methods and leaving the other functionalities
to utility functions or user code. Moreover, since plain vectors are the common implementation of all
C++ vector classes and are understood by all languages, working those data structures allows
interoperability with other languages (ex: C and Fortran) and makes it easier to interact with other C++
libraries {(ex: STL).

Operations on Core objects tend to do all transformations and information exchange in a single pass to
allow lower complexity algorithm (often linear) and exchanging a few large messages (much more
efficient) instead of many small ones. Non blocking communications where send/receive are done early
and waits done late with as much work as possible between the twos is also done. This allows hiding of

latencies caused by the imperfect process synchronization and overlapping communications with
computations when allowed by the underlying message passing layer (hardware / middleware).

2. Analysis Library

The Analysis Library provides all classes and functions required for the resolution of PDEs using the
Finite Element Method. It is based on object oriented concepts relying on inheritance, polymorphism,
C++ templates and design patterns to get a few orthogonal sets of classes with clearly defined roles:

* Domain: contains a finite element mesh, including shape functions, element connectivity
(Core::MeshGraph), node coordinates (Core::Vector). A Domain instance is essentially a
finite element mesh container.

* Fields: Nodal or element distributed vectors containing either dense or sparse data associated
to a Domain object.

* FEquations: discretized PDEs. These are essentially operators that are used to compute a finite
clement solution to its PDE. These objects are stateless, meaning that they do not manage
solution fields.

* Analysis. orchestration classes that manage time integration, solution Fields, coupling
between different equations, post-processing activation, etc.

* PropertyEvaluators: these are classes used for material models and evaluation of material
properties on elements.

* Utility: other services such as non-linear solvers, post-processing of data, etc.

These classes, their relationships and interactions will be explained in further details for the case of a
mold filling analysis. Mold filling analysis typically involves the resolution of a free surface flow
problem coupled with an energy equation. Hence, we need to solve the Navier-Stokes equation in the
filled portion of the domain, the energy equation in the complete domain and a level-set equation to track
the free surface.

Analysis classes

These classes are responsible to manage computational domains and solution Fields, manage coarse
level time integration as well as the coupling between different solution Fields. They are also
responsible to provide their results for post-processing and output. Analysis classes are either
autonomous objects or composed through inheritance. For example, the MoldFillingAnalysis class
implements the basic mold filling analysis. The MoldFillingAnalysis uses two levels of computational
domain: one domain which is the complete finite element domain representing the complete mold
cavity, and, a series of sub domains, created dynamically to fit to the filled portion of the cavity. These
subdomains are created and redistributed when requested by the analysis. Solution Fields defined on the
complete domain are reduced and transferred to smaller Fields defined on the subdomain using the Core
library remapping functions. Remap functions are bidirectional and are also used to transfer solutions
computed in subdomains back to the complete domain.

The MoldFillingAnalysis also provides some hook methods for its derived classes. Classes deriving
from it can easily implement additional equations and couple them back into the base class using these
hooks. (See Figure 1).

Equation classes

Equation classes are responsible to solve a particular PDE using given initial solution Fields, material
properties and time step. These are operators that are used by the different 4nalyses when they need to
compute a solution for a given PDE. The framework implements the resolution of equations (1) to (4)
into NavierStokesEquation, EnergyEquation and FrontTrackingEquation. These classes are responsible
for the finite element discretization to use, choice of linearization technique (Picard, Newton, ...),

computation, assembly and resolution of algebraic systems. These classes use the Algebraic System
Solver library to solve their algebraic systems. Furthermore, additional capabilities can be dynamically
and transparently added to these equations using decorators.

PropertyEvaluators

Equations are usually coupled through source terms and material properties. In order to make Equation
classes independent, a general property evaluation mechanism has been developed. These objects, called
PropertyEvaluators, are responsible to evaluate material properties on each element, while hiding their
dependencies with respect to other solution Fields. In practice, this means that the
NavierStokesEquation is not aware that the viscosity model it uses also depends on external Fields such
as the temperature or solid fraction.

.un

0415

Figure 1: Class design (Template Pattern[12]). Figiire 2: Mold filling simulation

3. PERFORMANCE RESULTS

Parallel acceleration tests were performed on a 64-node Beowulf cluster. Each node consists of an Intel
motherboard with two Intel Xeon 3.4Ghz (FSB-800) and 2GB of RAM. Computational nodes are
connected with Myrinet 2000 (PCIXD) cards and switches and MPICH-GM is used.

The parallel efficiency and scalability of the framework is evaluated by performing mold filling analyses
with a dense suspension fluid flow model on an industrial U-shaped part. First a complete analysis is
performed. This computation provides initial solutions used in parallel efficiency measurements which
start from a partially filled cavity. The test problem is shown in Figure 2. The finite element mesh is
composed of 1,918,364 tetrahedral elements and has 359,714 nodes. At each node we have four
unknowns when solving the momentum-continuity equations (three components of velocity and
pressure) and one unknown when solving the energy, front tracking and diffusive flux equations. Ten
time steps were executed using 1, 2, 3, 4, 8, 12, 16, 18, 24, 32, 48 and 64 computational nodes (1 MPI
process per node). The initial solution corresponds to a state where 70% of the part volume is filled.
This level of filling was selected in order to use at most 90% of the available RAM memory on one
processor, thus minimizing the occurrence of page swapping. Each equation was solved in corrections

r

using a Newton linearization method with convergence criteria of 10 on corrections and on residuals (12
and 1. relative norms). The number of iterations was monitored to ensure that the number of Newton
iterations remains the same for all computations.

Figure 2 illustrates, on one side of the part, the filled portion of the mold with the mold cavity shown in
transparency. The colors in the filled region represent the solid fraction ¢, the blue color indicating the
lower concentration regions found in the high shear rate zones. Streamlines are shown on the other side
of the U-shaped part.

The execution times (wall times) for the generation of Jacobian matrices and resolution of algebraic
systems were measured for all equations. Timings needed to create the sub-domains were also

monitored. Execution times are shown in Table 1.

Table 1: Timing results to perform 10 time steps starting at 70%.

Operation \ CPU 1 2 4 8 16 32 48 64
OVERALL '
Computational wall time (s) 43410 22600 11900 5949 3090 167.0 1160 919
Speedup 71007 1920 385 730 1405 2599 | 3742 4723
Parallel Efficiency 1 100.0% 96.0% 91.2’%:" 91.2% '87.8% 81.2% 78.0% 73.8%
BREAKDOWN BY EQUATION T T T T T ey h
Generation of subDomain T 76441 3557 2431 1301 07238 0421 0348 0313
NavierStokes Equation " T 2482 1292 6866 3423 178 9722 ' 6675 5379
Linear Systems Generation 1202 6276 3208 161.7 8489 4444 3011 23.43
Linear Systems Solve 1260 6644 3658 1806 9311 5278 3664 3036
Energy Equation | 2588 1313 67.7 3397 172 8678, 5807 477
Linear Systems Generation : jg@li_f 1'29.{3 __ __65._1'::1-; jg_3:4'57.r— _1_6;9;& Es_fn_ L _5_.71_)1_;; _v4_6§‘
Linear Systems Solve 42 2 109 ° 0.52 0.27 + 0.147 ' 0.106 . 0.09
Free Surface Capturing ""9395 4822 o857 272 66 3577, 2686 19.07
Transport Equation © 2722 1404 7251 3700 186, 9.489 6574 490
Linear Systems Generation T 264 1359 7014 3582 1795 9102 6294 465
Linear Systems Solve 82 a5’ 723777 1277 0657 0387: 028 025
Diffusive Flux Equation B462 3361 1702 8618 4506 2382 1661 1328

The overall paraliel acceleration is shown in Figure 3(a). The parallel speedup is very good given the
complexity of the physical model and the distributed nature of the data structures. For example, the
computation carried out on 64 processors runs 47 times faster than on one processor. The fact that the
data structures are distributed between processors results in an important reduction of the memory used
on each processor. Figure 3(b) shows the total RAM memory used (black symbols) and the
corresponding amount used on each processor (blue symbols). When using 64 processors, the memory
space used on each processor is 49 times smaller that when running on one processor. This means that
the present code using distributed data structures can handle much larger problems as only a fraction of
the data is stored on each processor.

The parallel efficiency of the overall computation and of its segments is shown in Figure 4(a). The
monitored time indicates that, as expected, the parallel efficiency decreases as the number of processes
increases. Almost the same behavior is recovered for all systems of equations, namely for the
Navier-Stokes solution, the free surface equation and the particle segregation equation. The lowest
parallel efficiency is observed for the Navier-Stokes equations. This is determined by the fact that the
global system of equations resulting form the discretization of the momentum-continuity equations is
harder to solve than those arising from the scalar transport equations. This can also be seen in Figure
4(b) which indicates that the parallel efficiency of the generation and assembly of the algebraic system
(AS) is larger that that of the AS resolution. For example, on 64 processors the matrix generation phase

has a 80% parallel efficiency, whereas the corresponding value for the system solution phase stands at
65% only. This behavior has two main causes. First, as the number of processors increases, the
efficiency of the ILU(0) preconditioner decreases as it is constructed separately on distributed matrix
blocks and hence more terms are neglected. This is illustrated in Figure 5(a) which shows the total
number of iterations needed to solve the algebraic systems of the Navier-Stokes equations
(corresponding to the solution of 30 linear systems). The number of iterations increases faster with the
number of processors when using up to 4 processors and then the effect is somehow less important.
When running on 64 processors the total number of iterations is 42% higher than when using one
processor. However, this degradation in performance could be compensated by the use of more efficient
preconditioners needing more memory to compute, possibly unavailable at lower process count. The
second effect is determined by the unit cost of one iteration as shown in Figure 5(b). As more processors
are used, we have on one hand a smaller number of terms in the preconditioner and hence fewer
operations to perform, and on the other hand a larger amount of inter-processor communications. The
combined effect results in the present case in a slight deterioration of the parallel efficiency per iteration
when more processors are used.

8
~N

-
T

speedup
8
Memory required (kB)
P

o 1 i i i i M o i L i I . T ﬂ}
0 10 20 30 40 50 60 0 10 20 30 40 50 60
of Processes # of Processes
(a) Overall parallel acceleration (b) RAM memory requirements

Figure 3: Parallel performance and memory management

1 -

Eols
¥ 08

g ors

0.7
0.65}
o-s i i i i i i o-s i i i i i A
0 10 20 30 40 50 60 0 10 20 30 40 50 60
of Processes # of Processes
(a) Overall and equation by equation (b) Navier-Stokes equations

Figure 4: Parallel efficiencies

L)

3500 T - v 1
2 soco;- g
é 2500 |- : g 0.95}-
8
£ 2000 ; a
< X 1
B 1500}t q
5 £
g 1000 - " 7 % 0.85) e B N
€ 800F b e e s o
- T : : : : H i
0 10 20 30 4 50 60 0 M0 20 30 4 50 60
of Processes # of Processes
(a) Total number of iterations (b) Parallel efficiency per iteration

Figure 5: Performance of ILU(0) + BiCGStab to solve Navier-Stokes systems.
CONCLUSIONS

An effective implementation of a parallel finite element framework has been presented. The
computational capabilities of the current C-++ implementation were demonstrated. The use of distributed
data structures allows the analysis of much larger problems as only a fraction of the data is stored on
each processor. The parallel speedup and data distribution are very good given the complexity of the
physical model. Work is under way to improve the scalability of the algebraic system solution and the
overall performance of the code.

REFERENCES

[1] Reynders, IVW, The POOMA framework, Computers in Physics, 12(5), (1998), pp. 453-459

(2] Reynders, JVW, DW Forslund, P.J. Hinker, M. Tholburn, D. Kilman, W.F. Humphrey, OOPS: an
object-oriented particle simulation class library for distributed architectures, Comp. Phys. Comm.,
87(1-2), (1995), pp. 212-224.

(3] Stewart, J.R., H.C. Edward, A framework approach for developing parallel adaptive multiphysics
applications. Finite. Elem. Anal. Des., 40, (2004), pp. 1599-1617.

[4] Balay S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman
Mclnnes, B.F. Smith, H. Zhang, PETSc Users Manual, Technical report ANL-95/11 - Revision 2.1.5,
Argonne National Laboratory, 2004.

(5] F. llinca, J.-F. Hétu, Finite element solution of three-dimensional turbulent flows applied to
mold-filling problems, Int. J. Num. Methods Fluids, 34, (2000), pp. 729-750.

[6] RJ. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abott, 4 constitutive equation for
concentrated suspensions that accounts for shear-induced particle migration, Physics of Fluids, A, 4,
(1992), pp. 30-40.

[7] F.llinca, J.-F. Hétu, Numerical investigation of the flow front behavior in the co-injection moulding
process, Int. J. Num. Methods Fluids, 50, (2006), pp. 1445-1460.

(8] F.llinca, J.-F. Hétu, Three-dimensional filling and post-filling simulation of polymer injection
molding, Int. Polym. Proc., 16, (2001), pp. 291-301.

[9] F.llinca, J.-F. Hétu, Three-dimensional finite element solution of gas-assisted injection moulding, Int.
J. Num. Methods Engng., 53, (2002), pp. 2003-2017.

[10]F. Ilinca, J.-F. Hetu, A. Derdouri, J. Stevenson, Metal Injection Molding: 3D Modeling of
Non-isothermal Filling, Polymer Engng. Science, 42(4), (2002), pp. 760-770.

[11]1K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic multi-constraint graph partitioning,
Concurrency and Computation: Practice and Experience. 14(3), (2002), pp. 219-240.

[12]E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of reusable object-oriented
software, Addison-Wesley, Boston, (1995}, 395p.

has a 80% parallel efficiency, whereas the corresponding value for the system solution phase stands at
65% only. This behavior has two main causes. First, as the number of processors increases, the
efficiency of the ILU(0) preconditioner decreases as it is constructed separately on distributed matrix
blocks and hence more terms are neglected. This is illustrated in Figure 5(a) which shows the total
number of iterations needed to solve the algebraic systems of the Navier-Stokes equations
(corresponding to the solution of 30 linear systems). The number of iterations increases faster with the
number of processors when using up to 4 processors and then the effect is somehow less important.
When running on 64 processors the total number of iterations is 42% higher than when using one
processor. However, this degradation in performance could be compensated by the use of more efficient
preconditioners needing more memory to compute, possibly unavailable at lower process count. The
second effect is determined by the unit cost of one iteration as shown in Figure 5(b). As more processors
are used, we have on one hand a smaller number of terms in the preconditioner and hence fewer
operations to perform, and on the other hand a larger amount of inter-processor communications. The
combined effect results in the present case in a slight deterioration of the parallel cfficiency per iteration
when more processors are used.

6
50 ' ' : y : v 252

0 L i i i 1 i 0 i 1 i T —r ——tl|
0 10 20 30 40 50 60 0 10 20 30 40 50 60
of Processes # of Processes
(a) Overall parallel acceleration (b) RAM memory requirements
Figure 3: Parallel performance and memory management
‘ 2 1 T T T T
. —&—Total NS
0.95 %3 0.95¢ —e—AS generation (NS)
0.9} 0.9} S echiion 1)
>

i :
zm.

i
gm.

0_7 S o 0‘7 I %
0.65} : : 0.65} : : koo
o_ i A i A i i t i A i i i i
‘0 10 20 30 40 50 60 $ stl 10 20 30 40 50 60
of Processes # of Processes
(a) Overall and equation by equation (b) Navier-Stokes equations

Figure 4: Parallel efficiencies

3500
© © so0of- <
— .
S 2500} E 0.5
5 o 2
2 ¥ o9
S 1800} =
g $
g 1000 T %—? 0.85 b oemreebemmemme |
% 860} ,- o
= ; i H : ! : H H :
0 i i H i H i 0.8 i i i i i i
0 10 20 30 40 50 60 0 10 20 30 4@ S50 60
of Processes # of Processes
(a) Total number of iterations (b) Parallel efficiency per iteration

Figure 5: Performance of ILU(0) + BiCGStab to solve Navier-Stokes systems.
CONCLUSIONS

An effective implementation of a parallel finite element framework has been presented. The
computational capabilities of the current C++ implementation were demonstrated. The use of distributed
data structures allows the analysis of much larger problems as only a fraction of the data is stored on
each processor. The parallel speedup and data distribution are very good given the complexity of the
physical model. Work is under way to improve the scalability of the algebraic system solution and the
overall performance of the code.

REFERENCES

[1] Reynders, IVW, The POOMA framework, Computers in Physics, 12(5), (1998), pp. 453-459

[2] Reynders, JVW, DW Forslund, P.J. Hinker, M. Tholburn, D. Kilman, W.F. Humphrey, QOPS: an
object-oriented particle simulation class library for distributed architectures, Comp. Phys. Comm.,
87(1-2), (1995), pp. 212-224,

[3] Stewart, JR., H.C. Edward, 4 framework approach for developing parallel adaptive multiphysics
applications. Finite. Elem. Anal. Des., 40, {2004), pp. 1599-1617.

[4] Balay S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfian
Mclnnes, B.F. Smith, H. Zhang, PETSc Users Manual, Technical report ANL-95/11 - Revision 2.1.5,
Argonne National Laboratory, 2004.

[5] F. llinca, J.-F. Hétu, Finite element solution of three-dimensional turbulent flows applied to
mold-filling problems, Int. J. Num. Methods Fluids, 34, (2000), pp. 729-750.

[6] R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abott, A constitutive equation for
concentrated suspensions that accounts for shear-induced particle migration, Physics of Fluids, A, 4,
(1992), pp. 30-40.

[7] F.llinca, J.-F. Hétu, Numerical investigation of the flow front behavior in the co-injection moulding
process, Int. J. Num. Methods Fluids, 50, (2006), pp. 1445-1460.

(8] F.llinca, }.-F. Hétu, Three-dimensional filling and post-filling simulation of polymer injection
molding, Int. Polym. Proc., 16, (2001), pp. 291-301.

[9] F.llinca, J.-F. Hétu, Three-dimensional finite element solution of gas-assisted injection moulding, Int.
J. Num. Methods Engng., 53, (2002), pp. 2003-2017.

[10]F. Ilinca, J.-F. Hetu, A. Derdouri, J. Stevenson, Metal Injection Molding: 3D Modeling of
Non-isothermal Filling, Polymer Engng. Science, 42(4), (2002), pp. 760-770.

[11]K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic multi-constraint graph partitioning,
Concurrency and Computation: Practice and Experience. 14(3), (2002), pp. 219-240.

[12]E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of reusable object-oriented
software, Addison-Wesley, Boston, (1995), 395p.

