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Rapid progress in genome research has produced a huge amount of nucleotide sequence 
data, including hundreds of complete genomes (Entrez Genomes). There is therefore a 
need to automate the gene prediction process to ensure that the amount of information 
does not in itself become a problem. Many prediction engines are available to facilitate 
such identification, but their application scope and prediction capability vary. This paper 
investigates the potential to improve gene prediction by integrating three available 
engines, GrailEXP, Genscan, and MZEF by means of a modular mixture of expert (MoE) 
neural network, where the utilization of a modular architecture is able to directly support 
the partitioned nature of the original data sources. The three selected engines represent 
three different categories of the prediction software. We were able to demonstrate that 
the integration system has markedly better recovery (proportion of actual exons that are 
predicted) than any of the individual prediction engines alone. After integration, we were 
able to achieve a higher correlation coefficient of exon prediction and thus a higher 
accuracy of the results. The program is available on line at http://www.cbr.nrc.ca/pany 
/integ.html with links to the data used for this research. 

1. Introduction  

Machine learning systems have naturally been applied to a wide range of 
bioinformatics applications, including those of gene prediction. Neural networks, 
and in particular the Mixture of Experts (MoE) paradigm is to provide a scalable 
framework for combining multiple prediction engines, thus benefiting from the 
individual strengths of each engine. Such a context, although requiring the 
identification of an unknown integrating function, does provide for the 
incorporation of a priori knowledge that may facilitate the learning process. 
Secondly, from a machine learning perspective, a divide and conquer approach 
to model identification often facilitates more transparent models and better 
generalization of the resulting model [1]. Such a scheme defines the general 
architecture for a hierarchical decomposition of problems into sets of ‘expert’ 
and ‘gating’ models (Fig. 1). Experts represent subtasks from which the overall 
solution is composed, whereas each gate learns how to combine subtasks into an 
overall solution. 
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The MoE paradigm has been successfully applied to a range of complex 
prediction problems, including robot arm control [2], nonlinear direct control [3] 
and power utility demand [4]. Secondly, although not offering the same degree 
of accuracy as support vector machines [5], the technique is explicitly modular. 
Such modularity enables the user to directly determine the contribution from 
each component of the model for each classification where such an analysis may 
provide the basis for a better understanding of the problem, see for example [3]. 
Finally, we note that the modular approach embodied in the MoE paradigm 
facilitates a divide and conquer approach to learning, thus providing a 
simplification of the learning problem. Such architecture is therefore 
significantly different from the classical connectionist neural network 
approaches, as in the case of a multilayer perceptron. 

In bioinformatics community, decision trees or statistical classifiers are 
often the norm. However, it has not been until recently that a more thorough 
analysis was performed on the characteristics associated with different learning 
algorithms [6]. For example, decision trees are often considered to offer 
transparent solutions, whereas statistical classifiers either rely on their implicit 
simplicity – as in the case of linear discriminant functions – or are too complex 
to analyze – as in the case of discriminant functions based on higher order 
polynomials. Naturally, there is a trade off between classification accuracy and 
transparency.  However, a recent empirical analysis of 32 classification 
algorithms on sixteen benchmark classification problems has demonstrated that 
decision trees typically produce solutions too complex to analyze [6]. Finally, we 
note that standard linear discriminant analysis continues to represent a good 
compromise between computational effort and solution transparency [6]. In this 
study, we applied MoE paradigm to the integration of exon predictions.  

The completed human genome sequence announced on April 14, 2003 
showed that the human genome consists of approximately 3 billion base pairs 
(bp)*. Only less than 1.5% is used for 30,000 – 40,000 protein-encoding genes, 
whereas 24% consists of introns and 75% of the genome represents intergenic 
DNA (repeated sequences of various types and others) with no known function 
[7, 8]. Many genes have alternative splicing options. This results in a larger 
number of gene products. Given this volume and complexity, the ability to 
predict a gene structure is both an intellectual and a practical challenge [9]. 

Many gene prediction engines have been made available over the World 
Wide Web, such as Genscan [10], Grail family [11], GeneFinder family [12, 13] 
(original MZEF), HMMgene [14],  GeneMark [15],  Genie [16],  FGENES [17] 
and many others [9]. However, such engines are often originally designed for 
specific purposes, for example GeneMark is specialized in prokaryotes, whereas 
others such as Genscan are useful for vertebrates. Although 80% of genes are 
accurately predicted at the nucleotide level, only 45% are at the exon level, and 
~20% at the whole-gene level [9]. 

                                                           
* Natrue, April 17, 2003 – News Briefing 
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Each prediction program has its strengths in particular areas and weaknesses 
in others [9]. Some engines predict one type of exon better than the others.  
However, an exon predicted with a high score (probability) by more than one 
engine is more likely to be a real exon than that by any individual engine. In this 
paper, the potential for enhancing a prediction through the integration of 
strengths available in different prediction engines is investigated using MoE 
neural network architecture. The participating prediction engines are Genscan 
[10], GrailEXP [11] and MZEF [12, 13].  

Genscan uses a general three-periodic non-homogeneous fifth-order Markov 
model to predict complete gene structures, including exons, introns, promoter, 
and polyadenylation (polyA) signals in genomic sequences [10]. It differs from 
the majority of existing gene prediction algorithms in that it allows for partial 
genes and complete genes, as well as for multiple genes in a single sequence, on 
one or both DNA strands. GrailEXP is one of the most recent versions of the 
Grail family [11] and uses a neural network approach to combine information 
from several exon-prediction models; each designed to recognize a particular 
sequence property. GrailEXP predicts exons, genes, promoters, polyAs, CpG 
islands, EST similarities, and repetitive elements within a DNA sequence. MZEF 
uses quadratic discriminant analysis and is specified for internal coding exon 
prediction [12]. MZEF does not give other information with respect to gene 
structure. 

There are reports of integration of gene predictions. For example, Pavlovic 
et al. [18] used a Bayesian network to combine predictions of Fgenes CGG1 
[19], Genie EST and Geneie [20], and HMMgene [21] in Drosophila gene 
prediction; Rogic et al. [22] combined predictions in pairs among Genscan, 
HMMgene, FGENES, GeneMark.hmm and Genie. These previous studies 
demonstrated promising improvements in overall prediction performance 
through the combination of various engines. 

Our objective in this study is to demonstrate the advantage of MoE 
architecture and its application in integrating the strength of various gene 
prediction engines. In the following sections, we describe the algorithm, design 
of the integration system, and result of its application in integrating exon 
prediction. 

2. Algorithm 

Jacobs and Jordan [2] model the modular MoE architecture as a mixture model. 
That is, the output of any expert is described in terms of a Gaussian conditional 
probability density, which is proportional to the probability of the desired output 
d having been created by expert model i on input pattern x, 

f(d|x,i) =             exp( - ||d – yi||2)           (1)
1
2

1 
(2π)q/2f(d|x,i) =             exp( - ||d – yi||2)           (1)

1
2

1 
(2π)q/2
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where yi is the actual model output and q is the dimensionality of the output. As 
indicated above, a linear gating network is used to identify the relative 
significance of each expert, resulting in the overall modular MoE output being 
modeled additively, 

where y is the overall output. Each expert output yi is a function of the input 
vector x and is defined by the corresponding set of the weights wi for that expert 
independently of the output dimension q. A single gate output probability gi is 
assigned to each expert (Fig 1). Thus, (Eq. 1) and (Eq. 2) give an associative 
Gaussian mixture model, 

 

where ||⋅|| is the Euclidean norm. 
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Fig. 1. Design of the integration system, a modular neural network. a denotes splicing 
acceptor site and d denotes the splicing donor site. The linear gating network a combines 
experts for the acceptor site and network d for the donor site.  
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  and  0 < gi < 1    for all i  

l(w, a) = ln� exp(ui) exp(- ||d – yi||2) - ln� exp(uj) (6)1
2i=1  

K K

j=1
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The task of the learning algorithm is to identify the correct values for expert 
and gate weights (the free parameters) such that the error of the predefined 
training dataset {x, d} is minimized. In this case, Jacobs and Jordan [2] employ 
the principle of maximum likelihood. Specifically, the conditional density 
function (Eq. 3) represents a likelihood function, which can be used to choose 
the maximizing (best) set of parameters w and g such that d is modeled to a 
sufficient degree of accuracy.  

The significance of this algorithm is that the gate – as indicated by index ‘i’ 
– is tailoring the error for specific expert networks, thus performing a problem 
decomposition with respect to the output space. Naturally, this could be taken a 
stage further by decomposing the input space, where this would require either a 
priori knowledge, or the insertion of a suitable clustering algorithm [1]. Here we 
consider the case of divide-and-conquer applied to the output space alone i.e. the 
original MoE model [2]. 

2.1. Modular MoE gate 

The above probabilistic requirement of the gate results in the following 
constraints, 

which is satisfied by the softmax function, 

Moreover, the function defining the gate is in itself a neural network model, the 
simplest of which takes the form of a linear combination of the inputs (Fig. 2), or 

      ui = xT ai                                               (5)  
 

where ai is a gate weight. Thus, the corresponding maximum likelihood cost 
function for the unknown modular MoE parameters (w, a) is defined in terms of 
log-likelihood as  
 

 

 
where y1 ,…, yk are the unknown conditional mean vectors of the expert outputs; 
and g1 ,…, gk are the optimized gate values providing the conditional a priori 
probabilities that a corresponding expert generated target d. With considering 

gi = (4)
j=1 
K

� exp(uj)  

exp(ui)  gi = (4)
j=1 
K

� exp(uj)  j=1 
K

� exp(uj)  

exp(ui)  
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the softmax function (Eq. 4), the log-likelihood cost (Eq. 6) allows a compact 
representation, 

Using the process of gradient-based estimation, as popularized by the back-
propagation learning algorithm for multi-layer perceptron neural networks [23], 
the corresponding gate weight ai update expression is derived. From the term on 
the right hand side of Eq. (6), the conditional a posteriori probability hi is 
defined, 

It represents a refined gate probability weight dependent on both input x and 
desired value d as opposed to the a priori probability gi, which is a function of 
input x alone. Combining this with the differential of the second term in the right 
hand side of Eq. (6) provides 

 

With respect to the linear gate model (Fig. 2) the remaining weight update 
rules follow from the ‘back-propagation’ of error terms as (c.f. gradient decent)  

where η is the learning rate. 
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Fig. 2. Signal flow of an output neuron of the gating network. 
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2.2. Experts in the modular MoE 

Derivation of the weight update for the expert networks follows a similar 
process. That is to say, we solve the derivation of log error with respect to 
weight change using the chain rule, 

where 
 

and in the case of a linear expert, 
 
 
 
and thus, 

Therefore, in both expert and gating networks, the general form of weight 
updates is  
 

      Weight change = (learning rate) x (local error)  
                 x (input signal)             (8) 

 

3. Design And Implementation  

In our integration system, each expert is a multilayer perceptron (MLP) [23]. 
Each MLP consists of an input layer, a hidden layer of nine neurons and an 
output layer of one neuron. A bias node with a value of -1 is added to the input 
layer and the hidden layer. Besides the bias node, the input layer is a vector of 
the nine attributes on each exon prediction: 

(1) type of exon: initial, internal, terminal, or single, 
(2) length of exon: number of base pairs contained in the exon,  
(3) prediction score by GrailEXP, 
(4) probability of a correct prediction by Genscan, 
(5) splicing acceptor site prediction score by Genscan, 
(6) splicing donor site prediction score by Genscan, 
(7) probability of a correct prediction by MZEF, 
(8) splicing acceptor site prediction score by MZEF,  
(9)  splicing donor site prediction score by MZEF. 

The same input vector feeds to all the experts and the gating networks (Fig. 1).  
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The input vector is not necessarily complete. There are some missing 
attributes because all the engines do not necessarily predict the same exon. The 
values for unavailable attributes are set to zero. Thus, a forward pass through Eq. 
(5) results in no output and a zero gate cost contribution (Eq. 6), removing the 
effected expert from any weight update.  

Since the prediction results are in different scales and/or units, we 
normalized the values. The training dataset is used to establish a zero mean unit 
standard deviation normalization, where the same mean and standard deviation 
are applied to testing dataset,  

where j denotes attribute; i denotes the pattern number; ‘^’ denotes the estimated 
mean; and σ is the estimated standard deviation. This normalization process is 
necessary to ensure equality of all attributes in the input vector. 

The integration output is a vector of two scores, one for each splicing site. 
The values of these scores are between 0 and 1 representing poor to excellent 
match. The higher score indicate a better likelihood of a prediction to be a true 
splicing site. The system is implemented in java with user and system interface 
implemented in HTML and Perl, respectively and available at http://www.cbr 
.nrc.ca/pany/integ.html. The output is in plain text, XML† and HTML file 
format.  

4. Data 

A set of 59 human genomic DNA sequences was collected directly from the 
GenBank. The majority of these sequences are also available in the Exon–Intron 
Database at Harvard University [24]. Three of the sequences are multiple gene 
sequences. The sequence length ranged from 1822 to 191075 bp. All of these 
DNA sequences were deposited into the GenBank in 1997 or thereafter, and 
their exons have been verified experimentally.  

A set of 845 exon predictions was collected by submitting 33 sequences to 
the three prediction engines and by combining the results from each of the three 
engines. Through careful examination of every prediction from this set and cross 
checking with the original GenBank entry, predictions that had unacceptable 
attribute values were removed from this dataset. Finally, a set of 575 predictions 
with various target values resulted from the above filtering and was used for 
training purposes.  

The test dataset consisted of 26 genomic DNA sequences and a total of 580 
exon predictions. This dataset did not have any sequence overlapping with the 
training dataset. One of the 26 sequences was a multiple gene sequence. The 

                                                           
† A DTD file is provided at http://www.cbr.nrc.ca/pany/integx.dtd. 

xj’(i) =  
xj(i) - xj 

σj
 

 

^
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length of these sequences ranged from 3,241 to 163,974 bp with an average of 
20,316 bp. None of the predictions were filtered. 

5. Measuring Prediction Accuracy 

We adopted the measurement system of Burnet and Guigo [25] for prediction 
accuracy. Notation and derivation details of the terms are identical to the original 
description except for those specified below.  

At the exon level, we use two additional terms, recovery rate (R) and 
partially predicted exon (PCa). Recovery rate is the proportion of predicted 
exons (exact or partial) over the total number of true exons on a sequence. A 
combination of recovery rate and missing exon rate (ME) is a unity. Thus, 

R = 1 – ME  
Partially predicted exon is the proportion of real exons that are partially 
predicted (only one of the splice sites predicted). This term is identical to the 
term PCa used in [26]. This is the recovery rate minus exon level sensitivity, 

  PCa = R – ESn  
Our definition of Wrong Exon (WE) is different from that in [25]. In our 

definition, WE is the proportion of predicted exons without any overlapping with 
exact exons, thus it does not include partially correct exons; while in [25], WE 
includes partially correct exons.  For the purpose of comparison, WE in [25] is 
our WE+PCa. As a consequence, our WE would tend to be smaller than or equal 
to that of [25]. When a program does not predict any exons in a sequence, 0 is 
assigned to both sensitivity (ESn) and specificity (ESp), and this sequence is not 
considered when calculating the average of these term values. 

6. Results And Discussion 

Tables 1 and 2 show the results of prediction accuracy measurements. At both 
nucleotide and exon levels, the integration system has significantly better 
sensitivity (p<0.5) than GrailEXP and MZEF and generally better performance 
than any of the participating engines. The integration system has higher value of 
the correlation coefficient (CC) and approximation correlation (AC) at the 
nucleotide level and lower missing exons level (ME) than those engines. 

The specificity (Sp) of the integration system at the nucleotide level does 
not seem to be better than any of the participating engines (Table 1). At the exon 
level, the integration system appears to have a high value of wrong exon (WE) 
prediction (Table 2). By providing a filter that removes predictions with 
integration scores lower than or equal to a threshold, we are able to improve the 
specificity by sacrificing the sensitivity. With this property, users with different 
perspectives in the result can select their threshold of prediction. The system 
provides a quality indicator based on the integration scores, fair (�0.0), good 
(one of the splicing site �0.75), excellent (sum of both splicing sites � 1.5). 
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For the same prediction engine, the values in Tables 1 and 2 (top sections) 
appear smaller than those reported in [26]. This is attributable to the difference 
in length of sequences used in these two studies. The mean length of 195 
sequences in [26] was 7,096 bp, while that of our 26 testing sequences was 
20,316 bp. After removing 6 sequences that have length of over 30,000 bp, we 
were able to obtain a subset of 20 testing sequences with mean length of 7,978 
bp.  The results from this subset (Tables 1 and 2, bottom section) are close to 
that reported in [26]. This is attributable to the fact that longer sequences usually 
contain longer intron regions and tend to have higher number of misleading 
patterns that are similar to the splicing sites. As a result, all prediction engines 
perform better with shorter sequences.  

The sensitivity in the subset does not seem to improve as significantly as 
that of specificity after removing the 6 longer sequences, especially for the 
MZEF.  Fig. 3 indicates that the sensitivity of MEZF does not change with 

 

Table 2. Exon level accuracy measurements 
 

 ESn ESp (ESn+ESp)/2 ME WE PCa R 
GrailEXP 0.47 0.52 0.49+0.23 0.22 0.14 0.31 0.78 
Genscan 0.68 0.70 0.69+0.26 0.13 0.13 0.19 0.87 

MZEF 0.45 0.60 0.52+0.20 0.43 0.21 0.19 0.62 
Integration 0.77 0.70 0.74+0.22 0.09 0.19 0.14 0.91 

Sequence length <30,000 bp: 
GrailEXP 0.46 0.54 0.50+0.25 0.21 0.07 0.33 0.79 
Genscan 0.67 0.75 0.71+0.26 0.13 0.06 0.19 0.87 

MZEF 0.48 0.64 0.56+0.19 0.43 0.17 0.21 0.64 
Integration 0.77 0.77 0.77+0.21 0.09 0.11 0.14 0.91 

Note: ESn: Sensitivity, ESp: Specificity, ME: Missing Exons, WE: Wrong 
Exons, PCa: Partially predicted exons, R: Recovery rate. (ESn+ESp)/2 is in 
mean+std (standard deviation). 
 

Table 1. Nucleotide level accuracy measurements 
 

 Sn Sp AC CC 

GrailEXP 0.76 0.81 0.75+0.17 0.74 
Genscan 0.87 0.84 0.83+0.18 0.83 

MZEF 0.55 0.87 0.66+0.17 0.63 
Integration 0.93 0.81 0.85+0.18 0.85 

Sequence length <30,000 bp: 
GrailEXP 0.78 0.86 0.79+0.14 0.78 
Genscan 0.89 0.90 0.88+0.16 0.87 

MZEF 0.56 0.94 0.69+0.15 0.66 
Integration 0.95 0.89 0.91+0.13 0.90 

Note: Sn: Sensitivity, Sp: Specificity, AC: Approximate Correlation, CC: 
Correlation Coefficient. AC is in are in mean+std (standard deviation). 
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regard to sequence length, while the specificity of all the prediction engines and 
the integration system are related to the sequence length.  

The quality of prediction of the integration system is a function of that of 
each participating engine. It is therefore the prediction by the integration system 
reflects the combined effect of individual engines. For example, the seven exons 
in the ogg1 gene (GenBank ID = HSA131341) are not predicted by any of the 
three engines. In such circumstances, the integration system would not do any 
better. Nevertheless, exons predicted by more than one engine are more likely to 
be actual exons. Thus users can be more confidence in the prediction result, 
which is certainly demonstrated here. A higher correlation coefficient of the 
integration system indicates a more accurate result. By integrating the 
predictions from various engines, the recovery rate (R=1-ME) is significantly 
better than any of the participating engines alone. 

Accurate identification of splicing sites is one of the most important issues 
in eukaryotic gene discovery. Our research indicates that Genscan is significantly 
better than GrailEXP and MZEF with regard to both sensitivity and specificity at 
the exon level. The overall recovery rates of the integration system are better 
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Fig. 3. Specificity (Sp, left) and sensitivity (Sn, right) of participating engines and the integration 
system. A, B: GrailEXP; C, D: Genscan; E, F: MZEF; G, H: Integration 
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than any participating engine. Claverie [27] demonstrates that Genscan and 
MZEF are among the best gene prediction engines. However, in the current 
study, the sensitivity and specificity of MZEF does not appear as good as that of 
GrailEXP, and the recovery rate is very low. This is attributable to the fact that 
MZEF predicts only the internal exons. By incorporating the capability of 
predicting initial and terminal exons, MZEF could perform better. 

In the input vector, GrailEXP is represented by one attribute, while the other 
two engines are represented by three attributes. It might therefore be argued that 
GrailEXP faces an initial disadvantage. However, when using a gradient based 
update rule, adaptation of the free parameters takes place in proportion to the 
cross- and auto-correlation between feature and target value. As there is no a 
priori bias in favor of specific input features, all therefore appear equally 
significant at initialization. Only during the assignment of credit through the 
weight update rule is significance to specific inputs assigned.  

Our study indicates that the prediction of exons can be improved by 
integrating the results of several prediction engines. As a first attempt, our 
integration system architecture applies three experts of the same architecture (the 
multilayer perceptron). A diverse set of algorithms in experts can improve the 
prediction further. This merits further investigation.  

Our motivation in this study is to integrate predictions of engines with 
various strengths. As for overall performance, there are several other prediction 
engines that are reported better than GrailEXP and MZEF (see [26]).  For 
example HMMgene [14] and Genie [16] have comparable levels of performance 
to that of Genscan. FGENES [17] is another highly reputable engine in 
eukaryote exon prediction. However, their prediction features and algorithms are 
similar to Genscan, which was used in this study, and thus are not considered. 
However, inclusion of more such engines, in the integration system could 
improve the quality of integration and merits further study. 

This integration of exon prediction by the three engines improved human 
exon prediction. Inclusion of other engines designed for other group of 
organisms would further improve the accuracy of predictions and facilitate 
broader application of the integration system. 
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