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VALUATION OF LEARNING OPTIONS IN 

SOFTWARE DEVELOPMENT UNDER 

PRIVATE AND MARKET RISK  
 

HAKAN ERDOGMUS 

National Research Council, CANADA 

 

 

ABSTRACT 

 

Commercial software development is an inherently uncertain activity. Private risk is high, 

schedule and cost overruns are common, and market success is elusive. Such 

circumstances call for a disciplined project evaluation approach. This paper addresses the 

of use of market and earned value management data in assessing the economic value of 

commercial software development projects that are simultaneously subject to schedule, 

development cost, and market risk. The assessment is based on real options analysis, a 

financial valuation technique that can tackle dynamic investment decisions under 

uncertainty. The paper demonstrates the application of real options analysis to a 

development scenario that consists of two consecutive stages: a mandatory prototyping 

stage and an optional full-development stage. The full-development stage is undertaken 

only if the prototype is successful and the market outlook is sufficiently positive at the 

end of the prototyping stage, thus giving the full-development stage the flavor of an 

option. The project's staged design increases its value. Real options analysis captures the 

extra value due to optionality.  

 

 

INTRODUCTION 

 

According to the Standish Group’s CHAOS report [1], more than 20% of 

software projects fail and only less than 20% of software projects are completed 

on time and on budget. The direct cost of these failures and overruns are 

staggering, but even more significant are probably the immeasurable effects of 

lost opportunity costs. Process improvement initiatives can help improve both 

predictability and quality, but they cannot eliminate uncertainty in the 

environment. Uncertainty is inherent in software development, where just about 

everything – requirements, technology, skills base, business climate, culture – is 

in a constant state of flux. A disciplined approach to reasoning about value 

under uncertainty is essential. Such an approach should: 
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• facilitate the identification of an optimal project structure that mitigates 

risk and increases value, 

• be able to take advantage of current information and relevant historical 

data,  

• support dynamic decisions, and ultimately, 

• improve the quality of decision making at both the technical and 

managerial level. 

 Huchzermeier and Loch [2] identify five value drivers for R&D projects. 

Adapted to the software context, these are: product quality (subsumes 

performance), development budget (cost), development schedule (time), market 

requirement for quality, and market payoff. Uncertainty in one or a combination 

of these drivers affects the value of the project to various extents. This paper 

illustrates how uncertainty in these factors can simultaneously be tackled in 

software development using an integrated valuation approach. The approach 

takes project structure into account, uses available data, and supports dynamic 

decisions. 

 Budget and schedule are dependent drivers. Since labor is the dominating 

cost driver in software projects, cost overruns are frequently a consequence of 

schedule overruns. The treatment considers this dependency by relating budget 

uncertainty to schedule uncertainty, but can also treat budget uncertainty 

independently. 

 

METHODOLOGY 

 

Two techniques drive the valuation approach described in this paper: real 

options analysis and earned value management. 

 Real options analysis is a framework for valuing real assets under 

uncertainty. Earned value management is a technique for project planning and 

monitoring.  

 Real options analysis drives the design of the project structure so that the 

value of the project is maximized. The project is divided into distinct stages 

where the earlier stages are aimed at partially resolving project uncertainty and 

later stages operationalize the project and ultimately bring it to completion. As 

such, the earlier stages provide learning opportunities to steer the remainder of 

the project. When the project structure is viewed as a sequence of learning 

options, option-pricing techniques can be employed to value the overall project. 

The main insight provided by the real options approach is this: Staging gives 

rise to learning options that increase the flexibility of the project. The rational 
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exercise of such options increases the value of the project by limiting the 

downside risk while retaining the upside potential.  

 Earned value management concepts are employed to capture the budget and 

schedule aspects of the project plan and to estimate budget and schedule risk 

based on historical data. Therefore, uncertainty about project costs and 

completion times can be factored into the analysis in a sound manner. Earned 

value management emphasizes the importance of project planning and tracking 

for the valuation of future projects that are subject to budget and schedule 

volatility. With rigorous project tracking, future decisions can be linked to past 

experience.  

 

SUMMARY OF THE GENERAL VALUATION METHODOLOGY 

 

The following steps illustrate the general methodology used:  

1. Identify the critical sources of uncertainty. 

2. Structure the project as a sequence of learning stages followed by an 

implementation stage where the learning stages are designed to 

partially resolve one or more sources of uncertainty. Each stage either 

represents an active strategy (with a required investment outlay, e.g., a 

prototyping stage) or a passive strategy (with no associated investment 

outlay, e.g., a waiting stage). 

3. Determine the optimal continuation strategy for each stage conditional 

on the outcome of the previous stage. Each subsequent stage is viewed 

as a real option on the previous stage.  

4. If the outcome of a stage is dependent on private risk – such as product 

quality, the ability of the product to meet market requirement, cost 

uncertainty or schedule uncertainty – use data from past projects to 

generate a probability distribution for the possible outcomes. If no data 

is available, treat the probability distribution as a sensitivity variable 

and repeat the analysis for different distributions.  

5. Create a budget and schedule plan for each stage. The budget plan can 

also be conditional on the outcome of preceding stages.  

6. Use earned value data from past projects to estimate budget and 

schedule uncertainty. Determine a set of possible completion times for 

the project. 

7. Use the estimates of budget and schedule uncertainty to develop a 

conditional distribution of total development cost for each stage. The 

distribution is conditional on the deviation from the planned schedule 
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for that stage. It also takes into account the expected deviation from the 

budget plan independent of the schedule uncertainty. 

8. Determine the project cutoff time. The cutoff time is the total project 

schedule such that the probability of completing the whole project later 

than this schedule is below a chosen threshold value.  

9. Use market data to estimate the market payoff and its volatility. Select 

an interval size (granularity) and build a discrete, tree-based model of 

the potential development of the market payoff based on these 

estimates. The cutoff time determines the time horizon. If the market 

payoff depends on the project completion time, then construct a 

separate tree for each possible completion time.   

10. Convert the market payoff tree into a decision tree. Introduce branches 

corresponding to different continuation strategies at the various 

decision points. Also introduce binary branches for potential delays at 

those points where the probability of delay is higher than a threshold 

value.  

11. Assign a development cost and a market payoff value for each terminal 

node in the resulting tree depending on what terminal state the node 

represents.  

12. Fold back the tree using dynamic programming and risk-neutral 

valuation to calculate the value at the root node. Subtract the initial 

investment, the cost the very first stage, from this value. The result 

represents the discounted net project value, and subsumes the option 

value resulting from the dynamic selection of optimal continuation 

strategies.  

 

A LEARNING OPTION MODEL WITH MULTIPLE SOURCES OF UNCERTAINTY 

The particular problem being addressed by the main section of the paper is the 

valuation of a learning real option subject to four different kinds of uncertainty. 

Three of the underlying sources of uncertainty involve private risks. Two of 

these are interdependent risks. The fourth source involves market risk and is 

independent of the other three sources. 

 For a given development project, let S = {S1,..., Sk} be a set of k possible 

schedules with an associated probability distribution. Let DC = {DC1,..., DCk} 

denote the total development cost estimates for the k possible schedules in S and 

MP be the expected market payoff of the completed project. Both DC and MP 

are expressed in future value terms.  
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 Let L(T) be a learning option with an associated exercise, or continuation, 

decision at time T such that T < Si, for all 1 ≤ i ≤ k. L(T) is a real option whose 

underlying asset is MP and whose exercise price is one of the DCk, depending 

on which one of the possible schedules are realized upon the exercise of L(T), 

and ultimately upon the completion of the project. If L(T) is not exercised, the 

continuation decision is to stop, and the project is aborted with zero market 

payoff. 

 Suppose that the continuation decision of L(T) is made based on a nonlinear 

payoff function f. The nonlinear payoff f is a function of the net payoffs 

distribution at time T and a binomial random variable V representing the 

likelihood of a favorable learning outcome. The function f is optimal in that it 

never yields a negative value, and in the case of a favorable learning outcome, 

extracts the highest value from the net payoff distribution. V constitutes an 

additional source of uncertainty, and behaves as a guard that destroys the 

learning option in the case of an unfavorable learning outcome. This scheme is 

consistent with the rational exercise principle of option pricing.  

 L(T) is a learning option in that although the realized value of k is not 

known until the project’s completion, the value of the random variable V and 

some information about the market payoff MP (as captured by the net payoff 

distribution at time T) are revealed just before T. Although for fixed k, the DCk 

is certain, since k is not known a priori, the exercise cost is effectively uncertain. 

The underlying asset MP is also uncertain and follows a standard lognormal 

diffusion process. Thus L(T) is a real option with an uncertain, lognormal 

underlying asset and an uncertain exercise price with an arbitrary discrete 

distribution. We assume that V and k are uncertain because of private factors and 

MP is uncertain because of market factors.  

 The main question tackled by the paper is this: What is the present value of 

the learning option L(T) given S, DC, MP, and V?  

 A real option valuation technique originally suggested by Smith and Nau 

[3] is at the focal point of the solution. This technique, the integrated rollback 

procedure, is adapted to the problem at hand to handle the multiple sources and 

types of uncertainty involved. Integrated rollback procedure combines 

traditional decision-tree analysis with a standard option pricing method known 

as risk-neutral valuation. This method is based on a binomial, lattice model of 

the movement of the underlying asset. It assumes that the risk of the underlying 

asset can reasonably be priced using a market proxy, such that standard market 

theory and option pricing assumptions apply.  
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 To solve the valuation problem for L(T), first k parallel binomial lattices are 

constructed to represent the possible development of the market payoff MP. 

Since MP is specified in future value terms and it is realized only upon project 

completion, k models are required, each with a different initial price. The initial 

price is set to the present value of MP’s expectation, discounted back Sk periods 

using a risk-adjusted rate.  

The lattice structure is converted into a decision tree with additional branches 

corresponding to the k possible schedules and the continuation decision. Each 

leaf node of the decision tree represents a combined state with two components: 

(1)  the realized schedule or continuation action, whichever applies, 

associated with that node and, 

(2)  the corresponding final state of the binomial lattice associated with the 

realized schedule. 

A net payoff function is determined for each type of leaf node based on this 

composite state. The net payoffs are then computed for each leaf node according 

to the payoff function identified for that type of node. 

 The next step involves folding the decision tree back using a dynamic 

programming scheme. Three techniques are interleaved during this process. 

Whenever the continuation decision (an action) is involved, the expected payoff 

for the parent node is computed from the child nodes based on the nonlinear 

function f and the probability distribution of the learning outcome V. Whenever 

a state change is driven by a deviation from the current schedule, the expected 

payoff for the parent node is computed from the child nodes using the 

probability distribution of S. In both cases, the expected payoffs are discounted 

using the risk-free rate because both S and V are privately sourced. Finally, 

whenever a state change is driven by change in the value of the market payoff 

expectation, risk-neutral valuation is applied. Risk-neutral valuation involves 

the construction of a replicating portfolio composed of a risk-free asset and a 

market proxy for MP. The value of this portfolio is computed for the parent 

node such that its value at each of the child nodes equals the payoff previously 

computed for that child node. To eliminate arbitrage opportunities, the expected 

payoff of the parent node must equal the value of the underlying replicating 

portfolio at that node. This process is repeated recursively, selecting the proper 

rollback technique one step at a time depending on the type of the parent node. 

Ultimately, a value is obtained for the root node of the decision tree. The value 

of the root node equals the value of L(T). 
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 Smith and Nau prove that this procedure is sound so long as the decision 

maker is risk averse or risk-neutral. Here we assume that the decision maker is 

risk-neutral, with a linear utility function.  

 

SCOPE OF THE METHODOLOGY 

Some aspects subsumed within the different steps of the general methodology 

are beyond the scope of the paper. 

• Budget and schedule estimation are not treated. Historical project data 

is used for estimating budget and schedule variability for future 

projects, but not for developing budget and schedule plans for them. 

Methods for developing budget and schedule plans are therefore not 

discussed. The reader interested in this aspect is referred to the general 

literature on software cost estimation [4, 5].  

• Project tracking and measurement is not treated in detail. We assume 

that historical data from past projects similar to the one under 

evaluation is available in a certain format. In particular, the notion of 

project similarity is not formalized.  

• The estimation of the market payoff is not treated in detail. We assume 

that relevant projections are provided together with a market proxy. 

The market proxy is used for estimating the variation around the given 

projections based on a standard uncertainty model. 

 

 

BACKGROUND AND RELATED WORK 

 

TRADITIONAL VALUATION 

Traditional valuation techniques such as discounted cash flow and net present 

value are adequate for treating investment decisions with static project 

structures. However, these techniques are not particularly suitable for dealing 

with dynamic decisions under uncertainty. According to these techniques, the 

project’s value is determined by the sum of its discounted cash flows, where the 

discount rate captures the opportunity cost of the investment. The discount rate 

is determined either by the market (based on the Capital Asset Pricing Model, 

where the expected return on an investment is proportional to the systematic risk 

borne) or by the minimum required return on investment for projects of similar 

risk (for example, by the weighted average cost of capital). Although private risk 

can be accounted for using unbiased estimates – expected period cash flows 

computed using a set of predetermined outcomes with subjective probabilities – 

there is no recognition of managerial flexibility once the project is underway. 
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Thus traditional valuation techniques fall short if the project is structured with 

milestones where the outcome of each milestone determines the continuation 

strategy for the rest of the project. Introductory corporate finance texts provide 

discussions of basic valuation concepts, such as discounted cash flow, net 

present value, and the Capital Asset Pricing Model. Sufficient coverage of these 

topics is provided by Ross et al. [6] and Brealey and Myers [7]. 
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DECISION TREE ANALYSIS 

The choice of the right discount rate is a contentious issue in discounted cash 

flow valuation. Decision theoretic approaches, decision tree analysis in 

particular [8], can handle dynamic aspects of valuation as well as risk 

preferences of decision makers, but they compound the discount rate problem. 

These approaches model a dynamic investment scenario as a tree with state 

nodes that represent possible outcomes in response to an action and action nodes 

that represent possible actions in response to an outcome. Probabilities are 

associated with state nodes. Contingent claims on future payoffs can easily be 

captured with this modeling technique. The decision tree is folded back by 

calculating expected payoffs using optimal decision rules and discounting these 

payoffs as one moves towards the root of the tree. However, as the tree 

branches, the risk structure of the project changes, thus requiring different 

discount rates to be used at different branches. 

 

OPTION PRICING AND REAL OPTIONS ANALYSIS 

Classical option pricing techniques tackle the discount rate problem by a 

different strategy. Instead of trying to solve the discount rate problem, option 

pricing relies on replicating the payoffs of a contingent claims scenario by an 

arbitrage-free trading strategy. The trading strategy involves a dynamically 

updated portfolio of assets. Therefore the discount rate problem in traditional 

decision tree analysis is reduced to finding a replicating trading strategy in 

option pricing. To avoid arbitrage opportunities, the value of the contingent 

claim must equal the value of the initial portfolio underlying the trading 

strategy.  

 Myers was one of the first to realize that financial option pricing techniques 

could be applied to the evaluation of projects [9]. He recognized that contingent 

claims on real assets have characteristics of options, and coined the term real 

option. This idea later lead to the development of a class of techniques, 

collectively referred to as real options analysis, for valuing real assets under 

uncertainty and dynamic decision-making,   

 In its most general form, an option is a discretionary future action. Options 

are a form of derivate, in that they their value depends on the value of some 

underlying asset, whether real or financial.  

 Viewing contingent claims on real assets, for example the milestones and 

different stages of a project, as options on an underlying asset gives rise to a 

powerful reasoning tool. The main insight is that the value of a capital budgeting 

project lies not only in the static stream of cash flows it is expected to generate, 
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but also in the managerial flexibility embedded in the project. Such flexibility 

creates the potential to capitalize on the underlying uncertainties. Substantial 

value can be generated if those uncertainties are managed optimally. Using the 

real options perspective, option pricing techniques and decision tree analysis can 

effectively be combined to give rise to a robust valuation framework.  

 Many excellent, high-level articles discuss the use of option pricing theory 

in valuing options on real assets [10, 11]. Myers explains how the real options 

approach links strategy and finance [9]. Copeland and Antikarov [12] and 

Amram and Kulatalika [13] focus on applications of real options. Trigeorgis 

provide several applications in various industries [14, 15].  

 Applications of real options to information technology in general and 

software development in particular have also been tackled in many articles. 

Erdogmus and Favaro et al. address investment decisions in software 

development [16-21]. Sullivan et al. focus on applications to software design 

[22, 23] and Baldwin and Clark address applications to hardware design [24]. 

More generalized treatments in the context of information technology 

investments are also available. For examples, see articles by Taudes, Benaroch, 

and Dos Santos [25-29].  

 

OPTION PRICING THEORY 

Hull [30] provides an undergraduate-level overview of derivative securities, 

including options, the general techniques for their pricing, and derivative 

markets. Pindyck and Dixit [31] offer a deeper and more theoretical exposition 

of option pricing theory together with the econometric foundations of standard 

option pricing methods.  

 The seminal paper on option pricing is by Black and Scholes [32], which 

explains the original derivation of their (and Robert Merton’s) Nobel-prize 

winning model. Cox, Ross, and Rubinstein [33] provide a much simpler 

derivation of the same model using the binomial model and the risk-neutral 

approach. The Black-Scholes model has many variations with closed-form 

solutions. The most relevant ones are discussed by Margrabe and Carr [34, 35]. 

Margrage derives a formula for the option to exchange two risky assets, of 

which the Black-Scholes model is a special case [34]. This formula can be used 

when the exercise cost of a standard call option is uncertain [17]. Carr provides 

a comprehensive discussion of Margrabe’s formula and other, more complex 

variations, including compound options. Kumar [36] provides a compact 

discussion of the impact of volatility on option value.  
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 Sundaram [37] gives the best exposition of the binomial model and risk-

neutral valuation. Smith and Nau [3] explain the relationship between option 

pricing and decision tree analysis, and demonstrate how the two models together 

can account for market and private risk simultaneously.  

 

EARNED VALUE MANAGEMENT 

Earned value management is a well-known project planning and tracking 

technique. It was developed and is advocated by the Project Management 

Institute [38, 39]. The U.S. Department of Defense adopted and mandated 

earned value management for effective schedule and cost management of 

defense contracts. The application of earned value management to software 

development projects has drawn considerable attention since the early nineties 

[40-42].  

 In earned value management, all work is budgeted (planned), scheduled, 

and tracked in time-phased increments that constitute a baseline for planning 

and measurement. This baseline is referred to as the project measurement 

baseline (PMB). For each unit of work, and for the project as a whole, budgeted 

(planned) costs, actual work performed relative to budgeted costs, and actual 

(realized) costs are tracked and accumulated.  

 As work is performed, it earns value on the same basis as it was planned, in 

dollars or some other quantifiable unit such as person-hours. This is not business 

value per se, but rather value relative to budgeted work expressed as a 

percentage of the allocated budget. Thus earned value measures the volume of 

work accomplished relative to work planned. The difference between earned 

value and the actual costs measures the deviation from the planned budget. 

These deviations are tracked, and corrective action is taken when warranted.  

 Earned value data from past projects can aid in the estimation of cost and 

schedule uncertainty for future projects. In software development, this 

information is useful for project planning, valuation, and risk management.  

 FIGURE 1 illustrates the earned value terminology using the project 

measurement baseline of a completed project. The PMB tracks cumulative costs 

and progress as a function of time (schedule). (We will deviate slightly from the 

standard earned value terminology for clarity.)  

• Budgeted cost of work scheduled (BCWS) refers to planned cost. 

The cumulative BCWS curve always terminates at 100% of the 

total planned schedule. The total planned schedule is referred to as 

the budget at completion (BAC). In FIGURE 1, time T represents the 
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schedule at completion (SAC), which refers to the planned 

schedule.  

• Budgeted cost of work performed (BCWP) tracks the so-called 

earned value. This is the relative value that a project earns as it 

progresses. The value is relative to the planned expenditures. The 

BCWP curve extends beyond the SAC if the project is delayed. It 

terminates before the SAC if the project is ahead of schedule. The 

project in Figure 1suffered a delay. 

• Actual cost of work performed (ACWP) is the realized cost. The 

cumulative ACWP curve tracks actual costs in absolute terms. 

 As the project progresses, deviation from the planned schedule and budget 

can be tracked through different metrics. FIGURE 1 illustrates these metrics: cost 

variance (CV), horizontal schedule variance (HSV), and vertical schedule 

variance (VSV). The sign of these metrics indicate whether the project is 

suffering a budget or schedule overrun (indicated by negative values) or it is 

ahead of planned budget or schedule (indicated by positive values) at any given 

time. 

 

 

HSV(t) 

Schedule  

Cost ($) 

t T (SAC) 

ACWP 

VSV(t) 

BAC BCWP BCWS 

CV(t) 

 

FIGURE 1: Earned value metrics that measure the deviation from 

cumulative budgeted schedule and cost: horizontal schedule variance (HSV), 

vertical schedule variance (VSV), and cost variance (CV). 

 

CASE STUDY: A SOFTWARE PROTOTYPING PROJECT 
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The rest of the paper illustrates the valuation methodology outlined through a 

case study that involves a fictitious software company contemplating a major 

extension to its flagship product.  
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PROBLEM CONTEXT 

Polysis, a developer of mathematical software, is considering the extension of its 

flagship product with a set of innovative user interface and automated analysis 

features. The new feature set is dubbed MathWizards. If the feature set is 

successful, the company expects to capture 5% of the total market in 

mathematical software. Polysis considers MathSoft, a public company, as its 

main competitor. The company analyst predicts that MathSoft currently holds 

50% of the market targeted by Polysis.  

 

Factors to Consider 

The mathematical software market looks favorable, but is highly volatile. The 

company managers are reluctant to take a risk without a reasonable expectation 

that MathWizards will be well received by the end users. 

 Data from a similar past project indicates that development schedules and 

costs are uncertain. Budget risk and schedule risk are considered as private risk 

because they are unique to the organization.  

 

Questions 

How should Polysis proceed? What strategy should it adopt? How should it 

assess the value of its adopted strategy? 

 

Selected Strategy 

The driver for the following strategy is the market requirement risk as reflected 

by the statement “The company managers are reluctant to take a risk without a 

reasonable expectation that MathWizards will be well received by the end 

users.” To reduce the risk of MathWizards failing in the market with actual end 

users, Polysis will undertake the development in two stages. The strategy of 

Polysis is illustrated in FIGURE 2: 

• Stage 1: Prototype Development and Evaluation. First, Polysis 

will develop only a user interface prototype of MathWizards, 

without implementing the full functionality. If the prototype fails 

the usability evaluation, Polysis will shelve the idea, and the next 

version of its flagship product will be released without 

MathWizards. If the prototype passes the usability evaluation, 

Polysis will base its decision on the then outlook of the 

mathematical software market. The prototype will be ready in four 

months and cost $200,000 in present value terms to develop. The 

prototype will then undergo the usability evaluation, which will 

take an additional two months and cost $100,000 dollars. The total 
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cost of the first stage is then $300,000 and the total schedule is six 

months.  

• Stage 2: Full Development. At the end of Stage 1, company 

managers will decide whether to proceed with the full development 

of MathWizards and its integration with the company’s flagship 

product. If the market outlook at that time is still positive, Stage 2 

will proceed; otherwise it will be foregone. If the company decides 

to undertake Stage 2, it will have to incur the full development and 

integration cost. At the end of Stage 2, the company will release its 

flagship product with MathWizards, and only then will it reap the 

benefits from the project. Stage 2, if undertaken, is expected to be 

completed in 18 months, but this figure is subject to estimation 

errors and variability due to technical problems, skill set of the 

development team, turnover rate, and technological change.   

 

Legend:
– – – Uncertainty

☺ Market-priced risk

. Private risk, estimated

? Private risk, unknown

?

.

&Prototype passes

evaluation (PS)
and

favorable market
.

Schedule (DS)

☺

Market value

of MathWizards (MV)

Stage 2: Develop full feature set
and integrate with product

Next release

(with MathWizards)

    Development cost

(DC)

Next release

(w/o MathWizards)

'

Prototype fails

evaluation (1–PS)
or

unfavorable market

Stage 1: Develop
andand evaluate
UI prototype

$0.3M

6 months

24 months (uncertain)

 

FIGURE 2. The development strategy of Polysis and 

 the underlying sources of uncertainty. 

 

ELABORATION OF THE SOURCES OF UNCERTAINTY 

We assume that the prototyping cost and schedule estimates are fairly accurate. 

With this assumption, the strategy is subject to four remaining sources of 

uncertainty, two of which are dependent. The first three of these sources 

constitute private risk. The last one constitutes market risk, and will be priced 

using market data.  
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• Success of Prototype (PS). The probability of the MathWizards 

prototype passing the usability evaluation at the end of Stage 1. 

This probability is unknown a priori, and therefore PS will be 

treated as a sensitivity variable. Thus, (PS, 1 – PS) is the 

probability distribution of the binary learning outcome (the 

variable V in the general model).   

• Total Stage-2 Schedule (DS). Total time (in calendar months) 

required to complete Stage 2. The planned schedule is 18 months 

for Stage 2, but this projection is uncertain. The uncertainty of this 

variable will be estimated using the PMB of a reference project 

from the company’s database of past projects. 

• Total Stage-2 Cost (DC). Total cost of Stage 2. The total expected 

cost for Stage 2 is one million dollars. The actual cost will be 

determined by the actual Stage-2 schedule. In addition to a 

possible deviation from the planned schedule, actual costs on a 

per-period (e.g., monthly) basis may turn out to be different from 

the estimated period costs. The reference project will be used to 

adjust the cost estimates.  

• Market Payoff (MP). The future value of total revenues from the 

sales of MathWizards. This variable represents the market payoff 

of the completed project. The uncertainty of MP is determined by 

the market demand for mathematical software products. MP will 

be realized only if the MathWizards prototype is successful and 

Stage 2 is undertaken. Both MP and its uncertainty, σ(MP), will be 

estimated using market data.  

 

PROBLEM FRAMING 

Since the full development stage (Stage 2) is conditional on the success of the 

prototyping stage (Stage 1) and the market outlook at the end of Stage 1, the 

overall strategy can be viewed as a learning option. Stage 1 does not yield any 

immediate benefits. Its purpose is to resolve uncertainty and create the option to 

continue with the full development stage. The cost of full development is the 

exercise cost of the option. The underlying asset, the asset being targeted, is the 

uncertain market payoff MP.  

 

DATA SETUP AND ESTIMATION 
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SCHEDULE AND BUDGET PLAN 

The prototype will be ready in four months and cost $200,000 to develop. The 

prototype will then undergo a usability evaluation, which will take an additional 

two months and cost $100,000. Without further elaboration of Stage 1, we skip 

to the budget plan for Stage 2, the full development stage.  

 The plan for Stage 2 is shown in FIGURE 3. The vertical axis represents 

cumulative cost. The total planned budget, or BAC, for Stage 2 is thus one 

million dollars. Resources are allocated on a per-month basis, from the start of 

Stage 2. The flatter region in the middle represents an expected decrease in 

resources due to another project scheduled during that region. 
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FIGURE 3. Estimated budget and schedule for the full development stage  

(Stage 2) of MathWizards.  

 

ESTIMATION OF PROJECT UNCERTAINTY USING A REFERENCE PROJECT 

 

Identification of Benchmark Data: The Reference Project 

The company’s database contains a data point from a similar past project. It is 

expected that Stage 2 will operate under a similar resource commitment scheme, 

will be subject to similar technical risks, and will be undertaken by a team with a 

similar mix of skills. This past project constitutes the reference project. 

MathWizards’ full development stage will be subject to a budget and schedule 

variability comparable to that of the reference project. 
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 FIGURE 4 shows the PMB of the reference project. The PMB consists of the 

three different cumulative plots illustrated in FIGURE 1. The horizontal axis 

represents the percentage budgeted schedule. Some characteristics of the 

reference project are:  

• The BCWS curve indicates that the project was planned to incur a 

total cost of $875K at completion. This is the budget at completion 

(BAC). 

• The BCWP curve, or the earned value curve, extends beyond the 

100% schedule mark (SAC), terminating at 125% of the total 

budgeted schedule. The $875K-worth of total planned work was 

completed with a 25% schedule overrun. 

• The ACWP curve terminates at a total value of $975K. Thus the 

project completed with a cost overrun of 975 – 875 = $100K, or 

23% of BAC. 
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FIGURE 4. Performance measurement baseline (PMB) for the reference project.  

 

Analysis of the Reference Project 

A single data point is not sufficient to make an overall prediction with a 

reasonable degree of statistical significance. In this case, a cost overrun of 23% 

and a schedule overrun of 25% cannot be credibly predicted for the 

MathWizards project based on the total delay and cost overrun suffered by the 

reference project. Instead, we will rely on period-to-period observations, and 
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inspect the deviation from the planned schedule and cost throughout the 

progression of the reference project. An analysis of the PMB of the reference 

project using period observations yields the required estimates regarding the cost 

and schedule uncertainty of the project under evaluation. 

 The first step is to estimate a set of most likely schedules corresponding to 

different project completion times, together with a probability distribution for 

these completion times. The HSV metric is used for this purpose. 

 The next step is to estimate the completion cost based on the budget plan of 

FIGURE 3, under a given deviation from the planned schedule. Note that the 

budget plan is developed independent of any reference project. To predict the 

deviation from the budgeted period costs under a specified deviation from the 

planned schedule, we take advantage of the metrics CV and VSV. VSV is used to 

estimate the BCWP of the project under evaluation from its original plan – that 

is from the project’s BCWS – based on a hypothesized schedule slip. CV can 

then be used to estimate the project’s ACWP, which leads to the cost estimate 

corresponding to that schedule slip.  

The details of these calculations can be found in the APPENDIX.  

 FIGURE 5 plots the percentage horizontal schedule variance, %HSV, for the 

reference project. %HSV has a mean value of –13% and a standard deviation of 

6%. Before the %HSV data can be used for estimating schedule uncertainty, it 

needs to be transformed into a more usable form to be able to generate a 

probability distribution for the deviation from the planned schedule.  

 FIGURE 6 plots this transformed metric, the estimated relative completion 

time (ERCT), as a function of relative budgeted schedule. Over the lifetime of 

the project, the ERCT has a mean value of 116%, corresponding to a relative 

mean delay of 16%, and a standard deviation of 8.1%. 

 By fitting an appropriate probability distribution to the ERCT data, 

completion and delay probabilities can be estimated for a given schedule. For 

the data in FIGURE 6, a lognormal distribution is chosen. FIGURE 7 plots the 

resulting completion probabilities, again against the percent deviation from the 

budgeted schedule. According to these estimates, there is virtually no chance 

that the project will be completed ahead of planned schedule. The probability of 

completing the project as planned, at 100% of the budgeted schedule, is less 

than 3%. A delay of more than 17%, corresponding roughly to one quarter, is 

likely with a probability of about 45%. A delay of more than 33%, or roughly 

two quarters, is likely with a probability of less than 2%. A delay of more than 

two quarters is highly unlikely. 



  Published in: THE ENGINEERING ECONOMIST ● 2002 ● VOLUME 47 ● NUMBER 3 

 

20 

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

8% 25% 42% 58% 75% 92% 108% 125%

% Budgeted Schedule

% Period Cost
Variance

% Period Vertical
Schedule Variance

%  Horizontal
Schedule Variance

 

FIGURE 5. Percentage deviation of actual cost and schedule from budgeted cost 

and schedule, respectively, for the reference project. 
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FIGURE 6.  Estimated relative completion time for the reference project. 

 

Given a deviation granularity of one quarter (three months) and a cutoff 

probability of 5%, the most likely schedules are represented by delays of 17% 

and 33%. The likelihood of the project to sustain a delay of more than 17% is 
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45%. A delay of more than 33% is below the cutoff probability, and therefore is 

not considered.  

 FIGURE 8 plots the estimated future value of total development cost for 

Stage 2 of the MathWizards project as a function of the realized schedule. The 

cost estimates are obtained using the CV and VSV metrics. 
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FIGURE 7.  Completion probability estimates for Stage 2. 
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FIGURE 8. Future value of total development cost for Stage 2. 

ESTIMATION OF THE MARKET PAYOFF 

 If MathWizards successfully passes the user evaluation study following the 

prototyping stage, Polysis expects to capture 5% of the total market in 

mathematical software. Polysis considers MathSoft, a public company, as its 

main competitor. The company analyst predicts that MathSoft has currently 50% 

of the market share targeted by Polysis. At the time of the project valuation, 

MathSoft had a price-to-sales ratio of 2.36 and a market capitalization of 64.9 

million dollars.  Based on this information, we perform a simplistic assessment 

of the market payoff for the whole project.  

 Total current revenues for MathSoft thus amount to 64.9/2.36 = 27.50 

million dollars. The total size of the market targeted by Polysis is twice of this 

figure, given that MathSoft’s market share is estimated to be 50%. Polysis hopes 

to capture 5% of this market with the launch of MathWizards, again conditional 

on the feature set passing the usability evaluation. The future value of the market 

payoff expected by Polysis conditional on the completion of the full 

development stage is (27.5)(2)(5%) = $2.75 million. This figure is taken to be 

the expected future market payoff, or MP.  

 The present value of MP depends on the completion time. Since MP is 

subject to market risk, it should be discounted back to the present from using a 

risk-adjusted rate r. Polysis uses a continuously compounded annual hurdle rate 

of 20% for new initiatives to account for market risk. Thus we set r = 20%. 

TABLE 1 gives the present value of MP under the three possible completion 

times that were identified in the previous subsection. This scheme is consistent 

with the Capital Asset Pricing Model.  
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ESTIMATION OF THE MARKET PAYOFF UNCERTAINTY 

The MP estimates constitute a good starting point, but the calculated present 

values are still not certain. Since the market outlook at the end of the 

prototyping stage will affect the full development decision, the uncertainty of 

these figures will affect the project value. We use the stock performance of the 

competitor MathSoft as a proxy for the outlook of the mathematical software 

market, thereby substituting the stock’s volatility for the volatility of the 

parameter MP. The two companies are assumed to operate in the same target 

market and are subject to the same market risk.  

 FIGURE 9 plots the weekly performance of the MathSoft stock over the year 

preceding the time of the project’s valuation (the data is split-adjusted). The 

choice of weekly observations over a one-year range is somewhat arbitrary. We 

assume that while the growth rates may vary rapidly and erratically, growth rate 

volatility is fairly stable in the software industry over overlapping ranges of one 

year. At the time of the analysis, empirical data appeared to support this 

hypothesis [16]. Daily observations are too fine-grained to be of much value and 

monthly observations yield too few data points for the chosen range. Weekly 

observations seem like a good compromise. 

 The uncertainty of the market payoff, σ(MP), is captured by the volatility of 

the market proxy. Volatility is formally defined as the standard deviation of 

percentage change in the value of the proxy over the given range, annualized 

appropriately. Several references explain how to calculate volatility; see [13, 

16]. The MathSoft stock exhibited a very high volatility of 115% over the 

selected range. The standard deviation of the weekly percentage changes in the 

stock’s price was 16%. When annualized, this yields an approximate volatility 

of %115%1652 =⋅  (under the assumption that the development of the proxy 

follows a standard lognormal diffusion process). Provided that Polysis continue 

to be subject to comparable market uncertainty over the next year and a half, we 

can take σ(MP) = 115%.  
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FIGURE 9. MathSoft’s stock performance (source: yahoo.finance.com). 

 

PROJECT UNCERTAINTY SUMMARY 

 In TABLE 1, the cost estimates and the expected present value of the market 

payoff for the identified completion times are shown for Stage 2 of the 

MathWizards project. The completion times represent delays of one and two 

quarters beyond the planned schedule. D denotes percent deviation from the 

planned, or budgeted, schedule; PV denotes present value; and FV denotes 

future value.  

 The estimated completion probabilities associated with each completion 

scenario are also shown. Although the likelihood of completing the project on 

schedule is marginal, we still consider this possibility because the cutoff 

probabilities are used only to determine the cutoff time, but not the potential 

delay points. 
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TABLE 1. Project estimates for Stage 2. 

Delay Suffered On time 

(No delay)  

1st Delay 

(Delay 1) 

2nd Delay 

(Delay 2) 

    k (quarters) 0 1 2 

   D (%)  0 17% 33% 

Development Cost 

      FVk(DC), $M 

 

1.1 

 

1.2 

 

1.4 

Market Payoff 

      PVk(MP), $M 

      Annual volatility 

 

1.8 

115% 

 

1.75 

115% 

 

1.67 

115% 

Probability    

Completed 2% 55% 98% 

Further delay 98% 45% 2% 

 

 

VALUATION 

We proceed with the valuation of the two-stage strategy of Polysis 

regarding the development of MathWizards. Factors to be considered are: 

• The first stage is for prototype development and usability 

evaluation. This is a learning stage. The cost and schedule of this 

stage are assumed to be certain. The first stage does not yield any 

immediate benefits, but is a prerequisite for the subsequent stage.  

• The second stage, the full development of MathWizards, is an 

option on the first stage. The decision to continue with the full 

development stage is undertaken at the end of the first stage only if 

the prototype is successful and the market outlook at that time is 

favorable. The cost and schedule of the second stage are uncertain. 

Also uncertain is the ultimate expected market payoff of the 

overall project. 

In all calculations to follow, the risk-free rate rf is fixed at 7% per annum.  

 

STATIC NET PRESENT VALUE 

First we calculate the standard, static net present value (NPV) of the overall 

project to highlight a flaw in traditional discounted cash flow valuation. The 

static NPV treats the second stage as a mandatory stage by disregarding the full-

development decision at the end of the first stage, but it still takes the cost and 

schedule risk of the second stage into account.  

The static NPV is given by: 
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Static NPV =  – (Total Cost of First Stage) +  

 E[PV(MP) – PV(Expected Completion Cost of Second Stage)] 

 

 Here PV denotes present value and E[.] denotes the expectation operator. 

Since the total cost of the first stage was already expressed in present value 

terms, no discounting is necessary for this term. The second term is the unbiased 

net value for the second stage. The expectation is calculated using the 

probability distribution of the project schedule provided in TABLE 1. The 

development costs are discounted back to the present time using the risk-free 

rate. In millions of dollars, the static NPV equals:  

 

Static NPV = – 0.3 + 0.63 = 0.33 

 

 This calculation, however, is seriously flawed. The MP estimate is 

conditioned on the final product matching the market requirement for new 

features in mathematical software. If this requirement is not matched, MP will 

never be realized. The prototyping stage is designed particularly to resolve the 

market requirement uncertainty. If the continuation strategy is independent of 

the outcome of the learning stage, the learning stage is useless. In addition, the 

learning stage will, as a side benefit, provide an opportunity to reevaluate the 

market outlook. Even when the prototype is successful, if the market evolves 

into an unfavorable state relative to the continuation cost at the end of the 

learning stage, the second stage should be forgone. We need to resort to a more 

sophisticated valuation technique that can account for this multi-criterion, 

dynamic nature of the continuation decision.  

 

DEALING WITH UNCERTAINTY AND OPTIONALITY 

 

Modeling Market Payoff Uncertainty Using a Binomial Lattice 

To be able to reason about the market outlook, a model of the dynamics of the 

market payoff MP is needed. We use the volatility estimate σ(MP) to develop 

such a model.  

 The binomial model [37] is frequently used in option pricing to model the 

development of an uncertain asset for solving valuation problems with structures 

that cannot be handled by closed-form option pricing formulae.  

 In the binomial model, the underlying asset of an option is modeled using a 

multiplicative binary random-walk process. Starting from an initial expected or 
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observed value, the asset moves either up or down in a fixed interval. The same 

process is repeated for successive intervals such that two consecutive opposite 

moves always takes the asset to its previous value, generating a binomial lattice. 

The resulting structure represents the possible evolution of the asset in discrete 

time, starting with an initial value. The structure is a binary tree with merging 

upward and downward branches.  

 In the current example, the underlying uncertain asset is represented by the 

market payoff of the end product. This asset does not exist independently: It is 

created only if the second stage of the project is undertaken. Moreover its value 

cannot be observed. W already estimated the conditional value of this asset, MP, 

in present value terms for three different completion times. The value of the 

overall scenario depends on the behavior of this asset. In FIGURE 10, three 

parallel binomial lattices are shown for this asset, one for each completion time. 

The root node is represented by the values 1.67, 1.75, and 1.84, which are the 

estimated present values of the variable MP for the “Delay 2”, “Delay 1” and 

“No Delay” scenarios, respectively. The maximum duration of the project, 

including the two most likely schedule slips, is 30 months, but the decision to 

undertake the full development stage (Stage 2) will be made in six months. The 

30-month horizon is divided into ten intervals of three months, or a quarter, 

long. A coarser (e.g., biannual) interval size generates too few states at the 

decision point corresponding to the end of the first stage. A finer (e.g., monthly) 

granularity results in a large tree without any significant impact on the valuation 

results. 
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Month 0 3 6 9 12 15 18 21 24 27 30
Delay 2 1.67 2.96 5.27 9.36 16.64 29.6 52.5 93.4 165.9 294.9 524.1

Delay 1 1.75 3.12 5.54 9.84 17.49 31.08 55.24 98.16 174.44 310.01

No Delay 1.84 3.28 5.82 10.35 18.39 32.67 58.07 103.19 183.39

Delay 2 0.94 1.67 2.96 5.27 9.36 16.64 29.57 52.54 93.37 165.94

Delay 1 0.99 1.75 3.12 5.54 9.84 17.49 31.08 55.24 98.16

No Delay 1.04 1.84 3.28 5.82 10.35 18.4 32.7 58.1

Delay 2 0.53 0.94 1.67 2.96 5.27 9.36 16.64 29.57 52.54

Delay 1 0.56 0.99 1.75 3.12 5.54 9.84 17.49 31.08

No Delay 0.58 1.04 1.84 3.28 5.82 10.35 18.4

Delay 2 0.30 0.53 0.94 1.67 2.96 5.27 9.36 16.64

Delay 1 0.31 0.56 0.99 1.75 3.12 5.54 9.84

No Delay 0.33 0.58 1.04 1.84 3.28 5.82

Delay 2 0.17 0.30 0.53 0.94 1.67 2.96 5.27

Delay 1 0.18 0.31 0.56 0.99 1.75 3.12

No Delay 0.18 0.33 0.58 1.04 1.84

Delay 2 0.09 0.17 0.30 0.53 0.94 1.67

Delay 1 0.10 0.18 0.31 0.56 0.99

No Delay 0.10 0.18 0.33 0.58

Delay 2 0.05 0.09 0.17 0.30 0.53

Delay 1 0.06 0.10 0.18 0.31

No Delay 0.06 0.10 0.18

Delay 2 0.03 0.05 0.09 0.17

Delay 1 0.03 0.06 0.10

No Delay 0.03 0.06

Delay 2 0.02 0.03 0.05

Delay 1 0.02 0.03

No Delay 0.02

Delay 2 0.01 0.02

Delay 1 0.01

Delay 2 0.01  

FIGURE 10. A binomial lattice for MathWizards’ market payoff. 

 

The values associated with the subsequent nodes of the binomial lattice are 

determined using the volatility estimate of 115% per year. From the volatility 

estimate, first we calculate an upward factor u that is greater than unity and a 

downward factor d that is smaller than unity. Over each interval, the value of the 

asset either increases by a factor of u or decreases by a factor of d. The upward 

and downward factors are chosen to be consistent with the volatility estimate. 

Recall that volatility is defined as the standard deviation of the rate of 

percentage change in an asset’s value. If the volatility is σ, then u and d can be 

chosen as follows [33]:  

 

u = )τσexp(  and d = 1/u, 
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where τ is the chosen interval size expressed in the same unit as σ and exp 

denotes the exponential function. An annual volatility of 115% and an interval 

size of three months (.25 years) yield an upward factor u = 1.78 and a downward 

factor d = 0.56. Before proceeding, we to need verify that the chosen risk-free 

rate of 7% is consistent with these factors. An annual, continuously compounded 

rate of 7% is equivalent to a rate of 2% compounded quarterly, yielding a 

quarterly multiplier of exp(0.07 × 0.25) = 1.02. We check that this multiplier is 

greater than the downward factor d and smaller than upward factor u, a 

condition that must be satisfied to be able to apply risk value valuation to the 

scenario. 

 The lattice for each completion time is rolled out beginning with the initial 

market payoff for that completion time and multiplying it with the upward and 

downward factors repeatedly until the completion time. This process yields 11, 

10 and 9 terminal nodes for the “Delay 2 ”, “Delay 1”, and “No Delay” 

scenarios, respectively. Each figure represents a possible future market payoff 

for MathWizards given an annual volatility of 115% and the present value of the 

market payoff for a specific completion time. Any of these values may be 

realized if the second stage of the project is undertaken.  

 

Transformation of the Binomial Lattice into a Decision Tree 

The next step is to map the binomial lattice structure onto a corresponding 

decision tree. This is where new branches are introduced to capture the effect of 

the private risks and the continuation decision for the second stage. The 

resulting decision tree is shown in FIGURE 11. The values in the decision tree 

have been computed for a fixed success probability PS = 0.5 using the integrated 

rollback procedure.  

 The structure of the decision tree mirrors the structure of the underlying 

binomial lattices. The lattice structure is augmented with different kinds of 

branches. Three kinds of branches are introduced at three points along the time 

horizon of ten quarters.  

1. The full development decision. The decision to undertake the full 

development stage (Stage 2) will be made at the end of the second 

quarter, in six months. This decision is represented in FIGURE 11 by the 

Pass-Fail branches. The decision depends both on the success of the 

prototype (represented by the probability PS) and the value of the 

remainder of the project at that time. Once the market requirement 

uncertainty is resolved through prototyping, the remainder of the 



  Published in: THE ENGINEERING ECONOMIST ● 2002 ● VOLUME 47 ● NUMBER 3 

 

30 

project is subject to the cost and schedule uncertainty of the full 

development stage and the uncertainty of the targeted market. 

2. 1
st
 Delay. Based on an analysis of the reference project, the estimated 

minimum time to complete the full development stage (Stage 2) is six 

quarters, which corresponds to eight quarters in total elapsed time from 

the beginning of Stage 1. The possibility of an initial schedule slip is 

represented in FIGURE 11 by the “Delay-Done” branches at the end of 

the eighth quarter. Each of the “Done” branches leads to a terminal 

node in the decision tree, whereas each of the “Delay” branches is 

expanded further into a subtree.  

3. 2
nd

 Delay. Again, based on the analysis of the reference project, 

following an initial delay (“Delay 1”), the estimated minimum time to 

compete Stage 2 is seven quarters, or nine quarters in total elapsed time 

from the beginning of Stage 1. The possibility of a second schedule slip 

is represented in FIGURE 11 by the “Delay-Done” branches at the end 

of the ninth quarter. As with the “Delay 1” scenario, each of the 

“Done” branches leads to a terminal node, whereas each of the “Delay” 

branches is expanded into a subtree. 
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Quarter 0 1 2 3 4 5 6 7 8 9 10
Month 0 3 6 9 12 15 18 21 24 27 30
Option 0.85 1.95 4.30 Pass 4.3 8.50 15.97 29.3 52.9 94.9 169.6 Delay169.3 301.9 Delay293.5 522.7
Value Done308.8

Fail 0.0 Done182.3

0.22 0.59 Pass 0.6 1.91 4.26 8.45 15.9 29.2 52.9 Delay 52.8 94.7 Delay 92.0 164.6
Done 96.9

Fail 0.0 Done 57.0

0.00 Pass -0.6 -0.18 0.55 1.87 4.2 8.4 15.9 Delay 15.9 29.1 Delay 28.2 51.2
Done 29.9

Fail 0.0 Done 17.3

-0.84 -0.62 -0.22 0.5 1.8 4.2 Delay 4.2 8.4 Delay 8.0 15.3
Done 8.6

Done 4.7

-0.99 -0.88 -0.66 -0.26 0.5 Delay 0.5 1.8 Delay 1.6 3.90
Done 1.9

Done 0.75

-1.09 -1.03 -0.92 -0.7 Delay -0.7 -0.3 Delay -0.4 0.30
Done -0.2

Done -0.51

-1.15 -1.13 -1.1 Delay -1.1 -1.0 Delay -1.0 -0.84
Done -0.9

Done -0.91

-1.20 -1.2 Delay -1.2 -1.2 Delay -1.3 -1.20
Done -1.1

Done -1.03

-1.2 Delay -1.2 -1.2 Delay -1.3 -1.32
Done -1.2

Done -1.07

-1.3 Delay -1.3 -1.35
Done -1.2

-1.37

Delay 2Decision Delay 1

Non-linear payoffs

(decision sensitive to market uncertainty)

 

FIGURE 11. MathWizards decision tree for a success probability of 0.5.  

Following a second delay, the project will continue another quarter before it is 

completed. Since the probability that the full development will extend beyond 

this point is very small according the reference project data, the tree is cut off at 

the tenth quarter. 

 

Calculating the Terminal Net Payoffs 

Once the structure of the decision tree is determined, the net payoff is calculated 

for each terminal node. First we identify a payoff function for each type of 

terminal node. There are four types of such nodes overall. Starting with the 

farthest nodes, these are: 

A. The full development stage has been undertaken and the project has 

suffered two consecutive delays. In FIGURE 11, these are the nodes under 

the tenth quarter.  

B. The full development stage has been undertaken and the project has 

suffered a single delay. In FIGURE 11, these are the nodes to the right of the 

“Done” branches under the column labeled “Delay 2”. 
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C. The full development stage has been undertaken and the project was 

completed on time. In FIGURE 11, these are the nodes to the right of the 

“Done” branches under the column labeled “Delay 1”.  

D. The full development stage has been forgone. In FIGURE 11, these are the 

nodes to the right of the “Fail” branches under the column labeled  

“Decision”. 

The net payoff for a terminal node n of type A, B, and C is: 

 

MPk(n) – FVk(DC), 

 

where MPk(n) is the future market payoff at the corresponding final state in the  

original binomial lattice associated with k delays, and FVk(DC) is the expected 

future value of the total development cost after k delays, where k equals 2 

(“Delay 2”) for a type-C node, 1 (“Delay 1”) for a type-B node, and 0 (“No 

Delay”) for a type-A node.  

 For a type-D node, the net payoff is simply zero because the full 

development stage is not undertaken.  

 

Discounting the Net Payoffs  

The net payoffs are discounted back to the present time by folding back the 

decision tree in a recursive manner. The process involves dynamic 

programming: an optimal decision is computed whenever a decision node is 

reached. The process, referred to as integrated rollback, has been suggested by 

Smith and Nau [3]. It yields the present value for the overall scenario at the root 

of the tree.  

 During the rollback process, payoffs that are subject market risk and private 

risk are handled differently. In addition, payoffs subject to an immediate 

decision require special treatment since their payoff function deviates from the 

usual linear form seen in classical decision tree analysis. The next subsection 

explains in detail how the integrated rollback process works.  

 

Treating Market Risk 

To handle market risk, the same two principles that underlie traditional option 

pricing models are invoked: replicating portfolio and the law of one price. We 

develop on the fly the resulting general valuation technique that is known as 

risk-neutral valuation. 
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 Consider the top two terminal nodes of the decision tree in FIGURE 11 with 

the corresponding net payoffs of 522.7 and 164.6, respectively. What is the 

expected discounted payoff at the beginning of the preceding interval?  

 One approach is to attach probabilities to the upward and downward 

branches in the binomial lattice, calculate the expected payoff using these 

probabilities, and then discount the result back one interval using a proper 

discount rate. This approach would work, except that neither the probabilities 

nor the proper discount rate are known in this case. (We could have used the 

company hurdle rate of 20%, but this should not apply to costs that are subject 

purely to private risk to be consistent with standard market theory. Moreover, 

with each new development in the market outlook, theoretically, the discount 

rate should also change to reflect the new expected return).   

 Instead, we appeal to the concept of a replicating portfolio. The payoffs of 

522.7 and 164.6 at the terminal nodes can also be realized artificially by forming 

a portfolio composed of a twin security (a market proxy) and a fixed-interest 

loan. The movement of the twin security parallels that of the market payoff. 

Since we based the estimate of the market payoff volatility on the competitor’s 

historical stock performance, the twin security in this example is simply the 

stock of the competitor. The absolute value of the twin security is not important 

as long as its movement is positively correlated with the underlying asset, or the 

market payoff MP in this case. When the market payoff moves up or down, the 

twin security also moves up or down by the same factor. Assume that the value 

of the twin security at the beginning of a quarter-long interval is M. 
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The replicating portfolio is formed at the beginning of the interval as 

follows: 

• Buy n units of the twin security. This represents the position of the 

replicating portfolio in the underlying asset.  

• Take out a loan in the amount of B at the risk-free rate of interest to partly 

finance this purchase. This represents the position of the replicating 

portfolio in the risk-free asset.  

 The worth of the replicating portfolio at the beginning of the interval then 

equals nM – B. If we can determine the value of n and B, we can calculate the 

exact value of the replicating portfolio (as we will see, we don’t need to know 

the value of M).  

 This is the right point to apply the law of one price: the expected value of 

the payoff at the beginning of the interval must equal the value of the replicating 

portfolio for otherwise an arbitrage opportunity would exist.  

 Now consider the possible values of the portfolio at the end of the interval. 

After one interval, the loan must be paid back with interest to receive the payoff. 

Regardless of what happens to the price of the twin security, the amount of the 

loan will be B(1 + ∆rf), including the principle and the interest accrued. Here ∆rf 

is the interest rate on the loan over a single interval (in this case, approximately 

2%).  

If on the one hand, the price of the twin security moves up to uM, the 

portfolio will then be worth uMn – B(1 + ∆rf). For the portfolio to replicate the 

payoff, this amount should equal 522.7, the payoff after the upward movement. 

On the other hand, if the price of the twin security falls to dM, the portfolio will 

be worth dMn  –  B(1 + ∆rf), which must equal 164.6, the payoff after the 

downward movement. Thus the law of one price gives rise to two equations: 

If the price moves up:  

522.7 = (Terminal payoff)  = (Terminal value of replicating portfolio) 

      = uMn – B(1 + ∆rf) 

 

If the price moves down:  

164.6 = (Terminal payoff)  = (Terminal value of replicating portfolio) 

       = dMn – B(1 + ∆rf) 

 

Since ∆rf, u and d are all known, we can solve these two equation for B and n as 

a function of M, and then calculate the portfolio value at the beginning of the 

interval by plugging the solution in the expression nM – B. Fortunately, the 

unknown M is eliminated during this process, and the value of the portfolio at 
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the beginning of the interval is calculated as 293.5. If the same procedure is 

repeated for the remaining pairs of nodes in the column for the tenth quarter, we 

obtain the portfolio values shown in the column “Delay 2” corresponding to the 

“Delay” branches. Each figure represents the present value of the net payoff at 

the corresponding state of the underlying binomial lattice, immediately 

following the second schedule slip. 

 

Applying Risk-Neutral Valuation 

The procedure described in the previous subsection may seem somewhat 

cumbersome. Fortunately, there is an easier way. Solving a system of 

simultaneous equations to obtain the portfolio value at the beginning of an 

interval is equivalent to computing the expected value of the payoffs at the end 

of the interval using an artificial probability measure, and then discounting back 

this expected value at the risk-free rate by one interval. FIGURE 12 illustrates this 

simple technique.  

 

p ⋅ C+ + (1 – p) ⋅ C– 1 + rf – d 
C = ——————–—–,  where  p =  ————–

(1 + rf)                                      u – d

Risk-adjusted probability

Option value is the expected value

of future payoffs under the risk-adjusted probabilities

discounted at the risk-free rate

Risk-free rate

Future payoffs following upward 

and downward movements

 

FIGURE 12. Risk-neutral valuation in the binomial model.  

 

The formula in FIGURE 12 applies so long as the interval being considered is 

only subject to market risk, and does not involve a decision point or a change of 

state due to private risk. In FIGURE 11, the nonterminal values that can be 

computed using the risk-neutral valuation formula are those corresponding to the 

quarters 0, 1, 3 to 7, 10, and the nonterminal values under the columns labeled 

“Decision”, “Delay 1” and “Delay 2”. 

As an example, consider the computation of value of the root node of the 

decision tree:  
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where:  
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 The quantities 1 and 1 – p in the above equations and in FIGURE 12 are 

referred to as risk-neutral or risk-adjusted probabilities. They don’t represent the 

actual probabilities of the upward and downward movements of the underlying 

asset, yet they are used to compute an expected value (in FIGURE 12, the 

numerator in the equation on the left). The expected value is simply discounted 

back at the risk-free rate rf. The artificial probabilities p and 1 – p depend on the 

spread between u and d, the upward and downward movement factors of the 

twin security. In a way then, p and 1 – p capture the variation, or the risk, of the 

underlying asset relative to the risk-free asset. 

 The general method of computing the present value of an asset based on the 

principles of replication and no-arbitrage is known as risk-neutral valuation. 

Risk-neutral valuation is commonly used in valuing asymmetric contingent 

claims on risky assets, options in particular. 

 A number of features are remarkable about this technique. First, the value 

calculated does not require the actual probability distribution underlying the 

asset’s movement. Second, it does not require a discount rate provided that the 

initial value of the underlying asset is given. Third, the procedure is independent 

of how the future payoffs are calculated. Since the rule used to calculate the 

payoffs doesn’t matter, the process is the same for any payoff function.   

 

Treating Private Risk 

The integrated rollback procedure deviates from risk-neutral valuation where 

private risk is involved. Schedule slips constitute private risk. To treat schedule 

uncertainty, we need the delay probabilities computed in TABLE 1 from the 

reference project’s earned value data. These probabilities are used to calculate 

the values under the eighth and ninth quarters. The probabilities are used to 

collapse the payoffs associated with the nodes following a delay node into an 

unbiased estimate:  

 

 Unbiased Payoff Immediately Before a Delay 

  = Payoff[Delay]⋅P[Delay] + Payoff[Done]⋅P[Done], 
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where P[Delay] is the estimated (conditional) probability of a delay at that delay 

point and P[Done]= 1 – P[Delay] is the estimated (conditional) probability of 

the project completing without a further delay. The probability is conditional if a 

previous delay has already been sustained. 

 Given an estimated 45% probability of a second delay (conditional on a 

previous delay), the payoff for the top row of column nine is calculated as: 

 

  55.08.30845.05.2939.301 ×+×=  

 

 No further adjustment for risk is required since the underlying risk is purely 

private, and therefore technically diversifiable. The central assumption here is 

that the decision maker is risk-neutral, with a linear utility function. If the risk 

preferences of the decision makers are to be taken into account, a convex utility 

function can be used to transform the unbiased estimate, allowing a further 

adjustment for risk averseness.  

 The remaining values under the ninth column are calculated in a similar 

manner. For the eight quarter, the procedure is similar except that the delay 

probability equals 98%.  

 

Treating the Decision Point 

The decision nodes at the second quarter are treated in a similar way since the 

risk of the prototype successfully passing the user evaluation is also private. 

However, these nodes in addition involve a decision that is similar to the 

exercise decision of an option, resulting in a nonlinear payoff. Since the project 

will be abandoned if either the prototype fails or the revised estimate of the final 

payoff is negative, we have: 

 

Unbiased Payoff Immediately Before Prototype Evaluation 

= Max{Payoff[Pass], 0} PS + 0 × (1 – PS) 

       = Max{Payoff[Pass], 0} × PS 

 

where PS is the probability of the prototype passing the evaluation and 1 – PS is 

the probability of the prototype failing the evaluation. Note that if the prototype 

succeeds, but the subsequent discounted payoff is still negative, the project will 

still be abandoned, thereby avoiding a likely loss. Hence if Payoff[Pass] is 

negative, the unbiased estimate yields a value of zero. For example, the value of 

the bottom node of column for the second quarter in FIGURE 11 is calculated as: 
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0 = Max{–0.6, 0} × PS 

 

The remaining two nodes under the second quarter in FIGURE 11 have been 

calculated using a PS value of 0.5 for illustration purposes. 

 The nonlinear payoff function prevents a negative value to be propagated 

past the decision point. Hence the payoff at the root of the decision tree is 

always positive.  

 Remarkably, the decision tree has nodes with negative values beyond the 

second quarter. While the underlying binomial lattices for the market payoff 

may not contain negative-valued nodes, the decision tree may contain negative-

valued nodes beyond the points where optimal decisions are made based on a 

nonlinear net payoff function.  In the current example, the continuation decision 

is made at quarter two, and beyond this action point, all values are determined 

by some future state of nature based on the payoff at that state net of the 

development cost associated with that state.  

 

VALUTION RESULTS – THE NET PRESENT VALUE OF THE OVERALL PROJECT 

The root value of the decision tree represents the option value of the second 

stage investment (full development) conditional on undertaking the first stage 

(prototyping). However, it does not take into account the $300K (in present 

value terms) cost associated with the prototyping stage. This cost must be 

deducted from the option value. The expanded net present value, or the NPV 

viewing the second stage as an option on the first stage, equals: 

 

Expanded NPV = (Option Value of Second Stage) – (Total Cost of First Stage) 

 

With a success probability PS = 0.5, the option value equals 0.43, and expanded 

NPV, in millions of dollars, equals: 

 

Expanded NPV = 0.43 – 0.3 = 0.13 

 

The positive NPV indicates that the project is expected to be profitable at a PS 

level of 0.5.  

 However, if we disregard the effect of the market payoff on the continuation 

decision, the payoff function at the decision node becomes linear for a given 

probability of success. The negative branches following a “Pass” verdict are no 

longer pruned, the continuation decision is no longer optimal, and the 

calculation reduces to a standard expected value calculation. The expanded 
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NPV, as a result, decreases. FIGURE 13 depicts the reduced decision tree where 

the full development decision is a function of only the prototype’s success. If the 

market payoff uncertainty is disregarded, at a success probability PS = 0.5, the 

option value of the second stage and the expanded NPV fall respectively to 0.32 

and 0.02. 

 
Quarter 0 1 2
Month 0 3 6
Option 0.32 0.97 2.15 Pass 4.3
Value

Fail 0.0

-0.07 0.30 Pass 0.6

Fail 0.0

-0.29 Pass -0.6

Fail 0.0

Decision

Linear payoff function

(decision insensitive to market uncertainty)

 

FIGURE 13. Reduced decision tree for the MathWizards project. The full 

development decision is insensitive to market uncertainty. 

 

 As the success probability PS increases, the expanded NPV increases. For 

PS > 35%, if the continuation decision considers the market outlook at the time 

of the decision, the expanded NPV is positive. But if the continuation decision 

disregards the market outlook at the time of the decision, the expanded NPV will 

remain negative until about PS = 50%.  

 FIGURE 14 shows how the expanded NPV varies as a function of the success 

probability PS. “[Market + Private]” implies both private and market risk are 

taken into account in the continuation decision. “[Private]” implies only private 

risk is taken into account in the continuation decision. The value of the project 

increases as more information is used in making the continuation decision.  
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FIGURE 14.  Sensitivity analysis for the MathWizards project.  
 

SUMMARY 

 

A valuation methodology must be able to handle both private and market risk to 

be applicable to commercial software development projects. Such projects are 

subject to multiple sources of uncertainty. Sources of uncertainty include not 

only market payoff, product quality, and the likelihood of the product to meet 

the market requirement, but also schedule and budget. Software projects are 

notorious for significant schedule and budget overruns, and have a high 

probability of failure in the market. Thus it is imperative that software projects 

are structured to manage the underlying risks. Optimal management of risks in 

turn increases the value of a project.  

 The paper presented a valuation methodology that can handle dynamic risk 

management strategies under multiple sources of risk. The methodology 

combines real options analysis with earned-value based estimation. Projects are 

constructed as sequences of stages. A continuation strategy is associated with 

each stage. The continuation strategy determines the subsequent stage and the 

conditions under which the subsequent stage will be undertaken. Earlier stages 

tend to resolve uncertainty, whether technical or market-related, and later stages 
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focus on implementation. Each stage is viewed as a real option on the previous 

stage.  

 A case study illustrated the application of the methodology. A two-stage 

development project was considered. The first stage of the project involved 

prototyping. This was a learning stage designed to resolve the market 

requirement uncertainty. The subsequent stage was the full development stage, 

during which the target product was implemented. The full development was 

undertaken only if the prototype passed the usability study (and thus met the 

market requirement concerning usability) and the market payoff expectation was 

still favorable. The cost and schedule of the full development stage were 

uncertain.  

 The project was valued as a learning option using a combination of 

techniques. Uncertainty in the market payoff was estimated using a market 

proxy. Schedule uncertainty and budget uncertainty were estimated using earned 

value concepts and earned value data from a reference project. These estimates 

were then converted into a set of likely outcomes. Uncertainty concerning the 

usability of the product was treated as a sensitivity variable.  

 The market proxy was used to develop a tree-based model of the possible 

development of the market payoff projection. This model was subsequently 

extended into a decision tree with optionality based on the project’s staged 

structure and the likely budget and schedule outcomes that had previously been 

identified. The technique integrates decision tree analysis with standard risk-

neutral valuation to simultaneously handle market and private risk. The 

valuation demonstrated that the more information the continuation decision 

relied on, the more valuable the project became. Managing uncertainty increases 

value.  

 

LIMITATIONS 

 

AVAILABILITY AND RELEVANCE OF HISTORICAL DATA 

The methodology relies on historical project data to estimate schedule and 

budget uncertainty. In particular, it assumes the existence of a reference project 

that shares similarities with the project under evaluation. The information 

gleaned from this reference project is transferred to the project under evaluation. 

This assumption is rather a strong one to make. Many technology projects are 

unique. Even if the organization is meticulous in data collection, a reasonable 

match may be difficult to obtain. In addition, the fitness of a candidate project to 

serve as the reference project depends on many factors such as scale, scope, risk 
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characteristics, technical difficulty, team skills, and available technological 

solutions. Therefore, the identification of the reference project is a nontrivial 

task. 

 Several improvements are possible depending on the richness of the 

available data. To improve the statistical relevance of the estimates, historical 

data from several candidate projects can be combined. Using multiple projects 

allows the uncertainty estimates to be computed along two orthogonal 

dimensions: intra-project and inter-project. Estimates obtained in one dimension 

can be used to smooth the estimates obtained in the other dimension. If 

uncertainty tends to vary within projects, then projects can be decomposed into 

distinct phases. Separate estimates are computed and these estimates are later 

applied to the corresponding phases of the project under evaluation.  

 To take advantage of the probability distribution of the ERCT metric for a 

single reference project to estimate the completion and delay probabilities for a 

future project, we must assume that the distribution of schedule deviation is 

stable both across and within projects. By picking the reference project 

carefully, we make sure that the information gleaned from the reference project 

can be ported to the project under evaluation. The stability of ERCT within a 

single project is more problematic. This condition does not necessarily hold in 

the traditional waterfall model of software development where the distinct 

phases of the project (requirements, design, coding, testing, deployment) may be 

subject to varying degrees of schedule risk. In iterative and agile software 

development [43], the distinctions among the phases are blurred, and 

consequently, it would be safer to assume that the distribution of ERCT 

throughout the project is reasonably stable. 

 

DATA RELIABILITY 

As in any quantitative analysis, in valuation, the quality of the outputs depends 

on the quality of the inputs. Option valuation in particular is sensitive to the 

volatility estimate of the underlying asset. Where the quality of the input data is 

in doubt, sensitivity analyses should be preferred over point estimates. However, 

with several input variables, sensitivity analysis is difficult. 

 

LIMITATIONS OF OPTION PRICING 

The suitability of the financial options analogy and of the techniques developed 

to price financial options to the valuation of real options scenarios is frequently 

debated. The main differences between financial and real options are 

summarized in TABLE 2. 
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 In particular, two points are important to keep in mind while applying 

option-based models and techniques such as the binomial model and risk-neutral 

valuation.  

 First, the existence of trading markets and assumptions regarding their 

efficiency, completeness, and liquidity are critical for financial option pricing 

techniques. These techniques are designed to treat risks that can be priced in 

such markets. The suitability of a specific option pricing technique to value a 

real options scenario may thus depend on the nature of the uncertainty being 

treated and the closeness-to-the-market of the underlying assets. In software 

development projects, where private risk is an important factor, the financial 

options analogy may be weak. 

 In cases where the financial option-real option analogy is weak, the option 

values yielded should thus be treated as idealized values computed under the 

assumption of an the existence of a market equivalent that reasonably closely 

tracks the risk being tackled. Fortunately, sometimes risks that seem purely 

private at first can be market-priced, thanks to an expanding and vibrant 

securities market in the technology sector. An example is provided in [16]. For 

further discussion of the analogy between financial and real options and the 

limitations of this analogy, the reader is referred to the sidebar in [10]. 



  Published in: THE ENGINEERING ECONOMIST ● 2002 ● VOLUME 47 ● NUMBER 3 

 

44 

TABLE 2: Comparison of financial and real options. 

 

Financial Options Real Options 
Complete markets. A replicating 
portfolio can emulate any payoff 
structure. 

Incomplete markets. A replicating portfolio 
that emulates a particular payoff structure 
may not exist.  

Traded asset. The underlying asset is 
traded in the financial markets. 

Twin security. The underlying asset is not 
traded; instead, the existence of a proxy, or 
twin security whose value is correlated with 
the underlying asset must be assumed.  

Observed current price. The current 
price of the underlying asset is observed. 

Hypothetical asset. The current price of the 
underlying asset is not observed. It must be 
estimated in present value terms. 

No discount rate. A discount rate is not 
needed to value the option because of 
the existence of an observed price and 
the replication and no-arbitrage (law of 
one price) assumptions. 

Discount rate needed. A discount rate is 
often needed to calculate the present value 
of future payoffs. 

No interaction. Financial options are 
self-contained, fixed-structure contracts. 
They don’t interact. 

Extensive interaction. Real options within a 
project or across different projects often 
have complex interactions. The behavior of 
one option may affect the value of the other. 

Limited sources of uncertainty. 

Financial options involve one or two 
uncertain underlying assets. 

Multiple sources of uncertainty. Real 
options frequently involve multiple 
underlying assets or assets with multiple 
sources of uncertainty. 

Single ownership. Financial options 
have defined ownership. 

Shared ownership. Real options are often 
shared among competitors. A company’s 
exercise of a real option may kill or 
significantly undermine a similar real 
option for a competitor, and vice versa. 

Value leakage. The holder of a financial 
option may be subject to loss of benefits, 
such as dividends, that are available to 
the holders of the underlying asset, but 
not to the holders of an option. This 
behavior can be modeled using 
historical data or industry conventions. 

Value leakage or amplification. The holder 
of a real option may experience a reduction 
or an increase in benefits as a result of 
random actions by other market players. 
However such actions often do not 
necessarily follow defined patterns, and as 
such, are difficult to model. 
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APPENDIX: ESTIMATION OF SCHEDULE AND COST UNCERTAINTY USING 

EARNED VALUE DATA 

 

ESTIMATION OF SCHEDULE UNCERTAINTY 

 

Horizontal Schedule Variance (HSV) 

The horizontal schedule variance at a given period t, HSV(t), is the schedule 

shortfall (excess) resulting from the difference between t and the elapsed time in 

the budgeted schedule (BCWS) at which the cumulative budgeted work (BCWP) 

corresponding to t should have been completed. Then percentage horizontal 

schedule Variance at period t, %HSV(t), equals HSV(t)/t. A negative HSV 

indicates a schedule shortfall or lag. A positive HSV indicates a schedule excess 

or lead. 

 

Vertical Schedule Variance (VSV) 

Vertical schedule variance is another way to capture the deviation from the 

planned schedule. It is given by the difference between cumulative BCWP and 

cumulative BCWS. For a given period t, (cumulative) VSV equals:  

 

VSV(t) = BCWP(t) – BCWS(t) 

 

The percentage period vertical schedule variance  (%pVSV) is calculated from 

the VSV as follows: 

 

)1()(

)1()([)]1()([
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−−
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tBCWStBCWStBCWPtBCWP
tpVSV  

 

where BCWP(t) – BCWP(t–1) and BCWS(t) – BCWS(t–1) denote incremental or 

period costs (as opposed to cumulative costs). 

 

Cost Variance (CV)  

Cost variance is the deviation from the planned cost. It is given by the difference 

between ACWP and BCWP. For a given period t, (cumulative) CV is equals:  

 

CV(t) = BCWP(t) – ACWP(t). 
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The percentage period cost variance (%pCV) is calculated from CV as follows: 

 

 
)1()(

)1()([)]1()([
)(%

−−
−−−−−

=
tBSCWPtBCWP

tACWPtACWPtBCWPtBCWP
tpCV  

 

where BCWP(t) – BCWP(t–1) and ACWP(t) – ACWP(t–1) again denote 

incremental or period costs (as opposed to cumulative costs).  

 

IDENTIFICATION OF THE MOST LIKELY SCHEDULES 

 

Estimated Relative Completion Time (ERCT)  

Using only the information at period t – namely, the percentage HSV at that 

period – it is possible to estimate a relative completion time for the overall 

project by a linear extrapolation of the period lead or lag. If %HSV(t) = x, then 

the project has been performing at 100 × (1 + x) percent on average up to that 

period. If the same lag or lead is sustained throughout, the project will be 

completed at 100/(1 + x) of the budgeted schedule. For example, if % HSV (t) = 

–20%, the estimated relative completion time for period t equals 125%, 

indicating a delay of 25% at completion given the information at period t. ERTC 

is computed as:  

 

ERCT(t) = 1/(1 + %HSV(t)). 

 

Probabilities of Completion and Delay 

Let pdfERCT(x) denote the cumulative distributive function of ERCT. Assume that 

this distribution does not change over time as the project progresses. Then the 

probability that the project is competed within y% (where y > 0) of the planned 

schedule equals the probability that ERTC is smaller than or equal to y. 

Therefore:  

 

P[projects completes within y% of budgeted schedule] = pdfERCT(y/100) 

P[project is delayed beyond y% of budgeted schedule] = 1 – pdfERCT(y/100) 

 

DEVELOPMENT COST ESTIMATION FOR THE MOST LIKELY SCHEDULES 

 

Estimation of BCWP for a Given Deviation from the Planned Schedule 

The mean value of %pVSV can be used to estimate the BCWP for a future 

project by adjusting the period BCWS values in the original project plan. If the 
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project does not sustain a net schedule slip or is completed ahead of planned 

schedule, the period BCWP estimate will equal the period BCWS value. If the 

project sustains a deviation of D% from the planned schedule, then each period 

BCWS value can be adjusted as follows to predict the corresponding period 

BCWP:  

   

pBCWP(t) = pBCWS(t) × (1 + (µ(%pVSV) × D)/(µ(ERCT) – 1)),  1 <  t  ≤ T 

 

where T is the planned schedule or SAC, pBCWP and pBCWS denote period 

BCWP and period BCWS, respectively, µ(%pVSP) is the mean value of the 

period VSP of the reference project and µ(ERCT) is the mean value of the 

estimated relative completion time of the reference project. The multiplier 

D/(µ(ERCT) – 1) scales the period deviation relative to the total predicted 

deviation D. If D is negative, then the deviation corresponds to a delay (or slip), 

and one or more period values for BCWP beyond the original schedule should 

be estimated. These post-schedule values can be estimated by allocating the 

remaining budget at completion evenly among the extra periods:  

 

pBCWP(t) = (BAC – BCWP(T))/(T × D),  T <  t  ≤ T × (1 + D). 

 

ESTIMATION OF ACWP 

The mean value of %pCV is in turn used to estimate the period ACWP values by 

adjusting the estimated period BCWP values under a given deviation from the 

planned schedule. If the project does not sustain a net schedule slip or is 

completed ahead of planned schedule, the ACWP estimate will equal the BCSW 

estimate. If the project sustains a deviation of D% from the planned schedule, 

then each estimated period BCWP value can be adjusted as follows to predict the 

corresponding period ACWP: 

 

pACWP(t) = pBCWP(t) (1 – (µ(%pCV) × D)/(µ(ERCT) – 1)),   

1 <  t  ≤ T × (1 + D), 

 

where pACWP denotes the ACWP for one period only.  

 

Future Value of Cost Estimate Under a Given Schedule Deviation 

The total development cost conditional upon a given schedule deviation of D% 

of the planned schedule T is simply the estimated cumulative ACWP at project 

completion subject to that deviation. Thus: 
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Total Development Cost = ACWP(T × (D + 1)) . 

 

 However, this expression is simply the sum of period costs and does not 

factor in time value of money. To be able to compare the total development cost 

to the future market payoff, we need to express the costs in future value terms at 

the projected completion date because the market payoff will be realized only 

then. At a constant, continuously-compounded annual risk-free rate of interest rf, 

the FV of cumulative cost at period t is given by:  

 

FV(ACWP(t)) = pACWP(t) × exp((D + 1) × (T – t) × rf/12) + FV(ACWP(t–1)). 

 

 According to standard market theory, the risk-free rate should be used to 

carry the period values to the future because development costs are assumed to 

be subject to only private risk. Since the estimated future cost is already 

conditional upon a given schedule deviation, that risk has already been factored 

into the estimate. 

 Finally, the future value of the total development cost subject to a deviation 

of D% from a planned schedule of T is given by:  

 

FV(Total Development Cost) = FV(ACWP((D + 1) × T)). 

 


