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Abstract

We describe NRC’s submission to the Anomaly
Detection/Text Mining competition organised at
the Text Mining Workshop 2007. This submis-
sion relies on a straightforward implementation
of the probabilistic categoriser described in [4].
This categoriser is adapted to handle multiple
labelling and a piecewise-linear confidence esti-
mation layer is added to provide an estimate of
the labelling confidence. This technique achieves
a score of 1.689 on the test data.

1 Overview

This paper describes NRC’s submission to the
Anomaly Detection/Text Mining competition
organised at the Text Mining Workshop 2007
(http://www.cs.utk.edu/tmw07/). This submis-
sion relies on an implementation of the proba-
bilistic categoriser described in [4], without us-
ing any hierarchical structure. As a consequence,
training is extremely fast and requires a sin-
gle pass over the data to compute the summary
statistics used to estimate the parameters of the
model. Prediction requires the use of an itera-
tive maximum likelihood technique (Expectation
Maximisation, or EM, [2]) to compute the pos-
terior probability that each document belongs to
each category.

In the following section, we describe the prob-
abilistic model, the training phase and the al-
gorithm used to provide predictions. We also
address the problem of providing multiple la-
bels per documents, as opposed to assigning each

document to single category. We also discuss the
issue of providing a confidence measure for the
predictions and describe the additional layer we
used to do that.

Section 3 describes the experimental results
obtained on the competition data. We provide a
brief overview of the data and we present results
obtained both on the training data (estimating
the generalisation error) and on the test data
(the actual prediction error).

2 The probabilistic model

Let us first introduce some formal notation. In
a text categorisation problem, such as proposed
in the Anomaly Detection/Text Mining competi-
tion, we are provided with a set of M documents
d and associated labels ℓ ∈ {1, . . . C} where C is
the number of categories. These form the train-
ing set D = {(di, ℓi)}i=1...M

. Note that, for now,
we will assume that there is only one label per
document. We will address the multi-label sit-
uation later in section 2.3. The text categorisa-
tion task is the following: given a new document
d̃ 6∈ D, find the most appropriate label ℓ̃. There
are mainly two flavours of inference for solving
this problem [14]. Inductive inference will esti-
mate a model f̂ using the training data D, then
assign d̃ to label f̂(d̃). Transductive inference
will estimate the label ℓ̃ directly without esti-
mating a general model.

We will see that our probabilistic model shares
similarities with both. We estimate some model
parameters, as described in section 2.1, but we
do not use the model directly to provide the la-
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bel of new documents. Rather, prediction is done
by estimating the labelling probabilities by max-
imising the likelihood on the new document us-
ing an EM-type algorithm, as described in sec-
tion 2.2.

Let us now assume that each document d is
composed of a number of words w from a vocab-
ulary V. We use the bag-of-word assumption.
This means that the actual order of words is dis-
carded and we only use the frequency n(w, d)
of each word w in each document d. The cat-
egoriser presented in [4] is a model of the co-
occurrences (w, d). The probability of a co-
occurrence, P (w, d) is a mixture of C multino-
mial components, assuming one component per
category:

P (w, d) =
C∑

c=1

P (c)P (d|c)P (w|c)(1)

= P (d)
C∑

c=1

P (c|d)P (w|c)

This is in fact the model used in Probabilis-
tic Latent Semantic Analysis [8], but used in a
supervised learning setting. The key modelling
aspect is that documents and words are condi-
tionally independent, which means that within
each component, all documents use the same vo-
cabulary in the same way. Parameters P (w|c)
are the profiles of each category, and parameters
P (c|d) are the profiles of each document. We will
now show how these parameters are estimated
from the training data.

2.1 Training

The (log-)likelihood of the model with a set of
parameters θ = {P (d);P (c|d);P (w|c)} is:

L(θ) = log P (D|θ)

=
∑

d

∑

w∈V

n(w, d) log P (w, d)(2)

assuming independently identically distributed
(iid) data.

Parameter estimation is carried out by max-
imising the likelihood. Assuming that there is a
one-to-one mapping between categories and com-
ponents in the model, we have, for each training

d

c

w

document document

w

c

d

Our modelNaive Bayes

collection collection

Figure 1: Graphical models for Näıve Bayes
(left) and for the probabilistic model used here
(right).

document P (c = ℓi|di) = 1 and P (c 6= ℓi|di) = 0,
for all i. This greatly simplifies the likelihood,
which may now be maximised analytically. Let
us introduce |d| =

∑
w n(w, d) the length of doc-

ument d, |c| =
∑

d∈c |d| the total size of category
c (using the shorthand notation d ∈ c to mean all
documents di such that ℓi = c), and N =

∑
d |d|

the number of words in the collection. The Max-
imum Likelihood (ML) estimates are:

P̂ (w|c) =
1

|c|

∑

d∈c

n(w, d) and P̂ (d) =
|d|

N
(3)

Note that in fact only the category profiles
P̂ (w|c) matter. As shown below, the document
probability P̂ (d) is not used for categorising new
documents (as it is irrelevant, for a given d).

The ML estimates in eq. 3 are essentially iden-
tical to those of the Näıve Bayes categoriser [10].
The underlying probabilistic models, however,
are definitely different, as illustrated on figure
1 and shown in the next section. One key dif-
ference is that the probabilistic model in eq. 1
is much less sensitive to smoothing than Näıve
Bayes.

It should be noted that the ML estimates rely
on simple corpus statistics and can be computed
in a single pass over the training data. This con-
trasts with many training algorithm that rely on
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iterative optimisation methods. It means that
training our model is extremely efficient.

2.2 Prediction

Note that eq. 1 is a generative model of co-
occurrences of words and documents within a
given collection {d1 . . . dn} with a set vocabulary
V. It is not a generative model of new docu-
ments, contrary to, for example, Näıve Bayes.
This means that we can not directly calculate
the posterior probability P (d̃|c) for a new docu-
ment.

We obtain predictions by folding in the new
document in the collection. As document d̃ is
folded in, the following parameters are added to
the model: P (d̃) and P (c|d̃),∀c. The latter are
precisely the probabilities we are interested in
for predicting the category labels. As before, we
use a Maximum Likelihood approach, maximis-
ing the likelihood for the new document:

L̃ =
∑

w

n(w, d̃) log P (d̃)
∑

c

P (c|d̃)P (w|c)(4)

with respect to the unknown parameters P (c|d̃).
The likelihood may be maximised using a vari-

ant of the Expectation Maximisation (EM, [2])
algorithm. It is similar to the EM used for es-
timating the PLSA model (see [8, 4]), with the
constraint that the category profiles P (w|c) are
kept fixed. The iterative update is given by:

P (c|d̃)← P (c|d̃)
∑

w

n(w, d̃)

|d̃|

P (w|c)
∑

c P (c|d̃)P (w|c)
(5)

The likelihood (4) is guaranteed to be strictly
increasing with every EM step, therefore equa-
tion 5 converges to a (local) minimum. In the
general case of unsupervised learning, the use
of deterministic annealing [13] during parame-
ter estimation helps reduce sensitivity to initial
conditions and improves convergence (cf. [8, 4]).
Note however that as we only need to optimise
over a small set of parameters, such annealing
schemes are typically not necessary at the pre-
diction stage. Upon convergence, the posterior
probability estimate for P (c|d̃) may be used as a
basis for assigning the final category label(s) to
document d̃.

The way the prediction is obtained sheds some
light on the difference between our method and
a Näıve Bayes categoriser. In Näıve Bayes, a
category is associated to a whole document, and
all words from this document must then be gen-
erated from this category. The occurrence of
a word with a low probability in the category
profile will therefore impose an overwhelming
penalty to the category posterior P (c|d). By
contrast, the model we use here assigns a cate-
gory c to each co-occurrence (w, d), which means
that each word may be sampled from a different
category profile. This difference manifests itself
in the re-estimation formula for P (c|d̃), eq. 5,
which combines the various word probabilities
as a sum. As a consequence, a very low proba-
bility word will have little influence on the pos-
terior category probability and will not impose
an overwhelming penalty.

This key difference also makes our model
mush less sensitive to probability smoothing
than Näıve Bayes. This means that we do not
need to set extra parameters for the smoothing
process. In fact, up to that point, we do not
need to set any extra hyper-parameter for the
training or the prediction phase.

As an aside, it is interesting to relate our
method to the two paradigms of inductive and
transductive learning [14]. The training phase
seems typically inductive: we optimise a cost
function (the likelihood) to obtain one optimal
model. Note however that this is mostly a model
of the training data, and it does not provide di-
rect labelling for any document outside the train-
ing set. At the prediction stage, we perform an-
other optimisation, this time over the labelling of
the test document. This is in fact quite similar
to transductive learning. In this way , it appears
that our probabilistic model shares similarities
with both learning paradigms.

We will now address two important issues of
the Anomaly Detection/Text Mining competi-
tion that require some extensions to the basic
model that we have presented. Multi-label cat-
egorisation is addressed in section 2.3 and the
estimation of a prediction confidence is covered
in section 2.4.

3



2.3 Multi-class, multi-label categori-

sation

So far, the model we have presented is strictly a
multi-class, single-label categorisation model. It
can handle more than 2 classes (C > 2) but the
random variable c indexing the categories takes
a single value in a discrete set of C possible cat-
egories.

The Anomaly Detection/Text Mining compe-
tition is a multi-class, multi-label categorisation
problem: each document may belong to multi-
ple categories. In fact, although most documents
have only one or two labels, one document, num-
ber 4898, has 10 labels (out of 22), and 5 docu-
ments have exactly 9 labels.

One principled way to extend our model to
handle multiple labels per document is to con-
sider all observed combinations of categories and
use these combinations as single “labels”, as de-
scribed eg in [6] (see also [11]). On the competi-
tion data, however, there are 1151 different label
combinations with at least one associated docu-
ment. This makes this approach hardly practi-
cal. An additional issue is that considering label
combinations independently, one may miss some
dependencies between single categories. That is,
one can expect that combinations (C4, C5, C10)
and (C4, C5, C11) may be somewhat dependent
as they share two out of three category labels.
This is not modelled by the basic “all model
combinations” approach. Although dependen-
cies may be introduced as described for example
in [6], this adds another layer of complexity to
the system. In our case, the number of depen-
dencies to consider between the 1151 observed
label combinations is overwhelming.

Another approach is to reduce the multiple
labelling problem to a number of binary cate-
gorisation problems. With 22 possible labels, we
would therefore train 22 binary categorisers and
use them to take 22 independent labelling deci-
sions. This is an appealing and usually successful
approach, especially with powerful binary cate-
gorisers such as Support Vector Machines [1, 9].
However, it still mostly ignores dependencies be-
tween the individual labels (for example the fact
that labels C4 and C5 are often observed to-

gether) and it multiplies the training effort by
the number of labels (22 in our case).

Our approach is actually somewhat less princi-
pled than the alternatives mentioned above, but
a lot more straightforward. We rely on a simple
threshold a ∈ [0; 1] and assign any new document
d̃ to all categories c such that P (c|d̃) ≥ a. In ad-
dition, as all documents in the training set have
at least one label, we make sure that d̃ always get
assigned the label with the highest P (c|d̃), even
is this maximum is below the threshold. This
threshold is combined with the calculation of the
confidence level as explained in the next section.

2.4 Confidence estimation

Another important issue in the Anomaly Detec-
tion/Text Mining competition is that labelling
has to be provided with an associated confidence
level.

The task of estimating the proper probability
of correctness for the output of a categoriser is
sometimes called calibration [15]. The confidence
level is then the probability that a given labelling
will indeed be correct, ie labels with a confidence
of 0.8 will be correct 80% of the time. Unfortu-
nately, there does not seem to be any guarantee
that the cost function used for the competition
will be optimised by a “well calibrated” confi-
dence. In fact there is a natural tension between
calibration and performance. Some perfectly cal-
ibrated categorisers can show poor performance;
Conversely, some excellent categorisers (for ex-
ample Support Vector Machines) may be poorly
or not calibrated.

Accordingly, instead of seeking to calibrate the
categoriser, we use the provided score function,
Checker.jar, to optimise a function that outputs
the confidence level, given the probability output
by the categoriser. In fields like speech recogni-
tion, and more generally in Natural Language
Processing, confidence estimation is often done
by adding an additional Machine Learning layer
to the model [3, 5], using the output of the model
and possibly additional, external features mea-
suring the level of difficulty of the task. We
adopt a similar approach, but using a much sim-
pler model.
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Figure 2: The piecewise linear function used to
transform the posterior probability into a confi-
dence level.

The confidence layer transforms the condi-
tional probability output by the model, P (c|d̃),
into a proper confidence measure by using a
piecewise linear function with two parameters
(figure 2). One parameter is the probability
threshold a, which determines whether a label
is selected or not; the second is a baseline confi-
dence level b, which determines what confidence
we give a document that is around the thresh-
old. The motivation for the piecewise-linear
shape is that it seems reasonable that the confi-
dence is a monotonous function of the probabil-
ity, ie if two documents d̃1 and d̃2 are such that
a < P (c|d̃1) < P (c|d̃2), then it makes sense to
give d̃2 a higher confidence to have label c than
d̃1. Using linear segments is a parsimonious way
to implement this assumption.

Let us note that the entire model, including
the confidence layer, relies on two learning pa-
rameters, a and b. These parameters may be
optimised by maximising the score obtained on
a prediction set or a cross-validation estimator,
as explained below.

3 Experimental results

We will now describe some of our experiments
in more details and give some experimental re-
sults, both for the estimated prediction perfor-
mance, using only the training data provided for
the competition, and for the test performance
using the test labels provided after the results
were announced.

3.1 Data

The available training data consists of 21519 re-
ports categorised in up to 22 categories. Some
limited pre-processing was performed by the or-
ganisers on the reports, eg tokenisation, stem-
ming, acronym expansion and removal of places
and numbers. This pre-processing makes it non-
trivial for participants to leverage their own in-
house linguistic pre-processing. On the other
hand, it places contestants on a level-playing
field, which put the emphasis on differences in
the actual categorisation method, as opposed to
differences in pre-processing.1

The only additional pre-processing we per-
formed on the data was stop-word removal, us-
ing a list of 319 common words. Similar lists are
available many places on the internet.

After stop-word removal, documents were in-
dexed in a bag-of-word format by recording the
frequency of each word in each document.

In order to obtain an estimator of the pre-
diction error, we organised the data in a 10-
fold cross-validation manner. We randomly re-
ordered the data and formed 10 splits: 9 con-
taining 2152 documents, and one with 2151 doc-
ument. We then trained a categoriser using each
subset of 9 splits as training material, as de-
scribed in section 2.1, and produced predictions
on the remaining split, as described in 2.2. As a
result, we obtain 21519 predictions on which we
will optimise parameters a and b.

1In our experience, differences in pre-processing typ-
ically yield larger performance gaps than differences in
categorisation method.
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3.2 Results

The competition was judged using a specific cost
function combining prediction performance and
confidence reliability. For each category c, we
compute the area under the ROC curve, Ac, for
the categoriser. Ac lies between 0 and 1, and
is usually above 0.5. In addition, for each cate-
gory c, denote tic ∈ {−1, +1} the target label for
document di, yic ∈ {−1, +1} the predicted label
and qic the associated confidence. The final cost
function is:

Q =
1

C

C∑

c=1

(2Ac − 1) +
1

M

M∑

i=1

qicticyic(6)

Given predicted labels and associated confi-
dence, the reference sript Checker.jar provided
by the organisers computes this final score. A
perfect prediction with 100% confidence yields a
final score of 2, while a random assignment would
give a final score around 0.

Using the script Checker.jar, on the cross-
validated predictions, we optimise a and b us-
ing alternating optimisations along both param-
eters. The optimal values are a = 0.24 and
b = 0.93, indicating that documents are labelled
with all categories that have a posterior proba-
bility higher than 0.24, and the minimum confi-
dence is 0.93. This is somewhat surprising as it
seems like a very high baseline confidence. This
suggests that there may be a lot to gain from us-
ing a confidence layer that is somewhat more dis-
cerning. Using this setting, the cross-validated
cost is about 1.691. With the same settings, the
final cost on the 7,077 test documents is 1.689,
showing an excellent agreement with the cross-
validation estimate.

We also measured the performance using some
more intuitive metrics. For example, the over-
all mislabelling error rate is 7.22%. In addi-
tion, table 1 summarises the performance in
terms of the standard metrics of precision, re-
call and F-score.2 Over the 22 categories, the

2
Precision estimates the probability that a label pro-

vided by the model is correct, while recall estimates the
probability that a reference label is indeed returned by
the model [7]. F-score is the harmonic average of preci-
sion and recall.

Catgeory p (in %) r (in %) F (in %)

C1 54.63 90.80 68.22
C2 77.24 5.76 10.72
C3 79.60 72.07 75.65
C4 52.00 57.14 54.45
C5 77.95 77.49 77.72
C6 69.14 19.21 30.07
C7 42.20 54.03 47.39
C8 61.08 55.47 58.14
C9 58.89 63.10 60.92
C10 57.72 24.64 34.54
C11 70.13 67.08 68.57
C12 74.92 76.80 75.85
C13 65.00 24.60 35.69
C14 61.19 81.42 69.87
C15 34.62 9.84 15.32
C16 57.00 18.15 27.54
C17 48.25 42.59 45.25
C18 72.88 49.00 58.60
C19 79.62 47.09 59.17
C20 53.97 86.03 66.33
C21 61.21 73.72 66.89
C22 52.79 97.42 68.48

µ-avg 64.87 40.74 50.05
M -avg 61.91 54.25 57.83

Table 1: Performance of the probabilistic model:
precision, recall and F -score for each of the 22
categories, as well as the micro- and macro- av-
erages.

micro-averaged precision and recall are 64.9%
and 40.7%, respectively, indicating that aroud
40% of reference labels are found by the model,
and about 65% of the labels provided by the
system were correct. It appears that precision
and recall are balanced on most categories, but
a few categories (C2, C15, C16, C6) have ter-
rible recall. This suggests that having different
threshold for different categories may be a way
to improve performance.

In order to illustrate the sensitivity of the
performance to the setting of the two hyper-
parameters a and b, we plot the final cost ob-
tained for various combinations of a and b, as
shown in figure 3. The optimal setting (cross)
is in fact quite close to the cross-validation es-
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Figure 3: Score for various combinations of a

and b. The best (maximum) test score is in-
dicated as a cross, the optimum estimated by
cross-validation (CV) is a = 0.24 and b = 0.93,
indicated by a circle.

timate (circle). In addition, it seems that the
performance of the system is not very sensitive
to the precise values of a and b. Over the range
plotted in figure 3, the maximal score (cross) is
1.6894, less than 0.05% above the CV-optimised
value, and the lowest score (bottom left) is 1.645,
2.5% below. This means that any setting of a

and b in that range would have been within 2.5%
of the optimum.

4 Summary

We have presented the probabilistic model that
we used in NRC’s submission to the Anomaly
Detection/Text Mining competition at the Text
Mining Workshop 2007. This probabilistic
model may be estimated from pre-processed, in-
dexed and labelled documents with no additional
learning parameters, and in a single pass over the
data. This makes it extremely fast to train. On
the competition data, in particular, the training
phase takes only a few seconds. Obtaining pre-
dictions for new test documents requires a bit

more calculations but is still quite fast.
The only training parameters we used are re-

quired for tuning the decision layer, which selects
the multiple labels associated to each documents,
and estimates the confidence in the labelling. In
the method that we implemented for the compe-
tition, these parameters are the labelling thresh-
old, and the confidence baseline. They are es-
timated by maximising the cross-validated cost
function.

Performance on the test set yields a final
score of 1.6886, which is very close to the cross-
validation estimate. This suggests that despite
its apparent simplicity, the probabilistic model
provides a very efficient categorisation. This is
actually corroborated by extensive evidence on
multiple real-life use cases.

The simplicity of the implemented method,
and in particular the somewhat rudimentary
confidence layer, suggests that there may be am-
ple room for improving the performance. One
obvious issue is that the ad-hoc layer used for
labelling and estimating the confidence may be
greatly improved by using a more principled ap-
proach. One possibility would be to train multi-
ple categorisers, both binary and multi-category,
and use the ouptut of these categorisers as input
to a more complex model combining this infor-
mation into a proper decision associated with a
better confidence level. This may be done for
example using a simple logistic regression. Note
that one issue here is that the final score used for
the competition, eq. 6, combines a performance-
oriented measure (area under the ROC curve)
and a confidence-oriented measure. As a conse-
quence, and as discussed above, there is no guar-
antee that a well-calibrated classifier will in fact
optimise this score. Also, this suggests that there
may be a way to invoke multiobjective optimisa-
tion in order to further improve the performance.

Among other interesting topics, let us men-
tion the sensitivity of the method to various ex-
perimental conditions. In particular, although
we have argued that our probabilistic model is
not very sensitive to smoothing, it may very well
be that a properly chosen smoothing, or simi-
larly, a smart feature selection process, may fur-
ther improve the performance. In the context
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of multi-label categorisation, let us also mention
the possibility to exploit dependencies between
the classes, for example using an extension of
the method described in [12].
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