i+l

NRC Publications Archive
Archives des publications du CNRC

Surface profile of material ablated with high-power lasers in ambient air
medium
Vatsya, S.R; Li, C.; Nikumb, S.K.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOI ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.1063/1.1846141
Journal of Applied Physics, 97, 3, 2005

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=928cdfc3-35¢c7-4224-a2e1-eef635babfd0
https://publications-cnrc.canada.ca/fra/voir/objet/?id=928cdfc3-35¢c7-4224-a2¢e1-eef635babfd0

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research  Conseil national de C dl*l
Council Canada recherches Canada ana, a



Surface profile of material ablated with high-power lasers in ambient

air medium

S. R. Vatsya, C. Li and S.K. Nikumb

Integrated Manufacturing Technologies Institute
National Research Council of Canada

800 Collip Circle, London, ON, Canada, N6G 4X8



Abstract

In general, material processing with high power ultra-short-pulsed lasers yields cleaner
surfaces, as long as the intensity profile of the laser beam is well shaped. However, the beam
suffers distortions during propagation through ambient atmospheric mediums such as air.
Passage through such mediums causes the beam to self-focus increasing the intensity further
and causing the breakdown of the gas. The resulting plasma distorts the beam's original profile
and the ablated surface conforms to the beam profile. A numerical scheme is developed here to
calculate the intensity profile of an optical beam propagating through a medium. Intensity
distribution of the beam is then used to determine the profile of the processed surface by a
geometrical method developed recently. The calculated profile is compared with the
experimentally obtained surface with good agreement. For medium spot sizes, the self-focusing
and plasma effects tend to cancel each other, maintaining the intensity profile of the beam
similar to the original Gaussian distribution. For small spot sizes when the intensity is high, the
plasma effects are found to distort the beam profile. This indicates that the experimental

parameters can be adjusted to improve the quality of the machined surface.

PACS Numbers: 02.60.Lj, 41.85.Ew, 42.65.Jx.



I. INTRODUCTION

High power densities and minimal heat-affected zone are major factors associated with
ultrashort-pulsed laser processing, which are responsible for improving the quality of the
fabricated features, textures, without changes in the bulk properties. For these reasons,
femtosecond laser processing of materials is preferred over the lasers with longer pulse
widths."® Processes have been developed that enable machining of features significantly
smaller than the diffraction limit, i.e. sub-micron features inside transparent bulk materials® and
nanoscale features on the surface of thin metal films®*, by taking an advantage of the threshold

effect®.

With rapid development of compact, stable regeneratively amplified Ti:Sapphire lasers in
recent years, applications of high power femtosecond lasers in industrial sector are increasing.
However, nonlinear wavefront distortion due to the optical breakdown of surrounding
atmosphere by extremely high intensity of the focused femtosecond laser beam creates a major
obstacle. The Kerr effect describing self-focusing of the beam increases the already high
intensity, which causes the breakdown of air. Processes involved in the generation of plasma
and its subsequent interaction with the beam, diffuse and distort the beam profile, at times
offsetting some of the advantages. In addition, deflection of the s-polarized radiation at the hole
wall makes its shape irregular.? Since these effects, which result in poor feature quality of the
machined work piece, are created or magnified by the passage of the optical beam through
dielectric material, e.g., air, machining is normally conducted in vacuum, which restricts its
application in the production environment’. Among others®, use of inert gases as media for
beam delivery has been suggested for these reasons, e.g., helium, because of its high

ionization potential®'®, but the inconvenience persists.



Since the profile of the fabricated surface conforms to that of the optical beam, there is
considerable interest in calculating the beam shape propagating through dielectric media, which
is described by a nonlinear Schrodinger type equation®'"'2. This equation is usually solved by
the fast Fourier transform® and the finite difference’"'? methods. In the present article, we
develop a new scheme taking advantage of the fact that the closed form solutions for
propagation in vacuum are available'®. This enables an isolation of the perturbing effects, which
tend to cancel each other over a significant intensity range. Therefore, more accurate solutions
are expected to result. Consequent representation of the solution also suggests a natural grid
structure in the radial coordinate varying in proportion to the beam-width. Since the intensity
spread over a several millimeter aperture at the lens converges on to a region of the order of
micrometers, this varying grid is better suited to obtain the numerical solutions. The resulting
equation can be solved by the method of Fourier transforms or by the finite difference method.
However, we have used expansion in terms of the closed form basis functions in the radial
coordinate combined with the backward Euler method, reducing numerical evaluation of some

of the intermediate quantities.

Conclusions about the geometrical profile of the irradiated surface are inferred in
literature from the intensity profile of the optical beam, as both should be expected to conform to
each other. This provides a reasonable qualitative information''. Quantitative description of the
surface profile can be determined by considering the interaction mechanism between the optical
beam and the material. Recently a procedure was developed from geometrical considerations to
determine the structure of a material surface from the knowledge of the intensities and used to
calculate the profiles of the surfaces machined with long pulse lasers, where the ablation takes
place mainly by melting and evaporating the material. Agreement between the calculated and
the observed values was satisfactory except at the peripheries of the craters', where some

material is accumulated due to fluid flow''®. In cases of short pulse ablation, the amount of melt



is insignificant at fluences close to the threshold, although it increases with increasing
intensities'”'® Thus, the geometrical model is expected to produce reliable profiles of the craters
except for deviations at the boundaries of the craters fabricated with high intensities. The
numerical scheme based on the geometrical formulation is used in the present article to

determine the surface profile from the calculated intensity distribution of the beam.

Calculated structure of the surface is compared with the experimentally obtained crater

shape. For a laser beam with pulse-width of 150 femtosecond and the pulse energy of 200 uJ,

the self-focusing and plasma effects were found to compensate for each other as long as the

radius of the beam at the focal point is larger than about 2 um . At these intensities no melt was

observed and the calculated profile was found to be in good agreement with the experimental,
over the entire surface of the crater. The cancellation of these two competing effects was
indicated recently by the existence of light filaments in air created with collimated high power
short laser pulses'®. This observation stimulated interest in the studies of the ultra-intense laser
pulse propagation in transparent media to exploit the phenomenon for laser fabrication®?*,
Present results indicate that the experimental parameters can be adjusted to balance the two

effects yielding a cleaner surface profile. For more strongly focused beams, the distortion

caused by the plasma was found to be significant.
Il. NUMERICAL METHOD

Propagation of an optical beam through a dielectric medium is described by the following

non-linear Schrodinger equation'"'%

YA _ Ly = |
0z 2k
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satisfied by slowly varying amplitude function A4, with intensity 7 = Al . Here V? denotes the

Laplacian in the plane perpendicular to the axis of the beam. Since the effect of air on the value

of the wave number k =(2z/2)is insignificant, it will be neglected. Self-focusing is described
by the first term on the right side in terms of the Kerr coefficient n,, and the second term
describes the effect of plasma in terms of the electron charge e, electron mass m, and the

speed of light ¢ in the gas. Free electron density N, induced by the laser pulse by field

ionization is determined by the rate equation:

ON . (I(z)) — No Rio" (I(r)), (2)
ot

where N, is the number density of the neutral air molecules, R,, is the ionization rate and
7 =(z—t/c) is the retarded time. For propagation in vacuum, the right side in Eq. (1) drops out,

yielding the paraxial Helmholtz equation,

M _ gy
0z 2kVA° 0 ©)

Physical solution of Eq. (3) is uniquely determined from its value at one point along the
beam axis, usually taken to be the lens location, and the general solution, which is available in
closed form'™. A spacially Gaussian beam after passing through a thin lens remains Gaussian
with different characterizing parameters. The lens alters only the phase of the incoming beam
with consequent change in its curvature. Curvature of the beam on one side of the lens is

determined by its value on the other side and the focal length'®. Parameters characterizing the



beam on both sides are determined by the curvature on either side of the lens and the beam-

width at its location as indicated in Appendix.

The solution 4,(¢, p,7) of Eq. (3), after passing through a lens with focal length f

satisfying the appropriate conditions at its location, is given by

A4S, p7) = K(7) \/(1+«f—2)/(1+é‘2)eXp[—(lf;z)”(liZgz)‘itan_](‘f)}- (4)

Here p=(F/w, )=, /ﬂ/(ﬂzo 7). where w,, z, and 7 denote the beam-width at the focal

point, the corresponding Rayleigh range and the point in the transverse plane, respectively,

£(z)=(z-z~f)/z,, where z is the reference point along the beam axis with the location of
lens denoted by Z . The solution given by Eq. (4) is normalized such that the intensity at the

lens | 4,(£,0,7(2) =l x(z@) [ .

In terms of these variables, Eq. (1) is expressed as

A _ Ly o i, (5)
o0& 4 °
where V(1) = zafV(] ). At the lens, A(&, p,7(Z)) = AO(E , 2,7(Z)) . With the above normalization,

the intensity 7 =1, | A*, where I is the peak input intensity determined by the pulse energy.



Expressing the solution as A= 4,4 yields the following equation for A:

o4+

D ' I o2 s _
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with A(&,p,7(Z))=1. For convenience, we assume radial symmetry. The following

manipulations can be adjusted for the general case in a straightforward manner.

The hyperbolic operator

o-[3fs
o&  (1+&7) op

can be converted to a complete derivative along the characteristic curve defined by

pE&) = p&) A+&E)IA+E?)

and thus, the solution of O, u(¢, p)= v(&,p) can be obtained by integration along the curve

together with the knowledge of u(&, p(£)), yielding®,

u(&, p(&)) = u(&,p&)) + Edn v(n,p(é?)\/(1+772)/(1+5_2))-

The procedure is equivalent to a variable change from (£, p) to



€ B = (& pa+E)i1+E))

in the differential equation O, u(¢&, p) = u(é, p). In any case, Eq. (6) is thus reduced to

— +
o5  (1+&H op 4

' . ' . 2
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with the variable p depending on ¢ as defined by the characteristic curve.

Eq. (7) can be solved by the finite difference method. The solution along & can be

advanced along an arbitrary mesh, as long as the mesh with respect to p conforms to the

characteristic curve. The mesh { P, (& )} at & can be arbitrarily selected. At other values of &£, it

is given by {pn(g")J(1+§2)/(1+52)}.

While Eq. (7) can be solved by the finite difference scheme, it is not suitable for the

applications of the methods, which require a rapid decay of the initial value with respectto p,
such as the Fourier transform and the expansion in terms of the basis functions. This can be

corrected by expressing 4 = (1+ B), yielding the following inhomogeneous equation in B:

0B i o8B i|& 18 . y
e a1 ] A Y



with B(&, p(f ),7(Z))=0. It is further convenient to change variable from &£ to 6 =tan™' (&),
reducing Eq. (8) to

% + iLB = iW, 9)
00

where W = (1+ &%)V (1) and the operator L is defined by

The advantage in reducing Eq. (1) to solving Eq. (9) is in isolating the effects of the
perturbing terms and in obtaining a suitable grid structure for the radial coordinate. Numerical
solutions of Eq. (9) can be obtained by a variety of methods, including the finite difference and
the transform methods. However, the use of transforms based on continuous variables is not
necessary. It is sufficient to use a discrete basis in the underlying Hilbert space®®. We have used
the method of expansion in terms of basis functions combined with a hybrid Euler method,

described below.

The solution B can be expanded in terms of a suitable basis, i.e.,

B©,p) = 32,0 0,(0). (10)

n=0

Since the 7 -dependence of the solution is only parametric entering through the initial condition,

it is suppressed for convenience. In numerical calculations, the sum in Eq. (10 ) is truncated at a

10



finite value N . Substituting for B in Eqg. (9) and taking the scalar product with each of the basis

functions, reduces it to an ordinary differential equation:

N 29)

+ iMa@) = ipG;a(), (11)

where the N -vector f(f) and Nx N matrices N and M are defined by

ﬂn(g’a(g)) = <¢",W>, Nn,m = <¢n’¢m> and Mnm = (¢n’L ¢m>’ h,m = 0’ 1’ N’

with (u,u) denoting the scalar product of functions u and v in the underlying Hilbert space #,

and the N -vector a(0) is sought.

Although the solution of Eq. (11) can be expressed in terms of the exponentials of the
matrices, application of the backward Euler method is more convenient, which is also quite

stable. However, since £(€) depends on a(f), application of fully backward Euler method is

inconvenient. Eq. (11) is therefore linearized by a partial application of the forward Euler

method. In this hybrid scheme, with a(8) known, a(6 +d@) is determined by solving the matrix

equation,

[N +iMdo | a(6+d0) = [-Na(d) +i B(6,a(6)) dd]. (12)

This determines (@) for all values of & starting with its value at 8 =8 =tan™(£), which is

equal to zero.

11



In view of the radial symmetry, # can be taken to be a space of symmetric functions of

p satisfying the requirement of square-integrability with respect to a weight. The basis defined

by

~ p 2n ) ,
0.(p) = (pm(a)] exp[~4(p/ Prus (0))’ ]

is quite adequate to approximate B, in view of its decay properties. Thus, #/can be taken to be
the closure of the span of {go,,}, which forms a Hilbert space with respect to the scalar product

defined by

(w,0) = [[dou(p) v(p)exp[~4(p/ £ (0)) ]

Constant multiplier in the exponential functions was selected to ensure that ¢,(p,,) is

sufficiently small without @, (o) being too small where the solution value is appreciable.

However, the solution scheme is not strongly dependent on its value. An advantage of this set is

that some of the integrals needed to evaluate the matrix elements can be carried out exactly.

The value of p_ (@) can be judiciously selected which determines p,. (f) as it lies on the

characteristic curve passing through pmax(g). The @-dependence of the radial mesh is used
also in the numerical integrals encountered. In other respects, p can be treated as an
independent parameter. Alternatively, the above equations can be expressed in terms of the

independent parameters £ and ,5(3).

12



The amplitude A(¢, p,7) calculated as described above, determines the intensity
I(¢&, p,7). The intensity distribution can be used to calculate the profile of the processed

surface by solving the equation

o2p) _ _alEpo)|, , ()] (13)
o7 E, op '

where z(p) is the vertical coordinate of the surface at the radial position p, aq, is the

absorption coefficient of the material, E, is the energy needed to remove unit volume of the
material, which is determined by independent considerations of the laser-material interaction.
Eq. (13) is conveniently solved by the forward Euler method, which has been found to yield

quite accurate values.*
lll. RESULTS AND DISCUSSION

Calculated surface profile was compared with the surface of the craters fabricated during
the interaction of short-pulsed lasers with thin sheets of copper. The laser system used was a
Clark-MXR CPA 2010 femtosecond laser, which consists of a 35 MHz SErF fiber oscillator and
a chirped-pulse-amplification, Ti: Sapphire regenerative amplifier, which deliveres 150 fs single
pulses with wavelength centered at 775 nm with average power of 1 W corresponding to the
maximum pulse energy of 1 mJ, at pulse repetition rate of 1 kHz. A set of ND filters was used

to control the pulse energy. The laser beam was collimated with a beam expander and focused

with a chromatic objective (CVI Laser Co.) with NA = 0.23 and f = 21 mm. The copper foil

sample with a thickness of 70 um was mounted on a motion stage having a positioning

13



accuracy within 1 um . In order to ensure that each laser ablated crater on the copper surface

be produced by a single pulse, the motion system translated at a speed of 750 mm/min, while

the laser fired at a pulse repetition rate of 500 Hz, separating the craters by 25 um . For various
experimental considerations, experiments were conducted at the pulse energy of 200 uJ . The

depth at various locations of each crater was measured by an optical interferometric WYCO
surface profiler (model NT-2000), which provides a 1 nm resolution in its vertical-scanning

interferometry mode.

A picture of the typical craters and corresponding depth profiles in two perpendicular
directions are shown in Figure 1. The craters produced were not identical to each other due to
noticeable random variations. The observations selected are deemed to represent the observed
profiles adequately. For comparison with the theoretical values calculated for a radially
symmetric system, the depths along X and Y - axes were averaged to obtain the profile with
respect to the radial distances and measured data was also averaged over a number of
measurements to minimize the effects of the statistical variations. Since the representative
experimental profile is obtained by averaging the X and Y profiles, it is radially symmetric and
due to cancellations of the statistical variations, the averaged profile is smoother than the

individual craters.

In conformity with the laser used, the profile of the input laser beam with respect to time

was also assumed to be Gaussian, given by Eq. (4) with

x(z(z)) = x(t) = I, exp[-&(t/7,)'],

where 7, is the pulse-width and the laser specific parameter i =4 log(2). Input peak power

14



I, is calculated from the pulse energy £

pulse

given by

= Io(’]‘dtu]‘dx]‘dy exp[-2(x*+ y*)/(D,/12)* —©(t/t,)]
- , (14)

| R b2
EﬂD;IOrP\/;

where the input beam diameter D, = 2 (1 + £7).

b=
I

pulse

Although the effects of melting and vaporization on the ablation process with short-

pulsed lasers are insignificant, the energy E, in Eq. (13) is still given quite accurately by its
amount needed to melt and evaporate unit volume of the metal.* The ionization rate R, (/)
needed to calculate N, () from Eq. (2) was determined from the experimental values for N,
and O,, assuming their concentrations to be 80% and 20%, respectively in the atmosphere.

The values for N, and O, were calculated by a polynomial fit to their experimentally measured

values in the required energy range® In Eq. (12), less than ten basis functions were found to be
sufficient to produce reliable results. The results changed little for more than five basis

functions.

Theoretical predictions and the averaged experimental values of the depth with respect
to the radial distance with origin at the intersection of the axis of the beam and the horizontal

surface of the sheet are displayed in Figure 2, for a spot diameter of about 10 um. The

calculated and the measured values are in close agreement for this spot size. Figure 3 shows
the calculated intensity profile of the optical beam normalized in units of the peak input intensity,

for the waist radius at the focal point equal to 1 um . Experimental values were unavailable for

15



the correspondingly small spot size. However, this profile resembles other calculations of this
type, which compare well with the experimental observations available in literature. ®' Also, at
higher intensities, additional phenomena must be taken into account in modeling the laser-
material interaction and to determine the surface profile adequately, which is beyond the scope

of the present article.

It is clear from Figure 2, that with a spot size of 10 um the Gaussian profile of the

optical beam propagating through air remains relatively undistorted in shape indicating a
significant cancellation of the self-focusing and plasma effects at medium intensities. This

behavior was found to persist up to the waist radius of about 2 um . Such cancellations have

been noticed in the observations of long filaments of light in air created with collimated short
pulse optical beams.' Studies aimed at generating shot columns of plasma in converging
beams used for laser machining have been conducted recently.*?* Existence of a region in a
beam with relatively undistorted profile can be exploited to fabricate cleaner surfaces. Present
results indicate that a desirable beam profile can be created at intensities close to the threshold.
Since the melt at such intensities is negligible''®, the associated distortions at the boundaries
of the craters, are also minimized. As indicated by the results of Figure 3, the distortions caused

by plasma are significant at higher intensities.

IV. CONCLUDING REMARKS

A numerical scheme is developed to determine the intensity profile of an optical beam
propagating through a dielectric medium such as air. The scheme is perturbative in nature as it
isolates the effect of the medium on the profile in vacuum, which is exactly available. Since the

self-focusing and plasma effects caused by a medium tend to cancel each other over a wide

16



range of intensities, the approach is pre-eminently suitable. Also, the mesh suggested by the
characteristics of the beam in vacuum is better suited for accurate and efficient calculations of
the intensity distribution at a desired location. Further, it is indicated that instead of continuous
transforms, a finite basis set is sufficient to assure convergence. The scheme is coupled with a

geometrical scheme to calculate the surface profile of the laser-ablated craters.

The scheme is verified by comparing the calculated values with the average surface
profile of the experimentally ablated craters with single pulse of a short-pulsed high intensity
laser. Experimental values were available only for lower intensities and found to be in close
agreement. At higher intensities, where experimental surface profiles are not available, the
calculated beam profile agrees qualitatively with other calculations, which are in qualitative

agreement with the fabricated surface profiles, available in literature.

The results indicate that for lower intensities, the self-focusing caused by the medium
and the impact of the plasma generated by the high intensity laser beam, tend to cancel each
other. Such intensities can be obtained by adjusting the experimentally controllable parameters
to produce a spot size with corresponding intensities in a desirable range yielding cleaner
machined surfaces. For a smaller spot size corresponding to higher intensities, the plasma was

found to distort the intensity distribution in the beam.
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Appendix
Consider a Gaussian beam passing through a thin convex lens of the aperture radius w,

and focal length f . Here the parameters characterizing the beam on both sides of the lens

are calculated in terms of these input parameters from the standard relations."
Let w,, and z,, be the beam-width and the Rayleigh range at the focal point. Taking

the focal point as the reference point where the curvature is zero, the beam-width w;, on

both sides of the lens is given by

w o= Wy, |1+ (—f—J , (A-1)

REAN 7[W122_ 2 )
ZO[“(ZAJ \[(2/1] [ (A-2)

The radii of curvature R, and R, on the side of the focal point and the input beam,

respectively, are given by (1/R;)=—f/z,,+f"), and (U/R)=[(1/f)+(1/R.)]. The

beam-width at the narrowest point of the input beam, which is taken to be the origin of the

axis along the axis of the beam, is given by

20



) 2 -1/2
W, = w{n(%” , (A-3)
)

with the corresponding Rayleigh range z, =(7w)/A. This determines the location z of the

lens with respect to this origin to be

2 -1
7= R,{H(jﬁg” . (A-4)
)
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Figure captions

Figure 1. Typical laser machined craters and the corresponding profiles of the

ablated surface with laser of pulse-width = 150 fs, wavelength =775 nm,

and pulse energy = 200 uJ .

Figure 2. Comparison of theoretical (solid line) and averaged experimental (circles) profile

of the surface machined in air with laser of pulse-width = 150 fs,

wavelength = 775 nm , pulse energy = 200 1J and

spot diameter at focal point = 10 um.

Figure 3. Calculated intensity profile of the optical beam propagating in air with laser of

pulse-width = 150 fs, wavelength = 775 nm, pulse energy = 200 uJ

and spot diameter at the focal point = 2 um.
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