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Analogy Perception Applied to Seven Tests of
Word Comprehension

Abstract

It has been argued that analogy is the core of cognition. In AI research,

algorithms for analogy are often limited by the need for hand-coded high-

level representations as input. An alternative approach is to use high-level

perception, in which high-level representations are automatically generated

from raw data. Analogy perception is the process of recognizing analogies

using high-level perception. We present PairClass, an algorithm for anal-

ogy perception that recognizes lexical proportional analogies using represen-

tations that are automatically generated from a large corpus of raw textual

data. A proportional analogy is an analogy of the form A:B::C:D, meaning

“A is to B as C is to D”. A lexical proportional analogy is a proportional

analogy with words, such as carpenter:wood::mason:stone. PairClass rep-

resents the semantic relations between two words using a high-dimensional

feature vector, in which the elements are based on frequencies of patterns in

the corpus. PairClass recognizes analogies by applying standard supervised

machine learning techniques to the feature vectors. We show how seven dif-

ferent tests of word comprehension can be framed as problems of analogy

perception and we then apply PairClass to the seven resulting sets of analogy

perception problems. We achieve competitive results on all seven tests. This

is the first time a uniform approach has handled such a range of tests of word

comprehension.

Keywords: analogies, word comprehension, test-based AI, semantic relations,

synonyms, antonyms.

1 Introduction

Many AI researchers and cognitive scientists believe that analogy is “the core of

cognition” (Hofstadter, 2001):

• “How do we ever understand anything? Almost always, I think, by using one

or another kind of analogy.” – Marvin Minsky (1986)

• “My thesis is this: what makes humans smart is (1) our exceptional abil-

ity to learn by analogy, (2) the possession of symbol systems such as lan-

guage and mathematics, and (3) a relation of mutual causation between them
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whereby our analogical prowess is multiplied by the possession of relational

language.” – Dedre Gentner (2003)

• “We have repeatedly seen how analogies and mappings give rise to sec-

ondary meanings that ride on the backs of primary meanings. We have seen

that even primary meanings depend on unspoken mappings, and so in the

end, we have seen that all meaning is mapping-mediated, which is to say, all

meaning comes from analogies.” – Douglas Hofstadter (2007)

These quotes connect analogy with understanding, learning, language, and mean-

ing. Our research in natural language processing for word comprehension (lexical

semantics) has been guided by this view of the importance of analogy.

The best-known approach to analogy-making is the Structure-Mapping Engine

(SME) (Falkenhainer et al., 1989), which is able to process scientific analogies.

SME constructs a mapping between two high-level conceptual representations.

These kinds of high-level analogies are sometimes called conceptual analogies.

For example, SME is able to build a mapping between a high-level representa-

tion of Rutherford’s model of the atom and a high-level representation of the so-

lar system (Falkenhainer et al., 1989). The input to SME consists of hand-coded

high-level representations, written in LISP. (See Appendix B of Falkenhainer et al.

(1989) for examples of the input LISP code.)

The SME approach to analogy-making has been criticized because it assumes

that hand-coded representations are available as the basic building blocks for ana-

logy-making (Chalmers et al., 1992). The process of forming high-level conceptual

representations from raw data (without hand-coding) is called high-level perception

(Chalmers et al., 1992). Turney (2008a) introduced the Latent Relation Mapping

Engine (LRME), which combines ideas from SME and Latent Relational Analysis

(LRA) (Turney, 2006). LRME is able to construct mappings without hand-coded

high-level representations. Using a kind of high-level perception, LRME builds

conceptual representations from raw data, consisting of a large corpus of plain

text, gathered by a web crawler.

In this paper, we use ideas from LRA and LRME to solve word comprehen-

sion tests. We focus on a kind of lower-level analogy, called proportional analogy,

which has the form A:B::C:D, meaning “A is to B as C is to D”. Each component

mapping in a high-level conceptual analogy is essentially a lower-level propor-

tional analogy. For example, in the analogy between the solar system and Ruther-

ford’s model of the atom, the component mappings include the proportional analo-

gies sun:planet::nucleus:electron and mass:sun::charge:nucleus (Turney, 2008a).

Proportional analogies are common in psychometric tests, such as the Miller

Analogies Test (MAT) and the Graduate Record Examination (GRE). In these tests,

the items in the analogies are usually either geometric figures or words. An early AI
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system for proportional analogies with geometric figures was ANALOGY (Evans,

1964) and an early system for words was Argus (Reitman, 1965). Both of these sys-

tems used hand-coded representations to solve simple proportional analogy ques-

tions.

In Section 2, we present an algorithm we call PairClass, designed for recogniz-

ing proportional analogies with words. PairClass performs high-level perception

(Chalmers et al., 1992), forming conceptual representations of semantic relations

between words, by analysis of raw textual data, without hand-coding. The repre-

sentations are high-dimensional vectors, in which the values of the elements are

derived from the frequencies of patterns in textual data. This form of represen-

tation is similar to latent semantic analysis (LSA) (Landauer and Dumais, 1997),

but vectors in LSA represent the meaning of individual words, whereas vectors in

PairClass represent the relations between two words. The use of frequency vectors

to represent semantic relations was introduced in Turney et al. (2003).

PairClass uses a standard supervised machine learning algorithm (Platt, 1998;

Witten and Frank, 1999) to classify word pairs according to their semantic rela-

tions. A proportional analogy such as sun:planet::nucleus:electron asserts that the

semantic relations between sun and planet are similar to the semantic relations

between nucleus and electron. The planet orbits the sun; the electron orbits the

nucleus. The sun’s gravity attracts the planet; the nucleus’s charge attracts the

electron. The task of perceiving this proportional analogy can be framed as the

task of learning to classify sun:planet and nucleus:electron into the same class,

which we might call orbited:orbiter. Thus our approach to analogy perception is to

frame it as a problem of classification of word pairs (hence the name PairClass).

To evaluate PairClass, we use seven word comprehension tests. This could

be seen as a return to the 1960’s psychometric test-based approach of ANAL-

OGY (Evans, 1964) and Argus (Reitman, 1965), but the difference is that Pair-

Class achieves human-level scores on the tests without using hand-coded represen-

tations. We believe that word comprehension tests serve as an excellent benchmark

for evaluating progress in computational linguistics. More generally, we support

test-based AI research (Bringsjord and Schimanski, 2003).

In Section 3, we present our experiments with seven tests:

• 374 multiple-choice analogy questions from the SAT college entrance test

(Turney et al., 2003),

• 80 multiple-choice synonym questions from the TOEFL (test of English as

a foreign language) (Landauer and Dumais, 1997),

• 50 multiple-choice synonym questions from an ESL (English as a second

language) practice test (Turney, 2001),
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• 136 synonym-antonym questions collected from several ESL practice tests

(introduced here),

• 160 synonym-antonym questions from research in computational linguistics

(Lin et al., 2003),

• 144 similar-associated-both questions that were used for research in cogni-

tive psychology (Chiarello et al., 1990), and

• 600 noun-modifier relation classification problems from research in compu-

tational linguistics (Nastase and Szpakowicz, 2003).

We discuss the results of the experiments in Section 4. For five of the seven

tests, there are past results that we can compare with the performance of PairClass.

In general, PairClass is competitive, but not the best system. However, the strength

of PairClass is that it is able to handle seven different tests. As far as we know, no

other system can handle this range of tests. PairClass performs well, although it is

competing against specialized algorithms, developed for single tasks. We believe

that this illustrates the power of analogy perception as a unified approach to lexical

semantics.

Related work is examined in Section 5. PairClass is similar to past work on se-

mantic relation classification (Rosario and Hearst, 2001; Nastase and Szpakowicz,

2003; Turney and Littman, 2005; Girju et al., 2007). For example, with noun-

modifier classification, the task is to classify a noun-modifier pair, such as laser

printer, according to the semantic relation between the head noun, printer, and

the modifier, laser. In this case, the relation is instrument:agency: the laser is an

instrument that is used by the printer. The standard approach to semantic relation

classification is to use supervised machine learning techniques to classify feature

vectors that represent relations. We demonstrate in this paper that the paradigm of

semantic relation classification can be extended beyond the usual relations, such as

instrument:agency, to include analogy, synonymy, antonymy, similarity, and asso-

ciation.

Limitations and future work are considered in Section 6. Limitations of Pair-

Class are the need for a large corpus and the time required to run the algorithm.

We conclude in Section 7.

PairClass was briefly introduced in Turney (2008b). The current paper de-

scribes PairClass in more detail, provides more background information and dis-

cussion, and brings the number of tests up from four to seven.

2 Analogy Perception

A lexical analogy, A:B::C:D, asserts that A is to B as C is to D; for example,

carpenter:wood::mason:stone asserts that carpenter is to wood as mason is to stone;
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that is, the semantic relations between carpenter and wood are highly similar to the

semantic relations between mason and stone. In this paper, we frame the task of

recognizing lexical analogies as a problem of classifying word pairs (see Table 1).

Word pair Class label

carpenter:wood artisan:material

mason:stone artisan:material

potter:clay artisan:material

glassblower:glass artisan:material

sun:planet orbited:orbiter

nucleus:electron orbited:orbiter

earth:moon orbited:orbiter

starlet:paparazzo orbited:orbiter

Table 1: Examples of how the task of recognizing lexical analogies may be viewed

as a problem of classifying word pairs.

We approach this task as a standard classification problem for supervised ma-

chine learning (Witten and Frank, 1999). PairClass takes as input a training set of

word pairs with class labels and a testing set of word pairs without labels. Each

word pair is represented as a vector in a feature space and a supervised learning al-

gorithm is used to classify the feature vectors. The elements in the feature vectors

are based on the frequencies of automatically defined patterns in a large corpus.

The output of the algorithm is an assignment of labels to the word pairs in the test-

ing set. For some of the following experiments, we select a unique label for each

word pair; for other experiments, we assign probabilities to each possible label for

each word pair.

For a given word pair, such as mason:stone, the first step is to generate mor-

phological variations, such as masons:stones. In the following experiments, we

use morpha (morphological analyzer) and morphg (morphological generator) for

morphological processing (Minnen et al., 2001).1

The second step is to search in a large corpus for phrases of the following

forms:

• “[0 to 1 words] X [0 to 3 words] Y [0 to 1 words]”

• “[0 to 1 words] Y [0 to 3 words] X [0 to 1 words]”

In these templates, X:Y consists of morphological variations of the given word

pair; for example, mason:stone, mason:stones, masons:stones, and so on. Typical

phrases for mason:stone would be “the mason cut the stone with” and “the stones

1http://www.informatics.susx.ac.uk/research/groups/nlp/carroll/morph.html.
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that the mason used”. We then normalize all of the phrases that are found, by using

morpha to remove suffixes.

The templates we use here are similar to those in Turney (2006), but we have

added extra context words before the first variable (X in the first template and Y

in the second) and after the second variable. Our morphological processing also

differs from Turney (2006). In the following experiments, we search in a corpus of

5×1010 words (about 280 GB of plain text), consisting of web pages gathered by a

web crawler.2 To retrieve phrases from the corpus, we use Wumpus (Büttcher and

Clarke, 2005), an efficient search engine for passage retrieval from large corpora.3

The next step is to generate patterns from all of the phrases that were found for

all of the input word pairs (from both the training and testing sets). To generate

patterns from a phrase, we replace the given word pairs with variables, X and Y ,

and we replace the remaining words with a wild card symbol (an asterisk) or leave

them as they are. For example, the phrase “the mason cut the stone with” yields

the patterns “the X cut * Y with”, “* X * the Y *”, and so on. If a phrase contains

n words, then it yields 2(n−2) patterns.

Each pattern corresponds to a feature in the feature vectors that we will gen-

erate. Since a typical input set of word pairs yields millions of patterns, we need

to use feature selection, to reduce the number of patterns to a manageable quan-

tity. For each pattern, we count the number of input word pairs that generated the

pattern. For example, “* X cut * Y *” is generated by both mason:stone and car-

penter:wood. We then sort the patterns in descending order of the number of word

pairs that generated them. If there are N input word pairs (and thus N feature

vectors, including both the training and testing sets), then we select the top kN

patterns and drop the remainder. In the following experiments, k is set to 20. The

algorithm is not sensitive to the precise value of k.

The reasoning behind the feature selection algorithm is that shared patterns

make more useful features than rare patterns. The number of features (kN ) de-

pends on the number of word pairs (N ), because, if we have more feature vectors,

then we need more features to distinguish them. Turney (2006) also selects pat-

terns based on the number of pairs that generate them, but the number of selected

patterns is a constant (8000), independent of the number of input word pairs.

The next step is to generate feature vectors, one vector for each input word

pair. Each of the N feature vectors has kN elements, one element for each se-

lected pattern. The value of an element in a vector is given by the logarithm of the

frequency in the corpus of the corresponding pattern for the given word pair. For

2The corpus was collected by Charles Clarke at the University of Waterloo. We can provide

copies of the corpus on request.
3http://www.wumpus-search.org/.
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example, suppose the given pair is mason:stone and the pattern is “* X cut * Y *”.

We look at the normalized phrases that we collected for mason:stone and we count

how many match this pattern. If f phrases match the pattern, then the value of this

element in the feature vector is log(f + 1) (we add 1 because log(0) is undefined).

Each feature vector is then normalized to unit length. The normalization ensures

that features in vectors for high-frequency word pairs are comparable to features in

vectors for low-frequency word pairs.

Table 2 shows the first and last ten features (excluding zero-valued features)

and the corresponding feature values for the word pair audacious:boldness, taken

from the SAT analogy questions. The features are in descending order of the num-

ber of word pairs that generate them; that is, they are ordered from common to

rare. Thus the first features typically involve patterns with many wild cards and

high-frequency words, and the first feature values are usually nonzero. The last

features often have few wild cards and contain low-frequency words, with feature

values that are usually zero. The feature vectors are generally highly sparse (i.e.,

they are mainly zeros; if f = 0, then log(f + 1) = 0).

Now that we have a feature vector for each input word pair, we can apply

a standard supervised learning algorithm. In the following experiments, we use

a sequential minimal optimization (SMO) support vector machine (SVM) with a

radial basis function (RBF) kernel (Platt, 1998), as implemented in Weka (Waikato

Environment for Knowledge Analysis) (Witten and Frank, 1999).4 The algorithm

generates probability estimates for each class by fitting logistic regression models

to the outputs of the SVM. We disable the normalization option in Weka, since the

vectors are already normalized to unit length. We chose the SMO RBF algorithm

because it is fast, robust, and it easily handles large numbers of features.

In the following experiments, PairClass is applied to each of the seven tests

with no adjustments or tuning of the learning parameters to the specific problems.

Some work is required to fit each problem into the general framework of PairClass

(analogy perception: supervised classification of word pairs), but the core algo-

rithm is the same in each case.

It might be objected that what PairClass does should not be considered as high-

level perception, in the sense given by Chalmers et al.. (1992). They define high-

level perception as follows:

Perceptual processes form a spectrum, which for convenience we can

divide into two components. ... [We] have low-level perception, which

involves the early processing of information from the various sensory

modalities. High-level perception, on the other hand, involves taking

4http://www.cs.waikato.ac.nz/ml/weka/.
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Feature number Feature (pattern) Value (normalized log)

1 “* X * * Y *” 0.090

2 “* Y * * X *” 0.150

3 “* X * Y *” 0.198

4 “* Y * X *” 0.221

5 “* X * * * Y *” 0.045

7 “* X Y *” 0.233

8 “* Y X *” 0.167

10 “* Y * the X *” 0.071

12 “* Y and * X *” 0.116

13 “* X and Y *” 0.135

27,591 “define X * Y *” 0.045

28,524 “what Y and X *” 0.045

28,804 “for Y and * X and” 0.045

29,017 “very X and Y *” 0.045

32,028 “s Y and X and” 0.045

34,893 “understand X * Y *” 0.071

35,027 “* X be not * Y but” 0.045

39,410 “* Y and X cause” 0.045

41,303 “* X but Y and” 0.105

43,511 “be X not Y *” 0.105

Table 2: The first and last ten features, excluding zero-valued features, for the pair

X:Y = audacious:boldness. (The “s” in the pattern for feature 32,028 is part of

a possessive noun. The “be” in the patterns for features 35,027 and 43,511 is the

result of normalizing “is” and “was” with morpha.)

a more global view of this information, extracting meaning from the

raw material by accessing concepts, and making sense of situations at

a conceptual level. This ranges from the recognition of objects to the

grasping of abstract relations, and on to understanding entire situations

as coherent wholes. ... The study of high-level perception leads us

directly to the problem of mental representation. Representations are

the fruits of perception.

Spoken or written language can be converted to electronic text by speech recog-

nition software or optical character recognition software. It seems reasonable to

call this low-level perception. PairClass takes electronic text as input and gener-

ates high-dimensional feature vectors from the text. These feature vectors represent

abstract semantic relations and they can be used to classify semantic relations into
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various semantic classes. It seems reasonable to call this high-level perception. We

do not claim that PairClass has the richness and complexity of human high-level

perception, but it is nonetheless a (simple, restricted) form of high-level perception.

3 Experiments

This section presents seven sets of experiments. We explain how each of the seven

tests is treated as a problem of analogy perception, we give the experimental results,

and we discuss past work with each test.

3.1 SAT Analogies

In this section, we apply PairClass to the task of recognizing lexical analogies. To

evaluate the performance, we use a set of 374 multiple-choice questions from the

SAT college entrance exam. Table 3 shows a typical question. The target pair is

called the stem. The task is to select the choice pair that is most analogous to the

stem pair.

Stem: mason:stone

Choices: (a) teacher:chalk

(b) carpenter:wood

(c) soldier:gun

(d) photograph:camera

(e) book:word

Solution: (b) carpenter:wood

Table 3: An example of a question from the 374 SAT analogy questions.

The problem of recognizing lexical analogies was first attempted with a system

called Argus (Reitman, 1965), using a small hand-built semantic network with a

spreading activation algorithm. Turney et al. (2003) used a combination of 13

independent modules. Veale (2004) used a spreading activation algorithm with

WordNet (in effect, treating WordNet as a semantic network). Turney (2005) used

a corpus-based algorithm.

We may view Table 3 as a binary classification problem, in which mason:stone

and carpenter:wood are positive examples and the remaining word pairs are nega-

tive examples. The difficulty is that the labels of the choice pairs must be hidden

from the learning algorithm. That is, the training set consists of one positive exam-

ple (the stem pair) and the testing set consists of five unlabeled examples (the five

choice pairs). To make this task more tractable, we randomly choose a stem pair
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from one of the 373 other SAT analogy questions, and we assume that this new

stem pair is a negative example, as shown in Table 4.

Word pair Train or test Class label

mason:stone train positive

tutor:pupil train negative

teacher:chalk test hidden

carpenter:wood test hidden

soldier:gun test hidden

photograph:camera test hidden

book:word test hidden

Table 4: How to fit a SAT analogy question into the framework of supervised

classification of word pairs. The randomly chosen stem pair is tutor:pupil.

To answer a SAT question, we use PairClass to estimate the probability that

each testing example is positive, and we guess the testing example with the highest

probability. Learning from a training set with only one positive example and one

negative example is difficult, since the learned model can be highly unstable. To

increase the stability, we repeat the learning process 10 times, using a different ran-

domly chosen negative training example each time. For each testing word pair, the

10 probability estimates are averaged together. This is a form of bagging (Breiman,

1996). Table 5 shows an example of an analogy that has been correctly solved by

PairClass.

Stem: insubordination:punishment Probability

Choices: (a) evening:night 0.236

(b) earthquake:tornado 0.260

(c) candor:falsehood 0.391

(d) heroism:praise 0.757

(e) fine:penalty 0.265

Solution: (d) heroism:praise 0.757

Table 5: An example of a correctly solved SAT analogy question.

PairClass attains an accuracy of 52.1% on the 374 SAT analogy questions. The

best previous result is an accuracy of 56.1% (Turney, 2005). Random guessing

would yield an accuracy of 20% (five choices per question). The average senior

high school student achieves 57% correct (Turney, 2006). The ACL Wiki lists 12
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previously published results with the 374 SAT analogy questions.5 Adding Pair-

Class to the list, we have 13 results. PairClass has the third highest accuracy of the

13 systems.

3.2 TOEFL Synonyms

Now we apply PairClass to the task of recognizing synonyms, using a set of 80

multiple-choice synonym questions from the TOEFL (test of English as a foreign

language). A sample question is shown in Table 6. The task is to select the choice

word that is most similar in meaning to the stem word.

Stem: levied

Choices: (a) imposed

(b) believed

(c) requested

(d) correlated

Solution: (a) imposed

Table 6: An example of a question from the 80 TOEFL synonym questions.

Synonymy can be viewed as a high degree of semantic similarity. The most

common way to measure semantic similarity is to measure the distance between

words in WordNet (Resnik, 1995; Jiang and Conrath, 1997; Hirst and St-Onge,

1998; Budanitsky and Hirst, 2001). Corpus-based measures of word similarity are

also common (Lesk, 1969; Landauer and Dumais, 1997; Turney, 2001).

We may view Table 6 as a binary classification problem, in which the pair

levied:imposed is a positive example of the class synonymous and the other possible

pairings are negative examples, as shown in Table 7.

Word pair Class label

levied:imposed positive

levied:believed negative

levied:requested negative

levied:correlated negative

Table 7: How to fit a TOEFL synonym question into the framework of supervised

classification of word pairs.

5For more information, see SAT Analogy Questions (State of the art) at http://aclweb.org/aclwiki/.

There were 12 previous results at the time of writing, but the list is likely to grow.
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The 80 TOEFL questions yield 320 (80×4) word pairs, 80 labeled positive and

240 labeled negative. We apply PairClass to the word pairs using ten-fold cross-

validation. In each random fold, 90% of the pairs are used for training and 10%

are used for testing. For each fold, we use the learned model to assign probabilities

to the testing pairs. Our guess for each TOEFL question is the choice that has the

highest probability of being positive, when paired with the corresponding stem.

Table 8 gives an example of a correctly solved question.

Stem: prominent Probability

Choices: (a) battered 0.005

(b) ancient 0.114

(c) mysterious 0.010

(d) conspicuous 0.998

Solution: (d) conspicuous 0.998

Table 8: An example of a correctly solved TOEFL synonym question.

PairClass attains an accuracy of 76.2%. For comparison, the ACL Wiki lists

15 previously published results with the 80 TOEFL synonym questions.6 Adding

PairClass to the list, we have 16 algorithms. PairClass has the ninth highest accu-

racy of the 16 systems. The best previous result is an accuracy of 97.5% (Turney et

al., 2003), obtained using a hybrid of four different algorithms. Random guessing

would yield an accuracy of 25% (four choices per question). The average foreign

applicant to a US university achieves 64.5% correct (Landauer and Dumais, 1997).

3.3 ESL Synonyms

The 50 ESL synonym questions are similar to the TOEFL synonym questions,

except that each question includes a sentence that shows the stem word in context.

Table 9 gives an example. In our experiments, we ignore the sentence context and

treat the ESL synonym questions the same way as we treated the TOEFL synonym

questions (see Table 10).

The 50 ESL questions yield 200 (50 × 4) word pairs, 50 labeled positive and

150 labeled negative. We apply PairClass to the word pairs using ten-fold cross-

validation. Our guess for each question is the choice word that has the highest

probability of being positive, when paired with the corresponding stem word.

PairClass attains an accuracy of 78.0%. The best previous result is 82.0% (Jar-

masz and Szpakowicz, 2003). The ACL Wiki lists 8 previously published results

6See TOEFL Synonym Questions (State of the art) at http://aclweb.org/aclwiki/. There were 15

systems at the time of writing, but the list is likely to grow.
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Stem: “A rusty nail is not as

strong as a clean, new one.”
Choices: (a) corroded

(b) black

(c) dirty

(d) painted

Solution: (a) corroded

Table 9: An example of a question from the 50 ESL synonym questions.

Word pair Class label

rusty:corroded positive

rusty:black negative

rusty:dirty negative

rusty:painted negative

Table 10: How to fit an ESL synonym question into the framework of supervised

classification of word pairs.

for the 50 ESL synonym questions.7 Adding PairClass to the list, we have 9 al-

gorithms. PairClass has the third highest accuracy of the 9 systems. The average

human score is unknown. Random guessing would yield an accuracy of 25% (four

choices per question).

3.4 ESL Synonyms and Antonyms

The task of classifying word pairs as either synonyms or antonyms readily fits into

the framework of supervised classification of word pairs. Table 11 shows some

examples from a set of 136 ESL (English as a second language) practice questions

that we collected from various ESL websites.

Hatzivassiloglou and McKeown (1997) propose that antonyms and synonyms

can be distinguished by their semantic orientation. A word that suggests praise

has a positive semantic orientation, whereas criticism is negative semantic orien-

tation. Antonyms tend to have opposite semantic orientation (fast:slow is posi-

tive:negative) and synonyms tend to have the same semantic orientation (fast:quick

is positive:positive). However, this proposal has not been evaluated, and it is not

difficult to find counter-examples (simple:simplistic is positive:negative, yet the

words are synonyms, rather than antonyms).

7See ESL Synonym Questions (State of the art) at http://aclweb.org/aclwiki/. There were 8 sys-

tems at the time of writing, but the list is likely to grow.
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Word pair Class label

galling:irksome synonyms

yield:bend synonyms

naive:callow synonyms

advise:suggest synonyms

dissimilarity:resemblance antonyms

commend:denounce antonyms

expose:camouflage antonyms

unveil:veil antonyms

Table 11: Examples of synonyms and antonyms from 136 ESL practice questions.

Lin et al. (2003) distinguish synonyms from antonyms using two patterns,

“from X to Y ” and “either X or Y ”. When X and Y are antonyms, they occa-

sionally appear in a large corpus in one of these two patterns, but it is very rare

for synonyms to appear in these patterns. Our approach is similar to Lin et al.

(2003), but we do not rely on hand-coded patterns; instead, PairClass patterns are

generated automatically.

Using ten-fold cross-validation, PairClass attains an accuracy of 75.0%. Al-

ways guessing the majority class would result in an accuracy of 65.4%. The aver-

age human score is unknown and there are no previous results for comparison.

3.5 CL Synonyms and Antonyms

To compare PairClass with the algorithm of Lin et al. (2003), this experiment uses

their set of 160 word pairs, 80 labeled synonym and 80 labeled antonym. These

160 pairs were chosen by Lin et al. (2003) for their high frequency; thus they are

somewhat easier to classify than the 136 ESL practice questions. Some examples

are given in Table 12.

Lin et al. (2003) report their performance using precision (86.4%) and recall

(95.0%), instead of accuracy, but an accuracy of 90.0% can be derived from their

figures, with some minor algebraic manipulation. Using ten-fold cross-validation,

PairClass has an accuracy of 81.9%. Random guessing would yield an accuracy of

50%. The average human score is unknown.

3.6 Similar, Associated, and Both

A common criticism of corpus-based measures of word similarity (as opposed to

lexicon-based measures) is that they are merely detecting associations (co-occur-

rences), rather than actual semantic similarity (Lund et al., 1995). To address this
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Word pair Class label

audit:review synonyms

education:tuition synonyms

location:position synonyms

material:stuff synonyms

ability:inability antonyms

balance:imbalance antonyms

exaggeration:understatement antonyms

inferiority:superiority antonyms

Table 12: Examples of synonyms and antonyms from 160 labeled pairs for experi-

ments in computational linguistics (CL).

criticism, Lund et al. (1995) evaluated their algorithm for measuring word simi-

larity with word pairs that were labeled similar, associated, or both. These labeled

pairs were originally created for cognitive psychology experiments with human

subjects (Chiarello et al., 1990). Table 13 shows some examples from this collec-

tion of 144 word pairs (48 pairs in each of the three classes).

Word pair Class label

table:bed similar

music:art similar

hair:fur similar

house:cabin similar

cradle:baby associated

mug:beer associated

camel:hump associated

cheese:mouse associated

ale:beer both

uncle:aunt both

pepper:salt both

frown:smile both

Table 13: Examples of word pairs labeled similar, associated, or both.

Lund et al. (1995) did not measure the accuracy of their algorithm on this

three-class classification problem. Instead, following standard practice in cognitive

psychology, they showed that their algorithm’s similarity scores for the 144 word

pairs were correlated with the response times of human subjects in priming tests.

In a typical priming test, a human subject reads a priming word (cradle) and is then
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asked to complete a partial word (complete bab as baby) or to distinguish a word

(baby) from a non-word (baol). The time required to perform the task is taken to

indicate the strength of the cognitive link between the two words (cradle and baby).

Using ten-fold cross-validation, PairClass attains an accuracy of 77.1% on the

144 word pairs. Since the three classes are of equal size, guessing the majority

class and random guessing both yield an accuracy of 33.3%. The average human

score is unknown and there are no previous results for comparison.

3.7 Noun-Modifier Relations

A noun-modifier expression is a compound of two (or more) words, a head noun

and a modifier of the head. The modifier is usually a noun or adjective. For ex-

ample, in the noun-modifier expression student discount, the head noun discount is

modified by the noun student.

Noun-modifier expressions are very common in English. There is wide varia-

tion in the types of semantic relations between heads and modifiers. A challenging

task for natural language processing is to classify noun-modifier pairs according

to their semantic relations. For example, in the noun-modifier expression electron

microscope, the relation might be theme:tool (a microscope for electrons; perhaps

for viewing electrons), instrument:agency (a microscope that uses electrons), or

material:artifact (a microscope made out of electrons).8 There are many poten-

tial applications for algorithms that can automatically classify noun-modifier pairs

according to their semantic relations.

Nastase and Szpakowicz (2003) collected 600 noun-modifier pairs and hand-

labeled them with 30 different classes of semantic relations. The 30 classes were

organized into five groups: causality, temporality, spatial, participant, and quality.

Due to the difficulty of distinguishing 30 classes, most researchers prefer to treat

this as a five-class classification problem. Table 14 shows some examples of noun-

modifier pairs with the five-class labels.

The design of the PairClass algorithm is closely related to past work on the

problem of classifying noun-modifier semantic relations, so we will examine this

past work in more detail than in our discussions of related work for the other six

tests. Section 5 will focus on the relation between PairClass and past work on

semantic relation classification.

Using ten-fold cross-validation, PairClass achieves an accuracy of 58.0% on

the task of classifying the 600 noun-modifier pairs into five classes. The best pre-

vious result was also 58.0% (Turney, 2006). The ACL Wiki lists 5 previously pub-

8The correct answer is instrument:agency.
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Word pair Class label

cold:virus causality

onion:tear causality

morning:frost temporality

late:supper temporality

aquatic:mammal spatial

west:coast spatial

dream:analysis participant

police:intervention participant

copper:coin quality

rice:paper quality

Table 14: Examples of noun-modifier word pairs labeled with five semantic rela-

tions.

lished results with the 600 noun-modifier pairs.9 Adding PairClass to the list, we

have 6 algorithms. PairClass ties for first place in the set of 6 systems. Guessing

the majority class would result in an accuracy of 43.3%. The average human score

is unknown.

4 Discussion

The seven experiments are summarized in Tables 15 and 16. For the five experi-

ments for which there are previous results, PairClass is not the best, but it performs

competitively. For the other two experiments, PairClass performs significantly

above the baselines. However, the strength of this approach is not its performance

on any one task, but the range of tasks it can handle. No other algorithm has been

applied to this range of lexical semantic problems.

Of the seven tests we use here, as far as we know, only the noun-modifier re-

lations have been approached using a standard supervised learning algorithm. For

the other six tests, PairClass is the first attempt to apply supervised learning.10 The

advantage of being able to cast these six problems in the framework of standard

supervised learning problems is that we can now exploit the huge literature on su-

pervised learning. Past work on these problems has required implicitly coding our

9See Noun-Modifier Semantic Relations (State of the art) at http://aclweb.org/aclwiki/. There

were 5 systems at the time of writing, but the list is likely to grow.
10Turney et al. (2003) apply something like supervised learning to the SAT analogies and TOEFL

synonyms, but it would be more accurate to call it reinforcement learning, rather than standard su-

pervised learning.
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Experiment Vectors Features Classes

SAT Analogies 2,244 44,880 374

TOEFL Synonyms 320 6,400 2

ESL Synonyms 200 4,000 2

ESL Synonyms and Antonyms 136 2,720 2

CL Synonyms and Antonyms 160 3,200 2

Similar, Associated, and Both 144 2,880 3

Noun-Modifier Relations 600 12,000 5

Table 15: Summary of the seven tasks. See Section 3 for explanations. The number

of features is 20 times the number of vectors, as mentioned in Section 2. For SAT

Analogies, the number of vectors is 374 × 6. For TOEFL Synonyms, the number

of vectors is 80 × 4. For ESL Synonyms, the number of vectors is 50 × 4.

Experiment Accuracy Best previous Baseline Rank

SAT Analogies 52.1% 56.1% 20.0% 3 of 13

TOEFL Synonyms 76.2% 97.5% 25.0% 9 of 16

ESL Synonyms 78.0% 82.0% 25.0% 3 of 9

ESL Synonyms and Antonyms 75.0% - 65.4% -

CL Synonyms and Antonyms 81.9% 90.0% 50.0% 2 of 2

Similar, Associated, and Both 77.1% - 33.3% -

Noun-Modifier Relations 58.0% 58.0% 43.3% 1 of 6

Table 16: Summary of experimental results. See Section 3 for explanations. For

the Noun-Modifier Relations, PairClass is tied for first place.

knowledge of the nature of the task into the structure of the algorithm. For ex-

ample, the structure of the algorithm for latent semantic analysis (LSA) implicitly

contains a theory of synonymy (Landauer and Dumais, 1997). The problem with

this approach is that it can be very difficult to work out how to modify the algo-

rithm if it does not behave the way we want. On the other hand, with a supervised

learning algorithm, we can put our knowledge into the labeling of the feature vec-

tors, instead of putting it directly into the algorithm. This makes it easier to guide

the system to the desired behaviour.

Humans are able to make analogies without supervised learning. It might be ar-

gued that the requirement for supervision is a major limitation of PairClass. How-

ever, with our approach to the SAT analogy questions (see Section 3.1), we are

blurring the line between supervised and unsupervised learning, since the train-

ing set for a given SAT question consists of a single real positive example (and

a single “virtual” or “simulated” negative example). In effect, a single example
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(such as mason:stone in Table 4) becomes a sui generis; it constitutes a class of

its own. It may be possible to apply the machinery of supervised learning to other

problems that apparently call for unsupervised learning (for example, clustering or

measuring similarity), by using this sui generis device.

5 Related Work

One of the first papers using supervised machine learning to classify word pairs

was Rosario and Hearst’s (2001) paper on classifying noun-modifier pairs in the

medical domain. For example, the noun-modifier expression brain biopsy was

classified as Procedure. Rosario and Hearst (2001) constructed feature vectors

for each noun-modifier pair using MeSH (Medical Subject Headings) and UMLS

(Unified Medical Language System) as lexical resources. They then trained a neu-

ral network to distinguish 13 classes of semantic relations, such as Cause, Loca-

tion, Measure, and Instrument. Nastase and Szpakowicz (2003) explored a similar

approach to classifying general-domain noun-modifier pairs, using WordNet and

Roget’s Thesaurus as lexical resources.

Turney and Littman (2005) used corpus-based features for classifying noun-

modifier pairs. Their features were based on 128 hand-coded patterns. They used

a nearest-neighbour learning algorithm to classify general-domain noun-modifier

pairs into 30 different classes of semantic relations. Turney (2005; 2006) later

addressed the same problem using 8000 automatically generated patterns.

One of the tasks in SemEval 2007 was the classification of semantic relations

between nominals (Girju et al., 2007).11 The problem is to classify semantic rela-

tions between nominals (nouns and noun compounds) in the context of a sentence.

The task attracted 14 teams who created 15 systems, all of which used supervised

machine learning with features that were lexicon-based, corpus-based, or both.

PairClass is most similar to the algorithm of Turney (2006), but it differs in the

following ways:

• PairClass does not use a lexicon to find synonyms for the input word pairs.

One of our goals in this paper is to show that a pure corpus-based algorithm

can handle synonyms without a lexicon. This considerably simplifies the

algorithm.

• PairClass uses a support vector machine (SVM) instead of a nearest neigh-

bour (NN) learning algorithm.

11SemEval 2007 was the Fourth International Workshop on Semantic Evaluations. More in-

formation on Task 4, the classification of semantic relations between nominals, is available at

http://purl.org/net/semeval/task4.
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• PairClass does not use the singular value decomposition (SVD) to smooth

the feature vectors. It has been our experience that SVD is not necessary

with SVMs.

• PairClass generates probability estimates, whereas Turney (2006) uses a co-

sine measure of similarity. Probability estimates can be readily used in fur-

ther downstream processing, but cosines are less useful.

• The automatically generated patterns in PairClass are slightly more general

than the patterns of Turney (2006), as mentioned in Section 2.

• The morphological processing in PairClass (Minnen et al., 2001) is more

sophisticated than in Turney (2006).

However, we believe that the main contribution of this paper is not PairClass itself,

but the extension of supervised word pair classification beyond the classification of

noun-modifier pairs and semantic relations between nominals, to analogies, syn-

onyms, antonyms, and associations. As far as we know, this has not been done

before.

6 Limitations and Future Work

The main limitation of PairClass is the need for a large corpus. Phrases that contain

a pair of words tend to be more rare than phrases that contain either of the members

of the pair, thus a large corpus is needed to ensure that sufficient numbers of phrases

are found for each input word pair. The size of the corpus has a cost in terms of disk

space and processing time. In the future, as hardware improves, this will become

less of an issue, but there may be ways to improve the algorithm, so that a smaller

corpus is sufficient.

Human language can be creatively extended as needed. Given a newly-defined

word, a human would be able to use it immediately in an analogy. Since PairClass

requires a large number of phrases for each pair of words, it would be unable

to handle a newly-defined word. A problem for future work is the extension of

PairClass, so that it is able to work with definitions of words. One approach is

a hybrid algorithm that combines a corpus-based algorithm with a lexicon-based

algorithm. For example, Turney et al. (2003) describe an algorithm that combines

13 different modules for solving proportional analogies with words.

7 Conclusion

The PairClass algorithm classifies word pairs according to their semantic relations,

using features generated from a large corpus of text. We describe PairClass as
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performing analogy perception, because it recognizes lexical proportional analo-

gies using a form of high-level perception (Chalmers et al., 1992). For given in-

put training and testing sets of word pairs, it automatically generates patterns and

constructs its own representations of the word pairs as high-dimensional feature

vectors. No hand-coding of representations is involved.

We believe that analogy perception provides a unified approach to natural lan-

guage processing for a wide variety of lexical semantic tasks. We support this

by applying PairClass to seven different tests of word comprehension. It achieves

competitive performance on the tests, although it is competing with algorithms that

were developed for single tasks. More significant is the range of tasks that can be

framed as problems of analogy perception.

The idea of subsuming a broad range of semantic phenomena under analogies

has been suggested by many researchers (Minsky, 1986; Gentner, 2003; Hofstadter,

2007). In computational lingistics, analogical algorithms have been applied to ma-

chine translation (Lepage and Denoual, 2005), morphology (Lepage, 1998), and

semantic relations (Turney and Littman, 2005). Analogy provides a framework

that has the potential to unify the field of semantics. This paper is a small step

towards that goal.

In this paper, we have used tests from educational testing (SAT analogies and

TOEFL synonyms), second language practice (ESL synonyms and ESL synonym

and antonyms), computational linguistics (CL synonyms and antonyms and noun-

modifiers), and cognitive psychology (similar, associated, and both). Six of the

tests have been used in previous research and four of the tests have associated per-

formance results and bibliographies in the ACL Wiki. Shared tests make it possible

for researchers to compare their algorithms and assess the progress of the field.

Applying human tests to machines is a natural way to evaluate progress in AI.

Five of the seven tests were originally developed for humans. For the SAT and

TOEFL tests, the average human scores are available. On the SAT test, PairClass

has an accuracy of 52.1%, with a 95% confidence interval ranging from 46.9% to

57.3% (using the Binomial Exact test). The average senior high school student

applying to a US university achieves 57% (Turney, 2006), which is within the 95%

confidence interval for PairClass. On the TOEFL synonym test, PairClass has an

accuracy of 76.2%, with a 95% confidence interval ranging from 65.4% to 85.1%

(using the Binomial Exact test). The average foreign applicant to a US university

achieves 64.5% (Landauer and Dumais, 1997), which is below the 95% confidence

interval for PairClass. Thus PairClass performance on SAT is not significantly

different from average human performance, and PairClass performance on TOEFL

is significantly better than average human performance.

One criticism of AI as a field is that its success stories are limited to narrow

domains, such as chess. Human intelligence has a generality and flexibility that
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AI currently lacks. This paper is a tiny step towards the goal of performing com-

petively on a wide range of tests, rather than performing very well on a single test.
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