
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Interactive Technology and Smart Education, 2, 3, pp. 171-178, 2005-08-31

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=8db0bd01-e3ac-4df3-8316-5f2eb719c395

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8db0bd01-e3ac-4df3-8316-5f2eb719c395

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1108/17415650580000042

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A match-making system for learners and learning objects
Boley, Harold; Bhavsar, Virenda; Hirtle, D.; Singh, A.; Sun, Z.; Yang, L.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Match-Making System for Learners and

Learning Objects *

Boley, H., Bhavsar, V.C., Hirtle, D., Singh, A., Sun, Z., and
Yang, L.
August 2005

* published in The International Journal of Interactive Technology and

Smart Education, 2 (3). Troubador Publ., Leicester, UK. August 2005.

pp. 171-178. NRC 48538.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

1

A Match-Making System for Learners and Learning Objects

Harold Boley
1
, Virendrakumar C. Bhavsar

2
, David Hirtle

2
,

Anurag Singh
2
, Zhongwei Sun

2
, and Lu Yang

2

1
Institute for Information Technology - e-Business, National Research Council of Canada (NRC)

46 Dineen Drive, Fredericton, NB E3B 9W4, Canada

harold.boley AT nrc-cnrc.gc.ca
2
Faculty of Computer Science, University of New Brunswick, P.O. Box 4400,540 Windsor Street

Gillin Hall, Fredericton, NB, E3B 5A3, Canada

{bhavsar, david.hirtle, anurag.singh, e28a1, o6c11} AT unb.ca

Abstract

We have proposed and implemented AgentMatcher, an architecture for match-making in

e-Business applications. It uses arc-labeled and arc-weighted trees to match buyers and

sellers via our novel similarity algorithm. This paper adapts the architecture for match-

making between learners and learning objects (LOs). It uses the Canadian Learning

Object Metadata (CanLOM) repository of the eduSource e-Learning project. Through

AgentMatcher’s new indexing component, known as Learning Object Metadata

Generator (LOMGen), metadata is extracted from HTML LOs for use in CanLOM.

LOMGen semi-automatically generates the LO metadata by combining a word frequency

count and dictionary lookup. A subset of these metadata terms can be selected from a

query interface, which permits adjustment of weights that express user preferences. Web-

based prefiltering is then performed over the CanLOM metadata kept in a relational

database. Using an XSLT (Extensible Stylesheet Language Transformations) translator,

the prefiltered result is transformed into an XML representation, called Weighted Object-

Oriented (WOO) RuleML (Rule Markup Language). This is compared to the WOO

RuleML representation obtained from the query interface by AgentMatcher’s core

Similarity Engine. The final result is presented as a ranked LO list with a user-specified

threshold.

Keywords: AgentMatcher, CanLOM, e-Business, e-Learning, Learning Objects, match-

making, metadata, metadata generator, RuleML

1. INTRODUCTION

We have developed the AgentMatcher system [Sarno et al. 2003] for match-making

between buyer and seller agents. The present paper describes the application of this

system for searching procurable learning objects (LOs) in an e-Learning environment.

Keywords and keyphrases are often used to describe LOs as well as learner queries in

such environments. However, such a flat representation does not lend itself to

hierarchical LO matching enabled by the Learning Object Metadata (LOM) standard and

is also not likely to reflect user preferences about the relative importance or weighting of

2

the parts of a LOM description. AgentMatcher takes into account both of these

dimensions — hierarchical matching and differential weighting — via tree-structured

descriptions with arc weights for the queries, enhancing the precision of LO retrieval.

In this paper we describe the Java-based AgentMatcher match-making architecture as

applied to the XML-based Canadian Learning Object Metadata (CanLOM) repository of

the Canadian eduSource project [eduSource 2004]. The CanLOM repository is built using

the LOM standard specified by the CanCore [CanCore 2004] guidelines. The Learning

Object Metadata Generator (LOMGen) extracts CanCore metadata from HTML LOs in

the domain of ‘Computing’, speeding up the process of metadata generation [Singh et al.

2004]. LOMGen-extracted terms are offered to learners for selection from a query

interface that permits convenient entry of relevant tree components and weights. Web-

based prefiltering is then performed over the CanLOM metadata kept in the relational

database of the KnowledgeAgora e-Learning repository of TeleEducation New

Brunswick (TeleEd). The prefiltered result is transformed to Weighted Object-Oriented

(WOO) RuleML [Boley 2003] via an XML-to-XML translator. Finally, this is compared

to the WOO RuleML-serialised tree obtained from the query interface using the weighted

tree similarity algorithm [Bhavsar et al. 2004] embedded in the AgentMatcher Similarity

Engine, and a percentage-ranked LO list is presented to the learner.

2. OVERVIEW

The AgentMatcher architecture can be applied to match-making [Sycara et al. 2001]

between buyer and seller agents in e-Business, e-Learning and other environments. The

core engine of AgentMatcher performs similarity computation between metadata

descriptions carried by buyer and seller agents. In the AgentMatcher instantiation for e-

Learning, "buyers" are learners and "sellers" are learning object (LO) providers. We use

the guidelines specified by CanCore to describe LOs. Thus, the match-making between

buyer and seller agents corresponds to the matching of learner queries and CanCore

descriptions.

The architecture of the AgentMatcher as adapted to e-Learning is depicted in Fig. 1,

showing the top-level retrieval and indexing components.

3

Figure 1. The AgentMatcher architecture.

There are three retrieval components: the User Interface, Similarity Engine and

Translator. The LOM Generator (LOMGen) in parallel performs indexing to support

retrieval. Each of these four major components of the system is detailed in the ensuing

sections.

Prefilter parameter

(Query URI)
Index ing Components

Similarity

 Engine

 (Java)

Translator

 (XSLT)
CANLOM

(XML)

Prefilter

(SQL)

LOMGen

(Java)
 LOR

 (HTML)

End

user

Administrator

user

input

WOO RuleML

f ile

Recommended

results

HTML

f iles
part ial CanCore

f iles
CanCore

 f iles

prefiltered

CanCore f iles
WOO

RuleML f iles

 DATABASE

 (Access)

 UI

(Java)

Keyword Table

Administ rator

input

 Search

 Results

Retrieval Components

Components developed by TeleEd or

a third party

Dataflow between TeleEd

and UNB/ NRC

Dataflow realized by UNB

Dataflow realized by TeleEd

Components developed by UNB/ NRC

4

3. USER INTERFACE

The user interface permits a user to enter as well as assign weights to search parameters

and retrieve ranked search results in a new browser window.

5

Figure 2. Search screen of the user interface.

As shown in Fig. 2, the search screen is split into multiple boxes reflecting the top-level

branches (‘General’, ‘Classification’, etc.) of the query tree structure; each of these boxes

contains one or more search parameters chosen from the same category as found in the

CanCore schema. Accompanying each search parameter is a slider, permitting the user to

input not only the parameter but also its corresponding weight. This weight indicates the

importance of a parameter to the user relative to other parameters within the same

category. All the weights within one box are constrained to add up to 1.0. The user is also

able to input a threshold for the search result recommendations, causing all the LOs with

a similarity value above the threshold to be considered as the recommendations.

6

After the user submits the advanced search request, the internal functions will be invoked

according to the dataflow in Fig. 1. First of all, a Weighted Object-Oriented RuleML

(WOO RuleML) parameter file (hereafter referred to as user.xml) is generated by the

user interface. WOO RuleML is the format required by the Similarity Engine. Then

selected search parameters are sent via a query URI to the KnowledgeAgora database

server for pre-filtering, using the database query functionality to select relevant LOs by

examining their Learning Object Metadata (LOM). The response from KnowledgeAgora

is parsed into multiple XML files. These files are translated by the Translator into WOO

RuleML files and passed to the Similarity Engine. At this point, the user.xml file is

compared with each of the LOM files translated into WOO RuleML. The final result of

the similarity computations is then displayed as a list of LOs ranked according to their

similarity to the original search parameters entered by the user (see Section 5). Only

those LOs with similarities above the threshold are recommended to the user.

4. TRANSLATOR

The translator is responsible for translating the pre-filtered LOM files from the CanLOM

repository into Weighted Object-Oriented RuleML, required by the Similarity Engine. It

defaults LOM weights to equal values (up to rounding) on all tree levels, since this e-

Learning application of AgentMatcher uses proper weights only for the query trees.

The (abbreviated) sample illustrated in Fig. 3 demonstrates the mapping between the two

formats. Extensible Stylesheet Language Transformations (XSLT), a W3C recommended

language for transforming XML documents into other XML documents, is used to

accomplish this mapping. Additional information about this translation process is

available in a separate report [Hirtle and Sun 2003]. When translation is complete, the

resulting WOO RuleML files are passed to the Similarity Engine for comparison to the

WOO RuleML representation of the search parameters specified by the user.

<lom>

 <general>

 ...

 <title>

 <string>

 Introduction to Databases

 </string>

 </title>

 ...

 </general>

 ...
</lom>

<Cterm>

 <Ctor>lom</Ctor>

 ...

 <slot weight="0.16667">

 <Ind>general</Ind>

 <Cterm>

 <Ctor>general_set</Ctor>

 ...

 <slot weight="0.33333">

 <Ind>title</Ind>

 <Ind>

 Introduction to Databases

 </Ind>

 </slot>

 ...

 </Cterm>

 </slot>

 ...

</Cterm>

WOO RuleMLCanLOM XML

7

Figure 3. Mapping from CanLOM XML to WOO RuleML.

5. SIMILARITY ENGINE

The Similarity Engine is responsible for computing the similarity between the query file and

prefiltered LOM files using our tree similarity algorithm [Bhavsar et al. 2004]. It constructs a

ranked list of search results and displays it in a browser window.

As shown in Fig. 4, the inputs of the Similarity Engine are the query file user.xml

generated from the user interface (as discussed in Section 3) and the translated LOM files (as

discussed in Section 4). We use our tree similarity algorithm, embedded in the Similarity

Engine, to compute, one by one, similarity values between the query and each LOM. Due to

our unique tree representation for learners and learning objects, our tree similarity algorithm

is quite different from previous work [Liu and Geiger 1999] [Wang et al. 1998]. These

similarity values are constrained to the real interval [0.0, 1.0].

Figure 4. Inputs of the Similarity Engine.

After computing the similarity between the query and LOMs, the Similarity Engine ranks all

of the LOs in descending order of similarity, graphically separating those results whose

similarity values fall below the threshold. The user will find on the top of the list the LOM

that has the highest similarity value with his/her query.

Translated LOMs (XML files):

Query (XML File)

generated from the user

interface:
 Similarity

Engine

 LOM 1

 LOM n

Query LOM 2

8

Figure 5. Snapshot of search results (low threshold).

Fig. 5 shows the HTML output for a relatively low threshold of 0.86. There are four columns

in the result table: Rank, Similarity, LOMs and LOs. The rank represents the descending

similarity order of the LOs, where highest rank corresponds to the highest similarity value.

The similarity values are displayed in the second column. The LOMs and LOs are shown in

the final two columns; clicking the link of a LOM record (e.g. WOORuleML10.xml)

displays the metadata (in XML format) corresponding to the LO. The “Go to the website”

links in the last column point to organizations’ websites that give the content of LOs.

Besides showing the search results above the threshold, we also show those that are below

the threshold in case some users want to see more LOMs and LOs. Links for these results are

displayed in white.

9

Figure 6. Snapshot of search results (high threshold).

Sometimes a user may input a similarity threshold that is too high, resulting in a failed search.

In this case, we do not direct users back to the search screen to adjust the threshold, but

instead give users warning that their threshold is too high and still show all the search results

that are below the threshold. Fig. 6 shows the search results in such a situation. Of course, if

users want to change inputs (e.g., keywords), they have to go back to the interface to input

again.

10

Free text (stop

words eliminated)

Most Frequent

Terms

6. LOM GENERATOR (LOMGen)

The process of manually entering metadata to describe an LO is a time-consuming

process. It generally requires the metadata administrator/author to be intimately familiar

with the LO content. A semi-automated process which extracts information from the LO

can alleviate the difficulties associated with this time-consuming process. LOMGen aims

at automating the metadata extraction process with minimal user intervention.

LOMGen works with LOs constituted as HTML files. LOMGen uses the Free Online

Dictionary of Computing (FOLDOC) to generate keywords and keyphrases from an LO.

The use of FOLDOC currently restricts LOMGen applicability to LOs in the domain of

‘Computing’.

As shown in Fig. 7, the LOMGen architecture consists mainly of an HTML file reader

module (which reads an LO file from a URI), an HTML parser, a word frequency

counter, a database interface module, and an XML file writer (which updates the

metadata repository with a newly generated LOM file).

Figure 7. LOMGen architecture.

CANLOM

Metadata

Repository

Learning Object

Repository (LOR)

HTML Parser

Frequency Counter

 Synonym/Related

 Terms Finder

XML Generator

Updated

XML file

Keywords/Keyphrases

 Database

(Derived from FOLDOC)

Metadata Administrator

Validated

XML file

1. Prompts administrator to select relevant

keyphrases and add more if required

1 2

2. Administrator provides new keyphrases if

required. The vocabulary gets updated with

additional terms as more LOs are parsed

retrieve

update

Extracted keyphrases, description, and title

Uses template,

updates general

identifier

Fills in remaining

tag values

Retrieved

HTML file

from LOR

CANLOM

XML file

 template

HTML file

(URI)

11

LOMGen obtains the most frequent words and phrases from the content of the LO. In

addition, FOLDOC is referenced to find terms related to ‘Computing’ present in the LO.

In order to get relevant results, frequently occurring stop words such as "is", "are", "the",

and "in" are eliminated. The result is combined with information found in the HTML

"meta" tags and additional keyphrases (which may not be present in the LO) are

generated with the help of FOLDOC. These keyphrases are obtained by looking up

synonyms and related terms for words or phrases. All these words and phrases are

presented to the metadata administrator through the LOMGen Graphical User Interface

(GUI) for keyphrase selection as well as synonym and term addition. The updates made

by the administrator are stored in the keywords/keyphrases database. The newly added

terms are considered to provide better choices to the metadata administrator when

processing similar LOs.

A snapshot of the GUI presented to the metadata administrator is shown in Fig. 8. The

GUI presents a list of keywords and keyphrases that were extracted or derived from the

LO. The checkboxes present under the title “KEYPHRASE” allow the metadata

administrator to select the most important keywords or keyphrases. The textboxes under

“ADD SYNONYMS” allow the administrator to add alternate but similar terms

corresponding to the keyphrase on the left. As the metadata administrator selects

keyphrases in the GUI, the domain term dropdown listbox gets populated with the

domains for those choices. These domain terms are obtained from FOLDOC. The

metadata administrator selects the most relevant domain and FOLDOC is used to derive a

hierarchy for classifying the LO.

If an LO lacks sufficient information in the text and HTML metatags, the quality of the

keywords or keyphrases extracted by LOMGen may not be satisfactory. In such a

scenario, the GUI enables the administrator to add more terms explicitly to describe the

LO.

Finally, clicking the “OK” button generates a LOM file and posts it to the CanLOM

repository through a standard interface for posting XML files (provided by CanLOM).

12

Figure 8. GUI for keyphrase selection.

The LOMGen component can be used as a training module for a text summarizer that

uses machine learning techniques, with the intention of eliminating many of the

administrator inputs.

7. CONCLUSION AND FUTURE WORK

The AgentMatcher match-making system is applied to e-Learning, where learners are in

search of procurable LOs. The resulting Java-based architecture takes advantage of the

added expressiveness obtained from tree-based matching and user-assigned weights.

CanCore metadata is extracted from HTML LOs by our LOMGen indexer, speeding up

the task of metadata generation. The metadata is first prefiltered via a query URI, and

then transformed to Weighted Object-Oriented RuleML via an XSLT translator. The

results are then compared to another tree representation of the learner query as generated

by the user interface. Finally, a list of learning objects is presented to the learner in

13

descending order of similarity, computed by the weighted tree similarity algorithm. This

application of AgentMatcher, restricted to the ‘Computing’ domain in this project,

demonstrates enhanced precision achievable relative to standard keyword-based searches.

Generally, we showed that the AgentMatcher architecture can be easily instantiated for

e-Learning applications, where match-making between buyers and sellers in e-Business is

transferred to learners and learning object providers, respectively. The system is available

online via the page www.cs.unb.ca/agentmatcher. AgentMatcher has also been adapted to

match-making in another domain, namely technology transfer wherein buyers and sellers

can be venture capitalists and startups (visit the www.teclantic.ca portal for details).

In future, the tree similarity algorithm embedded in the Similarity Engine can be

enhanced, e.g. by adding local similarity measures. Our pairing algorithm [Sarno et al.

2003] can be modified to pair learners and learning objects. The user interface can also be

improved. The LOMGen indexing module can be enhanced by natural language

processing techniques for syntactic and semantic analysis of LOs; these techniques are

expected to improve the quality of the metadata generated and further automate the

metadata extraction process.

Acknowledgements

We thank the CANARIE eduSource Project and NSERC as well as the New Brunswick

Department of Education for their support. We also appreciate valuable comments from

referees.

References

Bhavsar, V.C., H. Boley, L. Yang, 2003, “A Weighted-Tree Similarity Algorithm for

Multi-Agent Systems in E-Business Environments”, In Proceedings of 2003 Workshop

on Business Agents and the Semantic Web, Halifax, June 14, 2003, National Research

Council of Canada, Institute for Information Technology, Fredericton, pp. 53-72, 2003.

Revised version appears in Computational Intelligence, 20(4), pp. 584-602.

Boley, H., 2003, Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses

and Order-Sorted Terms. In Schroeder, M. Wagner, G. (Eds.): Rules and Rule Markup

Languages for the Semantic, Web Springer-Verlag, Heidelberg, LNCS-2876, pp. 1-16.

CanCore home page. (2003, April 23): Canadian Core Learning Resource Metadata

Application Profile. Retrieved April 25, 2003, from http://www.cancore.ca

eduSource Canada. (no date): Canadian Network of Learning Object Repositories.

Retrieved March 29, 2003, from http://www.edusource.ca

Hirtle, D. and Z. Sun, 2003, “CanCore  WOO RuleML”, Internal Report, Faculty of

Computer Science, University of New Brunswick,

www.cs.unb.ca/agentmatcher/translators.

14

T-L. Liu and D. Geiger, 1999, “Approximate Tree Matching and Shape Similarity,” In

Proceedings, 7th International Conference on Computer Vision, pp. 456-462, Kerkyra,

Greece, 1999.

Sarno, R., L. Yang, V.C. Bhavsar and H. Boley, 2003, “The AgentMatcher architecture

applied to power grid transactions”, In Proceedings of the First International Workshop

on Knowledge Grid and Grid Intelligence, Halifax, Canada, pp. 92-99.

Singh, A., H. Boley and V.C. Bhavsar, 2004, “A Learning Object Metadata Generator

Applied to Computer Science Terminology,” Presented at eduSource Learning Objects

Summit, National Research Council of Canada, Fredericton, March 29-30, 2004.

Sycara, K., M. Paolucci, M. van Velsen, and J. A. Giampapa, 2001, The RETSINA MAS

infrastructure. Robotics Institute, Carnegie Mellon University, CMU-RI-TR-01-05.

Wang, J. T., B. A. Shapiro, D. Shasha, K. Zhang and K. M. Currey, 1998, “An Algorithm

for Finding the Largest Approximately Common Substructures of Two Trees”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8): 889-895.

