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Abstract

We have proposed and implemented AgentMatcher, an architecture for match-making in

e-Business applications. It uses arc-labeled and arc-weighted trees to match buyers and 

sellers via our novel similarity algorithm. This paper adapts the architecture for match-

making between learners and learning objects (LOs). It uses the Canadian Learning 

Object Metadata (CanLOM) repository of the eduSource e-Learning project. Through 

AgentMatcher’s new indexing component, known as Learning Object Metadata 

Generator (LOMGen), metadata is extracted from HTML LOs for use in CanLOM.

LOMGen semi-automatically generates the LO metadata by combining a word frequency 

count and dictionary lookup. A subset of these metadata terms can be selected from a 

query interface, which permits adjustment of weights that express user preferences. Web-

based prefiltering is then performed over the CanLOM metadata kept in a relational 

database. Using an XSLT (Extensible Stylesheet Language Transformations) translator,

the prefiltered result is transformed into an XML representation, called Weighted Object-

Oriented (WOO) RuleML (Rule Markup Language). This is compared to the WOO 

RuleML representation obtained from the query interface by AgentMatcher’s core 

Similarity Engine. The final result is presented as a ranked LO list with a user-specified

threshold.

Keywords: AgentMatcher, CanLOM, e-Business, e-Learning, Learning Objects, match-

making, metadata, metadata generator, RuleML

1. INTRODUCTION

We have developed the AgentMatcher system [Sarno et al. 2003] for match-making 

between buyer and seller agents. The present paper describes the application of this 

system for searching procurable learning objects (LOs) in an e-Learning environment. 

Keywords and keyphrases are often used to describe LOs as well as learner queries in 

such environments. However, such a flat representation does not lend itself to 

hierarchical LO matching enabled by the Learning Object Metadata (LOM) standard and 

is also not likely to reflect user preferences about the relative importance or weighting of 
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the parts of a LOM description. AgentMatcher takes into account both of these 

dimensions — hierarchical matching and differential weighting — via tree-structured 

descriptions with arc weights for the queries, enhancing the precision of LO retrieval.

In this paper we describe the Java-based AgentMatcher match-making architecture as 

applied to the XML-based Canadian Learning Object Metadata (CanLOM) repository of 

the Canadian eduSource project [eduSource 2004]. The CanLOM repository is built using 

the LOM standard specified by the CanCore [CanCore 2004] guidelines. The Learning 

Object Metadata Generator (LOMGen) extracts CanCore metadata from HTML LOs in 

the domain of ‘Computing’, speeding up the process of metadata generation [Singh et al. 

2004]. LOMGen-extracted terms are offered to learners for selection from a query 

interface that permits convenient entry of relevant tree components and weights. Web-

based prefiltering is then performed over the CanLOM metadata kept in the relational 

database of the KnowledgeAgora e-Learning repository of TeleEducation New 

Brunswick (TeleEd). The prefiltered result is transformed to Weighted Object-Oriented 

(WOO) RuleML [Boley 2003] via an XML-to-XML translator. Finally, this is compared 

to the WOO RuleML-serialised tree obtained from the query interface using the weighted 

tree similarity algorithm [Bhavsar et al. 2004] embedded in the AgentMatcher Similarity 

Engine, and a percentage-ranked LO list is presented to the learner. 

2. OVERVIEW

The AgentMatcher architecture can be applied to match-making [Sycara et al. 2001] 

between buyer and seller agents in e-Business, e-Learning and other environments.  The 

core engine of AgentMatcher performs similarity computation between metadata 

descriptions carried by buyer and seller agents. In the AgentMatcher instantiation for e-

Learning, "buyers" are learners and "sellers" are learning object (LO) providers. We use 

the guidelines specified by CanCore to describe LOs. Thus, the match-making between 

buyer and seller agents corresponds to the matching of learner queries and CanCore 

descriptions.

The architecture of the AgentMatcher as adapted to e-Learning is depicted in Fig. 1, 

showing the top-level retrieval and indexing components.
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Figure 1. The AgentMatcher architecture.

There are three retrieval components: the User Interface, Similarity Engine and 

Translator. The LOM Generator (LOMGen) in parallel performs indexing to support 

retrieval.  Each of these four major components of the system is detailed in the ensuing 

sections.
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3.  USER INTERFACE

The user interface permits a user to enter as well as assign weights to search parameters 

and retrieve ranked search results in a new browser window.  
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Figure 2. Search screen of the user interface.

As shown in Fig. 2, the search screen is split into multiple boxes reflecting the top-level 

branches (‘General’, ‘Classification’, etc.) of the query tree structure; each of these boxes 

contains one or more search parameters chosen from the same category as found in the 

CanCore schema. Accompanying each search parameter is a slider, permitting the user to 

input not only the parameter but also its corresponding weight.  This weight indicates the 

importance of a parameter to the user relative to other parameters within the same 

category. All the weights within one box are constrained to add up to 1.0. The user is also 

able to input a threshold for the search result recommendations, causing all the LOs with 

a similarity value above the threshold to be considered as the recommendations.



6

After the user submits the advanced search request, the internal functions will be invoked 

according to the dataflow in Fig. 1. First of all, a Weighted Object-Oriented RuleML 

(WOO RuleML) parameter file (hereafter referred to as user.xml) is generated by the 

user interface. WOO RuleML is the format required by the Similarity Engine. Then 

selected search parameters are sent via a query URI to the KnowledgeAgora database 

server for pre-filtering, using the database query functionality to select relevant LOs by 

examining their Learning Object Metadata (LOM). The response from KnowledgeAgora 

is parsed into multiple XML files.  These files are translated by the Translator into WOO 

RuleML files and passed to the Similarity Engine.  At this point, the user.xml file is 

compared with each of the LOM files translated into WOO RuleML. The final result of 

the similarity computations is then displayed as a list of LOs ranked according to their 

similarity to the original search parameters entered by the user (see Section 5). Only 

those LOs with similarities above the threshold are recommended to the user. 

4. TRANSLATOR

The translator is responsible for translating the pre-filtered LOM files from the CanLOM 

repository into Weighted Object-Oriented RuleML, required by the Similarity Engine. It 

defaults LOM weights to equal values (up to rounding) on all tree levels, since this e-

Learning application of AgentMatcher uses proper weights only for the query trees. 

The (abbreviated) sample illustrated in Fig. 3 demonstrates the mapping between the two 

formats. Extensible Stylesheet Language Transformations (XSLT), a W3C recommended 

language for transforming XML documents into other XML documents, is used to 

accomplish this mapping. Additional information about this translation process is 

available in a separate report [Hirtle and Sun 2003]. When translation is complete, the 

resulting WOO RuleML files are passed to the Similarity Engine for comparison to the 

WOO RuleML representation of the search parameters specified by the user.

<lom>

  <general>

    ...

    <title>

      <string>

        Introduction to Databases

      </string>

    </title>

    ...

  </general>

  ...
</lom>

<Cterm>

  <Ctor>lom</Ctor> 

  ...

  <slot weight="0.16667">

    <Ind>general</Ind>

    <Cterm>

      <Ctor>general_set</Ctor> 

      ...

      <slot weight="0.33333">

        <Ind>title</Ind>

        <Ind>

    Introduction to Databases

        </Ind>

      </slot>

      ...

    </Cterm>

  </slot>

  ...

</Cterm>

WOO RuleMLCanLOM XML
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Figure 3. Mapping from CanLOM XML to WOO RuleML.

5.  SIMILARITY ENGINE

The Similarity Engine is responsible for computing the similarity between the query file and 

prefiltered LOM files using our tree similarity algorithm [Bhavsar et al. 2004]. It constructs a

ranked list of search results and displays it in a browser window.

As shown in Fig. 4, the inputs of the Similarity Engine are the query file user.xml

generated from the user interface (as discussed in Section 3) and the translated LOM files (as 

discussed in Section 4). We use our tree similarity algorithm, embedded in the Similarity 

Engine, to compute, one by one, similarity values between the query and each LOM. Due to 

our unique tree representation for learners and learning objects, our tree similarity algorithm 

is quite different from previous work [Liu and Geiger 1999] [Wang et al. 1998]. These 

similarity values are constrained to the real interval [0.0, 1.0].

Figure 4. Inputs of the Similarity Engine.

After computing the similarity between the query and LOMs, the Similarity Engine ranks all 

of the LOs in descending order of similarity, graphically separating those results whose 

similarity values fall below the threshold. The user will find on the top of the list the LOM 

that has the highest similarity value with his/her query.
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Figure 5. Snapshot of search results (low threshold).

Fig. 5 shows the HTML output for a relatively low threshold of 0.86. There are four columns 

in the result table: Rank, Similarity, LOMs and LOs. The rank represents the descending 

similarity order of the LOs, where highest rank corresponds to the highest similarity value. 

The similarity values are displayed in the second column. The LOMs and LOs are shown in 

the final two columns; clicking the link of a LOM record (e.g. WOORuleML10.xml)

displays the metadata (in XML format) corresponding to the LO. The “Go to the website” 

links in the last column point to organizations’ websites that give the content of LOs.

Besides showing the search results above the threshold, we also show those that are below 

the threshold in case some users want to see more LOMs and LOs. Links for these results are 

displayed in white. 
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Figure 6. Snapshot of search results (high threshold).

Sometimes a user may input a similarity threshold that is too high, resulting in a failed search. 

In this case, we do not direct users back to the search screen to adjust the threshold, but 

instead give users warning that their threshold is too high and still show all the search results

that are below the threshold. Fig. 6 shows the search results in such a situation. Of course, if 

users want to change inputs (e.g., keywords), they have to go back to the interface to input 

again.
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6. LOM GENERATOR (LOMGen)

The process of manually entering metadata to describe an LO is a time-consuming 

process. It generally requires the metadata administrator/author to be intimately familiar 

with the LO content. A semi-automated process which extracts information from the LO 

can alleviate the difficulties associated with this time-consuming process. LOMGen aims 

at automating the metadata extraction process with minimal user intervention.

LOMGen works with LOs constituted as HTML files. LOMGen uses the Free Online 

Dictionary of Computing (FOLDOC) to generate keywords and keyphrases from an LO. 

The use of FOLDOC currently restricts LOMGen applicability to LOs in the domain of 

‘Computing’.

As shown in Fig. 7, the LOMGen architecture consists mainly of an HTML file reader 

module (which reads an LO file from a URI), an HTML parser, a word frequency 

counter, a database interface module, and an XML file writer (which updates the 

metadata repository with a newly generated LOM file).

Figure 7. LOMGen architecture.
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LOMGen obtains the most frequent words and phrases from the content of the LO. In 

addition, FOLDOC is referenced to find terms related to ‘Computing’ present in the LO. 

In order to get relevant results, frequently occurring stop words such as "is", "are", "the", 

and "in" are eliminated. The result is combined with information found in the HTML 

"meta" tags and additional keyphrases (which may not be present in the LO) are 

generated with the help of FOLDOC. These keyphrases are obtained by looking up 

synonyms and related terms for words or phrases. All these words and phrases are 

presented to the metadata administrator through the LOMGen Graphical User Interface

(GUI) for keyphrase selection as well as synonym and term addition. The updates made 

by the administrator are stored in the keywords/keyphrases database. The newly added 

terms are considered to provide better choices to the metadata administrator when 

processing similar LOs.

A snapshot of the GUI presented to the metadata administrator is shown in Fig. 8. The 

GUI presents a list of keywords and keyphrases that were extracted or derived from the 

LO. The checkboxes present under the title “KEYPHRASE” allow the metadata 

administrator to select the most important keywords or keyphrases. The textboxes under 

“ADD SYNONYMS” allow the administrator to add alternate but similar terms 

corresponding to the keyphrase on the left. As the metadata administrator selects 

keyphrases in the GUI, the domain term dropdown listbox gets populated with the 

domains for those choices. These domain terms are obtained from FOLDOC. The 

metadata administrator selects the most relevant domain and FOLDOC is used to derive a 

hierarchy for classifying the LO.

If an LO lacks sufficient information in the text and HTML metatags, the quality of the 

keywords or keyphrases extracted by LOMGen may not be satisfactory. In such a 

scenario, the GUI enables the administrator to add more terms explicitly to describe the 

LO. 

Finally, clicking the “OK” button generates a LOM file and posts it to the CanLOM 

repository through a standard interface for posting XML files (provided by CanLOM).
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Figure 8. GUI for keyphrase selection.

The LOMGen component can be used as a training module for a text summarizer that 

uses machine learning techniques, with the intention of eliminating many of the 

administrator inputs.

7.  CONCLUSION AND FUTURE WORK

The AgentMatcher match-making system is applied to e-Learning, where learners are in 

search of procurable LOs.  The resulting Java-based architecture takes advantage of the 

added expressiveness obtained from tree-based matching and user-assigned weights. 

CanCore metadata is extracted from HTML LOs by our LOMGen indexer, speeding up 

the task of metadata generation.  The metadata is first prefiltered via a query URI, and 

then transformed to Weighted Object-Oriented RuleML via an XSLT translator.  The 

results are then compared to another tree representation of the learner query as generated 

by the user interface.  Finally, a list of learning objects is presented to the learner in 
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descending order of similarity, computed by the weighted tree similarity algorithm. This 

application of AgentMatcher, restricted to the ‘Computing’ domain in this project, 

demonstrates enhanced precision achievable relative to standard keyword-based searches.

Generally, we showed that the AgentMatcher architecture can be easily instantiated for

e-Learning applications, where match-making between buyers and sellers in e-Business is 

transferred to learners and learning object providers, respectively. The system is available 

online via the page www.cs.unb.ca/agentmatcher. AgentMatcher has also been adapted to 

match-making in another domain, namely technology transfer wherein buyers and sellers 

can be venture capitalists and startups (visit the www.teclantic.ca portal for details).

In future, the tree similarity algorithm embedded in the Similarity Engine can be 

enhanced, e.g. by adding local similarity measures. Our pairing algorithm [Sarno et al. 

2003] can be modified to pair learners and learning objects. The user interface can also be 

improved. The LOMGen indexing module can be enhanced by natural language 

processing techniques for syntactic and semantic analysis of LOs; these techniques are 

expected to improve the quality of the metadata generated and further automate the 

metadata extraction process.
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