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ABSTRACT

This paper presents a novel approach for automatic detec-

tion of microaneurysms and haemorrhages in fundus images.

First, it begins with a preprocessing stage for shade correc-

tion, contrast enhancement and denoising. Second, all re-

gional minima with sufficient contrast are extracted and con-

sidered as candidates. Third, in an image flooding scheme, a

new set of dynamic shape features is computed as a function

of intensity. Finally, a Random Forest classifies the candi-

dates into lesions and non lesions. A set of 143 fundus im-

ages with an average of 2210 pixels in diameter was acquired

using different cameras and used for training and testing. The

proposed approach achieved a global score over the FROC

curve of 0.393, while previous work with images of similar

resolution reported a score of 0.233.

Index Terms— Image processing, features extraction,

computer aided detection, fundus images.

1. INTRODUCTION

Diabetic retinopathy (DR) is the leading cause of preventable

blindness in the working-age population [1]. Early detection,

together with appropriate treatment, can help prevent visual

impairment. In current diagnostic procedure, a retina special-

ist analyzes fundus images and visually identifies lesions such

as microaneurysms (MA) and heamorrhages (HM). The grade

of DR depends mainly on the location, number and type of le-

sions. With the increasing number of diabetic patients, com-

puter aided detection systems are becoming essential for DR

screening and grading [2]. It adds more objectivity and repro-

ducibility to the task and it accelerates the process.

Several methods for red lesions detection are proposed in

the literature [3–7]. The most popular approach consists in

candidate extraction followed by region classification. Once

a candidate is identified, a region growing [4, 5] is performed

to find its boundaries. Shape and color features are then com-

puted and used for classification. A major limitation is that

the features extracted are consequently highly dependent on

the edges found by region growing.

Most of the papers focus mainly on the detection of MAs

[3–7]. Because of their regular small circular shape, MAs

can be detected or at least enhanced using 2D gaussian match

filtering [3, 6] or through local rotation cross-section profile

analysis [7]. However, even though MAs are considered as

a critical component for DR screening, DR grading requires

also the detection of HMs. By using the top-hat filter to re-

move connected components larger than the structuring ele-

ment [4, 5], vessels as well as larger HMs are removed and

thus missed in subsequent processing.

Several methods proposed in the literature have been built

and validated on a common publicly available dataset, the

retinopathy online challenge dataset [8]. The reported scores

vary between 0.206 and 0.434 [7] depending on the detec-

tion algorithm. Unfortunately, the images of this dataset have

a resolution much smaller than the one provided by most of

the up-to-date retinographs. According to [9], a resolution

of 50 pixels per degree of field of view (FOV) is needed to

provide diagnostic power comparable to film-based images.

Thus, for a 45o FOV, images must have about 2250 pixels on

the diameter of the region of interest (ROI), while images of

the retinopathy online challenge only have about 540 pixels.

Only Lazar et al. [7] considered images with 2200 pixels in

diameter for the validation of their detection algorithm, they

reported a score of 0.233.

In this paper, a novel approach for the detection of MAs

and HMs in high resolution fundus images is proposed and

validated. It introduces a novel set of dynamic shape features

used for region classification. It is motivated by the fact that

the shape of a candidate region depends highly on the inten-

sity threshold for which the region is defined.

2. METHOD

The proposed approach is divided into four steps, each of

which will be detailed in the following subsections.

2.1. Image preprocessing

A shade correction is performed to remove variations in the

background illumination. A mean filter of size 401 × 401 is

applied to the input image and the result is then subtracted



(a) Candidate regions (b) Flooding level i = 70

(c) Flooding level i = 78 (d) Flooding level i = 112

Fig. 1. Morphological flooding of image (a) with 2 can-

didate regions encircled in white: R1 (in red) and R2 (in

green). Subfigures (b), (c) and (d) show the resulting catch-

ment basins CR1

i (in red) and CR2

i (in green) for i = 70,

i = 78 and i = 112, respectively.

from the image. The resulting image is noted Isc. Contrast

enhancement is achieved by stretching and clipping the green

histogram of Isc on the range µ ± 3σ, where µ and σ are

the mean and standard deviation, respectively, of Isc’s green

channel. The green channel is considered because of the high

contrast it offers around the lesions. Finally, a 7 × 7 median

filter is applied to remove and attenuate the noise resulting

from the acquisition and compression steps. The final prepro-

cessed image is noted Ip.

2.2. Candidate extraction

To locate potential red lesions, all regional minima of Ip are

identified. A regional minimum is defined as a group of con-

nected pixels with same intensity h, such that all its adjacent

pixels have strictly higher intensities [10].

Then, two criteria are applied. First, only minima that

are darker than Ip’s mean intensity are considered. Second,

only minima with a contrast superior to a threshold K are

retained. In a topographic representation of Ip, the contrast of

a minimum M is defined as the difference in altitude between

M and the highest point of the paths reaching a minimum

with lower intensity [11]. The advantage of this definition of

contrast is that it is independent on the size and shape of the

structure. All remaining minima constitute candidate regions.

2.3. Features extraction

Extracted candidates include red lesions, vessel segments and

the fovea. A candidate classification step is required to dis-

criminate between lesions and non lesions. A new set of fea-

tures is thus proposed in this subsection.

In a topographic representation of Ip, each candidate (a

regional minimum) corresponds to a water source, noted Rj .

Fig. 2. Solidity curves (in solid lines) for the two candidate

regions R1 (in red) and R2 (in green) of Fig. 1. The slopes

(0.05 and -1.92) and the intercepts (86 and 206.43) of the lin-

ear least-square fits (dashed lines) are examples of DSFs.

A morphological flooding, inspired from the watershed algo-

rithm, is applied to Ip starting from the lowest water source

and ending when Ip’s mean intensity is reached. At each

flooding level i, pixels that are adjacent to a water source Rj

and lower than the flooding level i are added to the catchment

basin of Rj , noted C
Rj

i . When two basins merge, they start

to share the same pixels and thus the same attributes.

Fig. 1 illustrates three flooding steps with two candidates

taken from a single image. The first candidate, noted R1 and

coloured in red, corresponds to a true MA, and the second

one, noted R2 and coloured in green, corresponds to a vessel

segment. Throughout the image flooding, R2 starts as a small

compact shape, it then turns into an elongated shape, and fi-

nally, it merges with adjacent candidate to form the vessel

network. Whereas, R1 grows more isotropically and remains

isolated from other candidates even for higher flooding levels.

At each flooding level i, for each candidate region Rj , 7

shape attributes are computed on the catchment basin C
Rj

i :

1. Area: number of pixels in C
Rj

i , divided by the total

number of pixels in the ROI.

2. Number of collisions: number of catchment basins

merged into C
Rj

i .

3. Elongation: 1 − W/L with W and L the width and

length respectively of the bounding box of C
Rj

i ori-

ented along its major axis.

4. Excentricity:
√

(L2 −W 2)/L2.

5. Circularity: ratio of the area of C
Rj

i over its squared

perimeter and divided by 1/4π.

6. Rectangularity: ratio of the area of C
Rj

i over the area

of its bounding box oriented along its major axis.

7. Solidity: ratio of the area of C
Rj

i over the area of its

convex hull.

For each candidate region, a total of 7 curves are obtained,

one for each shape attribute. Each curve corresponds to an



Fig. 3. Sensitivity (dashed line) and average number of candi-

dates per image (solid line) as functions of the contrast thresh-

old K.

attribute’s value as a function of the flooding level i, from the

minimum value hRj
to Ip’s mean intensity. Fig. 2 shows the

solidity curves obtained for candidates R1 (in red) and R2 (in

green) illustrated in Fig. 1. In this example, the image’s mean

intensity is 114, and hR1
= 70 and hR2

= 66.

Each curve is then represented as a vector of 5 dynamic

shape features (DSF). The first three are the slope, intercept

and root mean squared error of a linear least-square fit of the

curve. The last two are the mean and median of the attribute’s

values along the curve. In total, 7 × 5 = 35 DSFs are com-

puted for each candidate region. Color information is added

to the resulting feature vector as 5 separate static features: the

RGB values of the regional minima computed on Isc, its in-

tensity h in Ip, and its contrast in Ip, previously calculated

according to [11]. In Fig. 2, the linear least-square fits of the

solidity curves are represented as dashed lines and the values

of two DSFs (the slope and intercept) are shown.

2.4. Classification

To distinguish between lesions and non lesions, we consid-

ered a Random Forest (RF) classifier [12]. It is robust to im-

balanced training data and incorporates an implicit features

selection step. An RF is a combination of T decision trees

trained independently using T bootstrap samples from the

training set. Each node is split using the best of m features

randomly chosen at that node. The output probability of a

candidate is given by aggregating the decisions of the T trees.

In this study, the RF is made of T = 500 trees and m =
⌊
√
M⌋ = 6, where M = 40 is the number of features.

3. MATERIAL

A dataset of 143 fundus images with 45o FOV and an average

of 2210 pixels along the ROI diameter is used. Images were

acquired in the context of a tele-medecine project, thus us-

ing a large variety of retinographs (different models of Zeiss,

Topcon, Canon and Centerview). It is saved in JPEG format,

the mean compression rate being 14:1.

Fig. 4. FROC curves computed on the test images, before and

after OD removal.

All red lesions in the dataset were manually segmented

without distinction between MAs and HMs. The segmenta-

tion was validated by an ophthalmologist. Among the 143 im-

ages, 1515 red lesions were found in a total of 56 images, the

remaining images being red lesions free. The overall dataset

was randomly split into a training set made of 73 images (847

lesions) and a test set made of 70 images (668 lesions).

4. RESULTS AND DISCUSSION

4.1. Performance at the candidate extraction step

Fig. 3 shows the sensitivity and average number of candi-

dates per image for different values of the contrast threshold

K. With K = 15, the average number of candidates per im-

age is 1115. Over all the manually segmented lesions, only

10% are missed and are not present in the classification step.

To the best of our knowledge, only one paper [4] reports the

sensitivity at the candidate extraction step. On images with 4

times less pixels in diameter, the sensitivity is 89.8%, for an

average of about 300 candidates per image.

4.2. Performance of the RF classifier

To analyze the classification performance of the RF, the ROC

curve was computed on the test set and we obtained an area

under the curve of 0.932. Considering that only 0.8% of

the candidates in the test set correspond to manually seg-

mented lesions, the results demonstrate that the RF classifier

efficiently overcomes the high imbalance in our dataset.

4.3. Overall performance

To assess the overall performance of the proposed approach,

the FROC curve is computed according to [8]. It is shown in

blue on Fig. 4. Qualitative analysis of the results revealed first

that both MAs and larger HMs are correctly detected by the

proposed algorithm (Fig. 5b), as opposed to most of the meth-

ods in the literature which focus solely on detection of MAs.

Second, most of the false negatives correspond to lesions di-

rectly connected to or very close to vessels (about 5 pixels



(a) Original image A (b) Detections in image A

(c) Original image B (d) Detections in image B

Fig. 5. Examples of true (green) and false (red) positives.

distance). Third, most of the false positives (FP) are located

inside the optic disk (OD) (Fig. 5d) and others correspond to

vessel crossings (Fig. 5b).

The second FROC curve, shown in red in Fig. 4, is com-

puted after removal of all candidates inside the OD. Auto-

matic detection of the OD is achieved by first, identifying the

ROI’s subsection with highest variance on a mean filtered ver-

sion of the image, second, detecting edges in the original im-

age using Canny’s filter, and finally, applying Hough’s trans-

form for circle detection. The improved results suggest that

OD removal should be used as a preprocessing step.

After OD removal, our system’s sensitivity is 58% and

the average number of FPs per image is 7.8, for a probabil-

ity threshold of 0.15. The global score of the system, calcu-

lated as in [8] over the test set, is 0.367 before OD removal

and 0.393 after. Unfortunately, no straightforward compari-

son with previously published scores can be done since the

dataset is different. However, for a rough comparison, the

scores obtained on the low resolution images of the retinopa-

thy online challenge vary between 0.206 and 0.434 [7]. The

only method [7] that was validated on images with a resolu-

tion similar to ours achieved a score of only 0.233 which is

lower than ours.

5. CONCLUSION

A novel method for MAs and HMs detection is proposed in

this paper. It is developed and validated on images with a

resolution similar to the one provided by most state-of-the-art

retinographs. The performance of the system is higher than

the one proposed in the literature for images of similar reso-

lution. The satisfying preliminary results demonstrate that the

new DSFs are highly efficient in discriminating lesions from

other candidate regions.
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