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ABSTRACT 
A multiple-variable linear regression direct solution model 
and a statistical model were developed for marine propeller 
design, optimization and prototype. Computing 
implementation for the direct solution model was made to 
create an integrated tool for the marine propeller development 
process. An error analysis for a simple case with only 4 
independent variables was performed. This direct solution 
model was constructed to provide two functionalities: 
generation of a set of linear regression coefficients to 
establish a multiple-variable polynomial equation and 
interpolation of the multiple-variable data set that are 
generated by the polynomial equations. An application case 
was given using a set of data from a marine nozzle propeller 
series both to cover interpolation to produce curves and  
linear regression coefficients for interpolation, for both the 
direct solution model and the statistical model that was 
computed under a commercial software package. Though 
much higher than the statistical model, interpolation by the 
direct solution model showed an error of less than one-tenth 
of a percent for a group of nozzle propellers. The highly 
computing-efficient direct solution method showed its 
capability as a general-purpose linear regression tool which 
can be applied widely for optimal product prototyping and 
design.  
 
Keywords: Linear Regression, Optimal Prototyping and 
Design, Marine Propeller 

 

INTRODUCTION 
In the marine propeller design and optimization process, a set 
of performance curves are required for each candidate model 
propeller. These performance curves are namely the thrust 
coefficient Kt, torque coefficient Kq and propulsive efficiency 
η, versus the advance coefficient J. For a special purpose 
propeller series, typical performance curves are usually given 
for a propeller series via cavitation tunnel or tow tank tests, in 
terms of geometric parameters. These parameters are mainly 
the propeller disk expanded area ratio, EAR, with the same 
blade sectional shape, i.e., the same sectional profile, camber 
and maximum thickness distribution, the nominal pitch 
diameter ratio, p/D0.7R with the same pitch distribution along 
the span of the blade, the number of blades, Z, each with the 
same blade planform contour. In propeller series model tests, a 
number of propeller models are manufactured to cover the 
possible range of geometric parameters for ship operation. A 
typical performance diagram is shown in Figure 1 as an 
example. The diagram is for a propeller with 4 blades (Z=4) 
and an expanded area ratio of 0.55 (EAR=0.55),  It shows  
thrust curves versus the advance coefficient J for a range of 
pitch values from p/D0.7R =0.6 to 1.4, with an interval of 
∆(p/D)=0.2..   
 
For a comprehensive propeller series test, a number of 
propeller models must be manufactured and tested. If the tests 
are to cover a range of EAR from, say, 0.4 to 1.2 with an 
interval of 0.2, and the number of blades is  from Z= 3 to 6, 
there will be 5 EAR values and 4 blade number values. Along 
with 5 pitch values from p/D0.7R = 0.6 to 1.4, a total of 100 
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propeller models must be manufactured. Increasing the 
intervals will reduce the number of propeller models required. 
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Figure 1. THRUST COEFFICIENT Kt OF A 

PROPELLER VERSUS ADVANCE COEFFICIENT J. 

 
After the tests, a total of 20 propeller performance diagrams in 
the same form of Figure 1 can be plotted. The data obtained 
will be used to generate polynomial coefficients via linear 
regression and then establish a polynomial equation for 
propeller design and optimization with 3 independent 
variables, such as, 
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This work is to develop a numerical model to generate a set of 
cofficients for one or more independent variables in the form 
of Ci,k,l in equation (1) and use the coefficients and values of  
independent variables to predict the hydrodynmic performance 
of an arbitrary canditate propeller within the series. 

 

FORMULATION OF THE METHOD 
 
To find a set of polynominal coefficients, for example with 4 
independent variables, let the dependant variable: 
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be represented by: 
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For the simplicity of description, we set the values of the 
exponents im=1, jm=1, km=1 and lm=2.  In practice, these values 
are often taken as 6-8, considering both accuracy and 
conservation of computing resources. An expanded form of 
equation (3) becomes 
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Equation (4) has (im-0+1) (jm-0+1) (km-0+1) (km-0+1) = (1-
0+1)×(1-0+1)×(1-0+1)×(2-0+1) = 24 terms. It may be written 
in a matrix form, which can be solved for the polynomial 
coefficients directly: 
 

[ ][ ] [ ],YAX =     (5) 

 
where [Y] is a vector storing 24 known values, which can be 
Kt, Kq or η values of the propeller performance curves, 
corresponding to the values of the independent variables 
raised to their respective powers and these values are stored in 
the square matrix [A]. 
 
Expanding equation 5, it gives: 
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 (6) 

 
Once [A] is obtained, the polynomial equation is defined. 
 
 

RESULTS AND DISCUSSION 
 

Application case for the newly developed model 
 
To test the method and its implementation, a set of propeller 
propulsive performance data was used [Yossifov et al. 1989]. 
Figure 2 shows a nozzle propeller in three different surface 
modeling approaches: hidden line, solid modeling and wire 
frame (Liu 2002 and Liu et al. 2002).  
 
While in the figure only one combination of the propeller is 
shown, this propeller series has three different nozzles, N=1, 2 
and 3, four nominal pitch values of (p/D)0.7R =1.0, 1.1, 1.2 and 
1.3, and three EAR values of 0.5, 0.6 and 0.7. The dependent 
variable is either Kt, Kq or η and the four independent variables 
are: N, ( p/D)0.7R, EAR and advance coefficient J. 
 
Using the currently developed linear regression model, a set of 
polynomial coefficients can be obtained. These coefficients 
defined the polynomial equation which is, 
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in a form of 
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Figure 2. APPLICATION PROPELLER SERIES 
GEOMETRY. 

 
The values of im, jm, km and lm are usually chosen at a small 
value less than 10. For an 8-variable problem, if the value of 
the power is set at 8, the matrix size will be 
(9×9×9×9×9×9×9×9)2 =430467212 which needs about 
1,380,000 GB of computing memory. For too large a matrix 

size, an iterative solver should be used and the solver might 
need to be run under a parallel computing environment [Liu 
and Li 2002]. 
 
For this application case, for simplicity, we set im = 2, jm = 2, 
km = 3 and lm= 6. The matrix size is then 2522. A total of 252 
data points were prepared as in Table 1:  

 
Table 1. INPUT DATA FORMAT AND LIST 

 
 

      N EAR  PD    J        Kt  

    1 1 0.5 1.0 0.00  0.518087 

    2 1 0.5 1.0 0.14  0.433046 

    3 1 0.5 1.0 0.28  0.353132 
 

    . . . . . . . . 
 

  252 3 0.7 1.3 1.14 -2.464862 

 
The current model was used to generate a set of linear 
regression coefficients by solving for Ci,j,k,l to produce a 
polynomial 
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Plugging the values of these independent variables into 
equation (8) for the 252 data points, the Kt values are obtained 
by the polynomial equation. Error estimation can then be done 
by comparing the Kt values from the polynomial equation with 
those from Table 1 in terms of 
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The percent error for the 252 data points is plotted in Figure 3. 
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Figure 3. ERROR IN PERCENT BY THE CURRENT 

NUMERICAL MODEL, DGSI.  
 
It is shown in Figure 3 that the maximum percentage error is 
about 0.05%. This accuracy is sufficient for engineering 
design. A much higher accuracy may possibly be obtained 
when the value of the exponents is increased, though increased 
computing resources are also required. To generate these 
coefficients for a one-time execution, the implemented code 
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DGSI, took about a couple of minutes of CPU time on a 3.0 
GHz PC. 

Application Case for the Statistics Commercial 
Package SPlus and Comparison 
 

Statistics model 

 
The statistical method applied here is the traditional regression 
analysis based on multiple predictors that are identified as N, 
EAR, (P/D)0.7R and J with a response variable Kt . First, we 
establish a probabilistic model denoted by  
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where ε is the random factor having an approximately normal 
distribution with zero mean and constant variance. In this 
topic, this assumption is not critical because the data collected 
here only contain record errors. 
 
Base on the observed data, we first form a 252×252 matrix for 
the factors Ni,  (EAR)j

 , (P/D)k
  and Jl  when i, j, k and l vary, so 

that the regression formula (10) becomes 
 

,ε+′×= ACKt     (11) 

 
where C is a 1×252 vector and A’ is the transpose of the 
252×252 matrix.  
 
The Least-square Method (LM) is employed to estimate C 
when K and A are observed. The basis of the LM method is to 
minimize the sum of squared errors: 
 

.)( 2
__∑ −= estimatedtoriginalt KKSSE    (12) 

              
Since there are 252 variables to be estimated in vector C with 
252 observations, one will observe some singular terms in the 
process of minimization, which will yield zero estimates for 
those Ci,j,k,l coefficients. This is not a surprising result in this 
kind of estimation process. 
 
After the estimation procedure is carried out (here by S-Plus, 
an advanced statistical software package), the vector C will be 
estimated with (252 less the number of singulars) non-zero 
numerical values and the zero values will be assigned to those 
Ci,j,k,l that are considered singular. After this process, a 1×252 
vector C is generated. This can be viewed as a filtering 
procedure which will single out those Ni, (EAR), (P/D)k and  J

l
 

terms that  are not significant to the probabilistic model in 
equation (10). 
 
Furthermore, more information in the regression analysis can 
be obtained such as the standard error, (t-value) and p-value 
(Pr((test statistic) >|t| )) for each Ci,j,k,l estimated. A sample 
output of this information is listed Table 2: 

 

Table 2. A SAMPLE OUTPUT FOR REGRESSION 
ANALYSIS 

 

       Std. Error             t value          Pr(>|t|)       
  1  0.046340930  -16.613806360  1.154632e-14 
  2  0.267453190     1.421098450   1.681520e-01 
  3  1.079734330     0.470970110   6.419148e-01 
    . . . . . . . . 
 
 26  0.981486080  -0.597363020   5.558597e-01 
 27  0.443841450   1.474089110   1.534547e-01 
 28           NA              NA                NA 
 29  0.156353330   7.597914470   7.765376e-08 
 30  0.851771110  -1.258532740  2.203047e-01 

    . . . . . . . . 
247  0.044432390  -0.704020400 4.881953e-01 
248           NA                NA                 NA 
249           NA                NA                 NA 
250           NA                NA                 NA 
251           NA                NA                 NA 
252           NA                NA                 NA 

 

 
where the NA terms  correspond to those zero (singular) 
valued Ci,j,k,l coefficients. 
 
Since the critical p-value is provided in the output, the 
individual calculation formulas for standard error (and t value) 
become less important. One can find them in the text book. 
The use of the p-value for each term is to determine the 
significance of each Ci,j,k,l. estimated. For example, if the p-
value shown is 7.765376e-08, the corresponding C0,1,0,0 is 
highly significant. To ensure maximum numerical accuracy, 
instead of abandoning all non-significant terms (such as the 
one shown with a p-value of 6.419148e-01, which is not 
statistically significant), we keep those very small but non-
zero coefficients Ci,j,k,l  so that those highly dependent 
predictors remain in the polynomial in the deterministic 
component in equation (10). 
 

Discussion of Regression Analysis Results: 
 

Based on the propeller shaft torque (Kq) data set, which is 
similar to the Kt data, we find that at 95% confidence level, the 
difference (Error) between Kq and Kq_estimated) is estimated 
within the confidence interval (1.529957e-05 2.228456e-05), 
which is close enough to zero. However, we could not 
conclude that the error is zero since the p-value for this test is 
2.2e-16, which will reject the hypothesis that Kq-Kq_estimated=0 
at almost any level of significance. Moreover, we have to 
admit that the Kq is over estimated by the regression model 
defined in equation (10), even if it is by not that much.  

 

Comparison between the Current Model (DGSI) and 
the Regression Model  
 
Being given a data set like the propeller shaft torque (Kq) data 
set, DGSI used a different approach to achieve the 
determination of the polynomial coefficients Ci,j,k,l. Based on 
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this single data set, we found that DGSI does a very good job 
to resolve the estimated Kq by those Ci,j,k,l coefficients resolved 
by it.  
 
It might be affected by the algorithm used in the DGSI 
procedure, but one has to notice that neither the estimated 
coefficients Ci,j,k,l nor the resolved Kq_estimated are consistent. In 
other words, they are independent sets of estimates and 
evaluations. 
 
One also needs to notice that at 95% confidence level, DGSI 
produces a wider confidence interval for the paired difference 
(Kq-Kq_estimated) as (0.0001111199 0.0001467610) which is a 
shift even more to the right. However, the mean of the 
differences is only 0.0001289405 which is again very close to 
zero. Not surprisingly, we will have to conclude that no 
evidence supports that the difference (Kq-Kq_estimated) is zero. In 
addition, we have to make clear that the above discussions in 
this section are based on a single set observations. A 
percentage error diagram for the statistical model via S-Plus is 
plotted and shown in Figure 4. 
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Figure 4. PERCENT ERROR FOR THE ESTABLISHED 
STATISTICAL MODEL AND COMPUTED BY S-PLUS. 
 
The direct solution method for linear regression coefficient 
developed in this work produced much larger percentage 
errors (0.005% versus 0.00007%) than the statistical model 
implemented and computed under S-Plus. A substantial 
accuracy improvement can be made if the direct solution 
model employed some kind of iteration process that requires 
more CPU time. However, the percentage error produced by 
the direct solution method without iteration is small enough 
for engineering design. Each run of the statistical model under 
S-Plus required about 4 hours (this includes the data format 
time on a P3 850MHz computer with 1GB RAM) of CPU time 
versus a couple minutes for the direct solution model 
implemented in DSGI (100:1). For the 4-variable problem, the 
saving of CPU by DSGI is not very significant. When the data 
points become larger and the power of the exponents is around 
10, CPU time and memory could become prohibitive. 
Therefore, the current direct solution model is a good 

alternative for engineering design applications, especially for a 
large number of independent variables and high exponential 
values.  
 

CONCLUSION 
 
A multiple-variable linear regression direct solution model and 
a statistical model were developed for marine propeller design, 
optimization and prototyping. Computing implementation for 
the direct solution model was made to create an integrated tool 
for the marine propeller development process. The direct 
solution model, without an iteration process, has a much larger 
error in percentage (0.005% versus 0.00007%) but is small 
enough for engineering design and computations. The 
statistical model via a commercial software package has a 
smaller percentage error with a requirement of much longer 
CPU time (100:1). For a linear regression task with a large 
number of independent variables and high order of exponent, 
the current developed model could be a better alternative. 
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