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1 Introduction

Knowledge organized hierarchically in ontologies is central to the design of
the Semantic Web. Much Semantic Web research is focussed on what can
be done with such organized knowledge. However, there are also interest-
ing problems surrounding the organizing of real world items into ontologies.
This paper outlines an eBusiness application, the New Brunswick Opportu-
nities Network (NBON), an online tendering system, which has an ontology
of product types at its core.

We first give the definitions of a few tendering terminologies that are
relevant to our discussion. A vendor is a unit who sells goods or services. A
purchasing agent is a buyer of any goods or service. A tender is a document
that a purchasing agent publishes to announce his request for certain goods
or services. The Goods and Services Identification Numbers (GSIN) is a
hierarchically arranged set of codes that can classify a huge range of prod-
ucts. This GSIN ontology is used in our application as a means to classify
both tenders and vendors in terms of what they buy and sell respectively.
It is via this ontology that effective match making between vendors and
tenders is achieved. Currently, the incoming tenders are assigned a GSIN
code by a human expert familiar with the GSIN system. We have completed
a pilot study in automatically assigning a GSIN code to the tenders using
previously coded tenders as training data. We have taken a few conven-
tional machine learning approaches for TC in order to better understand
our categorization problem. Our initial results are encouraging, especially
for top-level categories and given that we have the option of presenting a
ranked list of categories to a human indexer.

This paper is organized as follows. In Section 2 we give an introduction to
NBON, the target tendering system of this paper. In Section 3 we examine
four TC techniques, namely, the Rocchio method, TFIDF (term frequency-
inverse document frequency), WIDF (weighted inverse document frequency),
and näıve Bayes. In Section 4 we show the experiment results on the NBON
data using the four classifiers. In Sections 5 we discuss future and related
work, conclude in Section 6.

2 The NBON System

NBON [15] is the official online tendering system of the province of New
Brunswick, which went live in May 2002. The motivation of the system is
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N66 - Instruments and Laboratory Equipment
N6665 - Hazard-Detecting Instruments and Apparatus
N6665A - Detectors, Hazard
N6665AB - Detectors, Hazard, Concealed Weapon

Table 1: An example of GSIN codes and categories

to help vendors and purchasing agents find each other online through GSIN
codes. The NBON system has a hierarchical structure for its categories
and their corresponding GSIN codes. It consists of three super-level groups:
goods, services, and construction services. Under the super-level groups,
there are currently 15,913 categories grouped in up to four levels, each cor-
responding to a unique GSIN code. Table 1 shows a typical example of a
group of goods categories on the same path of the hierarchical structure and
their corresponding GSIN codes.

The whole tendering and bidding procedure is similar to that of a tradi-
tional one, i.e. a purchasing agent submits a tender to the government (now
represented by the NBON system), which notifies the potential vendors, who
can choose to bid. Then the purchasing agent chooses and announces the
successful bidder. A vendor needs to electronically register with the NBON
system to be recognised as a potential bidder. For this purpose, he needs
to navigate the hierarchical structure of the categories of the NBON sys-
tem to identify a category that properly describes his expertise. A vendor
may choose to classify himself on any level of the structure, except for the
super-level. A purchasing agent submits to the government a tender, which
is then assigned a GSIN code by a human indexer, either the purchasing
agent himself or an expert in the government. If there is more than one
item in the tender, each item will be treated as a separate request, and is
given a separate GSIN code.

Since we do not want to leave out any potential vendor, the notification
strategy of the NBON system is to notify all the registered vendors that
share a branch with the tender on the tree of GSIN codes, meaning the
parent, children and siblings of the category node under which the tender
is classified. The main reason behind such a strategy is that the manual
categorization of the NBON system is not always reliable, therefore the sys-
tem has to retrieve more vendors to be on the safe side. Recall that the
vendors are self-classified, and since there are altogether 15,913 categories
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in the NBON system, the vendors may self-classify too high in the hierar-
chical structure, and thus the categorization result is less precise. The same
thing happens to the human indexers, who, although more familiar with the
categories, may not read the tender carefully or thoroughly enough to give
each item the correct GSIN code.

The main problem with the current NBON system is the manual catego-
rization of the tenders and the vendors, which both decreases the usability
of the registration procedure of the system and increases the unreliability
of notification. The motivation of this paper is to make the categorization
process (semi-)automated using a machine learning approach, i.e. to learn
from the historic data of the NBON system and use the learned knowledge
to classify a new document. We start with the categorization of the tenders,
because we can easily obtain the training data necessary for the learning ap-
proach that we took in this paper: the tenders and their manually assigned
categories from the past years are suitable training examples that we can
feed to a computer program to build a classifier. In this paper, only the
goods tenders are selected as the sample data. The goods group is more
representative than the other two in terms of both overall quantity (there
are 14,783 goods categories out of the total 15,913 categories) and number
of levels. Therefore we chose the goods group for our initial investigation.

3 Text categorization of the tenders

The NBON sample data used in this paper consists of the goods tenders
published in the system during the two years from 1 January 2001 to 30
November 2002. In the data set, there are altogether 4,822 goods tenders
classified under 1,269 categories. The biggest tender contains 826 words, and
the smallest only 1 word. The average number of words per tender is 31.
Recall that a tender may have multiple items and thus is assigned multiple
GSIN codes, one for each item. Having realized the potential mistakes in
human indexing, the government only provided us with the first items of
the multi-item tenders, which have a better chance to be correct, so as to
improve the quality of the data. This means that we are dealing with a
single-label TC problem in this paper, because a tender is assigned exactly
one GSIN code.

Table 2 reflects some statistical facts about the NBON sample data.
We use |Categories| to denote the number of categories, |V ocabulary| to
denote the number of distinct words, |c| to denote the number of words
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Schema I Schema II

Total |Categories| in the NBON system 14,783 72
|Categories| in the sample data 1,269 70
|V ocabulary| 12,266 12,266
average |c| 72 1,318
Total |Tenders| 4,822 4,822
F (c) ≥ 200 (|Categories|/|Tenders|) 1/337 4/1,945
F (c) ≥ 100 (|Categories|/|Tenders|) 4/697 13/3,123
F (c) ≥ 50 (|Categories|/|Tenders|) 8/1,006 23/3,743
F (c) ≥ 10 (|Categories|/|Tenders|) 70/2,107 56/4,763
F (c) < 10 (|Categories|/|Tenders|) 1,199/2,715 14/59
F (c) ≤ 3 (|Categories|/|Tenders|) 984/1,554 7/12
F (c) = 1 (|Categories|/|Tenders|) 552/552 4/4

Table 2: Statistics of the NBON sample data

in a category c, |Tenders| to denote the number of tenders, and F (c) to
denote the frequency of the category c, which equals the number of tenders
classified under c. We define two category schemas, Schema I denotes the
categories at all levels as in a flat structure, and Schema II denotes the top-
level categories in the hierarchical structure. Take Schema I for example, we
see in Table 2 that there are 14,783 goods categories in the NBON system,
in which 1,269 ones were observed in the sample data. There are 12,266
(preprocessed) distinct words in the data set, and the average number of
distinct words per category is 72. There are 4,822 goods tenders in the data
set, in which 1 category has no less than 200 tenders manually classified
under it, and the actual number of tenders is 337; 4 categories have no less
than 100 tenders, and the total number of tenders is 697; etc. In the last
three rows of Table 2, we see that 1,199 categories have less than 10 tenders,
984 categories have less than 3 tenders, and 552 categories have exactly 1
tender.

We can identify three data sparseness problems in the sample NBON
data in Schema I. Firstly, the number of categories is large, which is 1,269.
It is intuitively obvious that the difficulty of a TC problem increases with
the number of categories. Secondly, the number of the “sparse” categories
(the ones with few tenders) is proportionally large. Such “sparse” categories
are those in the last three rows of the table, which is 1199

1269
= 94.48%. And
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finally, the proportion of the categories that are not covered in the sample
data is large. Out of all the 14,783 goods categories of the NBON system,
only 1,269 are covered by the sample data, which means the coverage of the
sample data in terms of categories is only 8.58%. This will be a problem
when the system under development is used in real life, because there is a
great chance that it will encounter some categories that are not covered by
the “learned knowledge” of the classifier.

Since the categories are organized in a hierarchical structure, we can
classify a tender in a hierarchical manner, i.e. level by level. By doing
so, we can solve the three above mentioned problems. First of all, the
number of categories on each level is dramatically less than that of the
total number of categories. Take the top-level for an example, which is
Schema II in Table 2, there are only 72 categories in total, which is far more
manageable than 14,782 as in Schema I. Second, the number of tenders
in most categories is increased, because each category includes the tenders
classified under their children categories. Third, the number of uncovered
categories is dramatically decreased. The coverage rate is 70

72
= 97.22% in

Schema II.
As an initial investigation, our efforts in this paper were focused on the

top-level categories. For now, such an approach is fine-grained enough for
the TC task of the NBON system, whose notification strategy makes it
sufficient to classify a tender high in the category hierarchy. It would be
meaningless to blindly go further down the hierarchical category structure
before we have a high confidence in the categorization results achieved on the
higher level of the structure, because the categorization mistakes made on
higher levels can not be recovered on lower levels [5], and thus the predicted
category ends up being further away from the correct one on the tree of
GSIN codes as the classifier goes lower on the hierarchical levels.

In this paper, we investigate four classifiers, namely, the Rocchio method,
TFIDF, WIDF, and näıve Bayes.

3.1 The Rocchio method

The Rocchio method originated from the relevance feedback of IR, and was
first adapted to TC in 1994. It has since been used by many researchers
as a baseline classifier [19]. We also use the Rocchio method as a baseline
algorithm in this paper.

The Rocchio method is a linear classifier consisting of a “profile” vector
for each category in the form ~c = (R1, ..., R|c|), with each Ri representing
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the weight of a word w in c as defined in Equation (1).

Rocchio(w, c) = β ·
∑

di∈POSc

TF (w, di)

|POSc|
− γ ·

∑

di∈NEGc

TF (w, di)

|NEGc|
, (1)

where TF (w, di) is the frequency of w in document di, |POSc| is the number
of documents with label c, and |NEGc| is the number of documents with
labels other than c. In this paper, we followed [4] to set the weight para-
meters to β = 1 and γ = 0 1, meaning that the function is simply a weight
averaged over the positive documents.

In TC, a document is usually represented as a term vector ~d = (dw1
, ..., dw|d|

),
with terms typically identified by the words in the document, and dwi

de-
notes the frequency of each distinct word in d. When classifying a document
d, which is a tender in our case, similarity is compared between the vector ~d
and the profile vector ~c of each category c, using a linear similarity function
Sim(d, c) (see Equation (2)), which is the dot product of the two vectors
[12]. And the classifier assigns d to “the most similar” category.

Sim(d, c) = ~d · ~c

=

|d|∑

i=1

di · ci

=
∑

w∈d

dw · Rocchio(w, c) (2)

3.2 TF-IDF classifier

Term frequency-inverse document frequency (TF-IDF) is a traditional algo-
rithm originally used in IR that measures the relevance by the product of
TF and IDF . The weight of a word in a document is jointly determined by
its frequency in the document and its frequency in all the documents. The
IDF term can be viewed as a penalty to the ubiquitous words that do not
tell much about any document. TF-IDF is not a standard TC technique,
we include it in this paper mainly because of its close relation with WIDF
that is to be discussed in Section 3.3.

1We also followed other researchers to deemphasize the role of negative documents by
setting β = 16 and γ = 4 [2, 7, 8], and the categorization results were worsened. Variations
of β and γ values were tried out on the NBON sample data, and the best results were
achieved by simply ignoring the negative documents.
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The TF-IDF weight of a word w in a document d is given in Equation
(3).

TFIDF (w, d) = TF (w, d) · IDF (w)

= TF (w, d) · log(
|D|

DF (w)
), (3)

where TF (w, d) denotes the frequency of w in d, |D| denotes the total num-
ber of the training documents, and DF (w) is the number of documents that
contain w.

When adapted to TC, the IDF terms are typically computed on cat-
egories, which are represented as bags of documents that are labelled with
the same category [20]. The categorization criterion is similar to that of
the Rocchio method in Equation 2, with Rocchio(w, c) being replaced by
TFIDF (w, c).

3.3 WIDF classifier

Tokunaga and Iwayama [20] pointed out a problem with IDF (w), which
is that if a word is contained in all the documents, no matter what its
frequency distribution is like, the weight of such a word in all the documents
will be zero, because the IDF (w) value is zero. The improperness of such
an approach is illustrated in the example shown in Table 3 [20], where both
IDF (wx) and IDF (wy) are equal to 0, because they both occur in all the
documents, and thus both words will get a zero weight for all the documents,
although the frequency distributions of wx and wy are very different. The
reason for this situation is that IDF considers only whether or not a word
is contained in a document, but not its frequency in the document.

To address this problem, Tokunaga and Iwayama developed a weighted
inverse document frequency (WIDF) classifier which is defined as in Equa-
tion (4). Since WIDF has already taken TF (w, d) into account, the weight
of a word w in a document d is simply its WIDF value.

WIDF (w, d) =
TF (w, d)

∑n
i=1 TF (w, di)

(4)

Now, the WIDF values of the two words in the above example would
be different. For instance, according to Table 3,

WIDF (wx, d2) =
50

2 + 50 + 3 + 2 + 4
=

50

61
≈ 0.82, (5)
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d1 d2 d3 d4 d5

...
...

...
...

...
...

wx 2 50 3 2 4
wy 3 2 3 2 3
...

...
...

...
...

...

Table 3: A TF-IDF example with a 5-document data set [20]

and

WIDF (wy, d2) =
2

3 + 2 + 3 + 2 + 3
=

2

13
≈ 0.15. (6)

To be consistent with the other TC techniques in this paper, we used
TCC (Text-to-Category Comparison) in [20] in our experiments, which takes
a bag-of-documents approach to represent the categories. And for classifica-
tion, new documents are compared with the category representations using
the linear similarity function in Equation (2), with Rocchio(w, c) being re-
placed by WIDF (w, c).

3.4 Näıve Bayes classifier

Näıve Bayes is a popular technique for TC tasks owing to its simplicity and
effectiveness [14]. It is a probabilistic classifier, in which the relevance of a
category c to a document d is based on its conditional probability given d,
and d is assigned to “the most probable” category based on this probability
value.

The probability of a category c given a document d is computed according
to Bayes rule as in Equation (7).

P (c|d) =
P (d|c) · P (c)

P (d)
(7)

If the words in d are mutually independent, Equation (7) can be rewritten
as Equation (8), where the P (d) term is dropped because it is a constant.

P (c|d) ∝ P (c) ·
∏

w∈d

P (w|c) (8)
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Näıve Bayes assumes such independent relations between words in a text
(and thus the name “näıve”). Although this assumption is rarely true, näıve
Bayes performs surprisingly well for TC tasks [14].

In Equation (8), P (c) can be easily obtained by the proportion of the
number of tenders assigned category c divided by the total number of ten-
ders, and we compute P (w|c) terms as in Equation (9), which is Lidstone’s
law of succession [1].

P (w|c) =
F (w, c) + λ

|c| + λ · |V ocabulary|
, (9)

where F (w, c) denotes the frequency of word w in category c, and λ is a
variable, whose value was set to be 0.1 in this paper, because it was optimal
for the NBON sample data by experimentation. The reason for introducing
a λ variable is to smooth out the zero counts (i.e. F (w, c) = 0). Unlike the
previous three algorithms which sum up the weights, näıve Bayes multiplies
P (w|c) terms, and thus a single zero count will cause P (w|c) to be zero, and
so is P (c|d) in turn, if no smoothing is applied. There are two types of zero
counts, one is that w was not observed in the category c, and this case is
cared by Lidstone’s law of succession; the other is that w was not observed
in any category in the training data, this is also referred to as a missing
value or unknown, and we follow [9] to simply ignore the missing values in
this paper.

4 Experiments on the NBON data

The tenders were preprocessed using a stop word list from the Defense Vir-
tual Library [6] consisting of 456 words and the Porter’s stemming algorithm
[17]. We also tried using smaller stop word lists and a restrictive version of
Porter’s stemmer, and the differences on the categorization results are in-
significant.

Precision and recall are two standard measures of effectiveness in IR.
Precision is the proportion of the retrieved documents that are relevant,
and recall is the proportion of the relevant documents that are retrieved.
Precision and recall were adapted to TC, and their computations are based
on a contingency table (see Table 4) that reflects the categorization decisions
made by a classifier and the expert judgements on the decisions. The cate-
gorization results are denoted by TP (number of true positive), FP (number
of false positive), TN (number of true negative) and FN (number of false

9



Yes is correct No is correct

Assigned Yes TP FP
Assigned No FN TN

Table 4: A 2 × 2 contingency table

negative).
Precision and recall are defined in Equations (11) and (12) respectively.

We took the microaveraging approach in [19] for the computation. Preci-
sion and recall are two conflicting measures, therefore classifiers are usually
evaluated by a combination of the two. An exception is the single-label TC,
in which precision and recall are dependent on each other, therefore either
can be used alone for evaluation [19].

In this paper, we use recall to measure the effectiveness of the classifiers2.
This naturally follows our discussion in Section 2 that leaving out a tender
is much more serious than a false notification of a tender, i.e. FN is less de-
sirous than FP, meaning that a high recall is more important to the system.
Although precision and recall are equivalent at this stage, they differ in a
ranking categorization system that is to be discussed soon, therefore we use
recall here to keep the consistency in later comparisons.

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

We used 20-fold cross-validation to train and test the classifiers. The
4,822 tenders in the NBON sample data were partitioned into 20 subsets of
equal length, with 19 subsets served as the training data and 1 subset was

2In the case of single-label TC, the microaveraged precision and recall are both equa-
valent to accuracy, when the latter is intuitively defined as in Equation (10) [20]:

A =
the number of documents that are correctly classified

total number of testing documents
(10)

This is different from the TC definition of accuracy, which is A = TP+TN

TP+FP+FN+TN
,

and is greater than the value obtained in Equation (10). Since we are dealing with a TC
problem in this paper, we follow the TC convention to address to our effectiveness measure
as recall, to avoid confusion.
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Rocchio TF-IDF WIDF Näıve Bayes

Schema I 20.27% 22.07% 32.70% 34.59%
Schema II 43.46% 46.70% 59.17% 63.24%

Table 5: Recalls of the four classifiers on the two NBON category schemas

left out for testing. The system runs 20 times so that each subset gets a
chance to be tested, and the final recall was averaged over the 20 results.

Table 5 shows the categorization results obtained on the two category
schemas of NBON. We can see that, as we expected, the WIDF and näıve
Bayes classifiers achieved the higher recalls, and a significant improvement of
Schema II (the top-level categories) over Schema I (categories on all levels
in a flat structure) is accomplished. Recall from Section 3 that Schema
I suffers serious sparseness problems, and by working with Schema II, we
circumvented these problems. Whereas a recall of 30 percentage points on
Schema I is of no use, that of 60 percentage points on Schema II is close to
a reasonable result for the research purpose. Although the categorization
results on Schema II are less precise than those on Schema I, according to
our discussions in Sections 2 and 3, this is fine-grained enough because the
notification strategy of the NBON system makes it sufficient to classify a
tender high in the hierarchy.

Unfortunately, a recall of 60 percentage points is still unacceptable for
industrial use. Therefore we developed an interactive ranking system to
return the N best categories ranked high by the classifiers, and allow the
users to choose the target out of them. Table 6 shows the improvement
on Schema II achieved by returning the “N -best” categories. We see that
at the level of 10-best, the recall of each classifier is increased from 20 to
37 percentage points. We stopped our experiments at the level of 10-best
because some studies of searching behaviour have shown that users tend to
give up if a target is not found in the first ten hits [22].

It certainly would be preferable to have a fully automated categoriza-
tion procedure, but when the “1-best” prediction of a classifier is not very
reliable, such automation is fairly meaningless. In such a case, it pays off to
put the final decision in the hands of a human user. In our case, this will
also give users a chance to classify their tenders under multiple categories,
which is desirable in some cases, such as when they have various requests in
one tender, and/or when they want to know about other potentially relevant
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Rocchio TF-IDF WIDF Näıve Bayes

1 Best 43.46% 46.70% 59.17% 63.24%
3 Best 64.83% 64.79% 71.91% 73.84%
5 Best 71.93% 72.93% 78.20% 78.15%
10 Best 80.50% 82.32% 84.83% 83.88%

Table 6: Recalls of the four classifiers on Schema II for the ranking catego-
rization

categorizations for their tenders. A major advantage of involving users in
the categorization procedure is to increase the recall on the top-level and
thus allow the finer grained categorization in future phases.

5 Future and related work

The recalls achieved in this paper were based on the top-level categories.
Although we have assumed that it is sufficient to classify tenders high in
the hierarchy, it is preferable to classify both tenders and vendors as pre-
cisely as possible. In addition, by classifying tenders and vendors low in the
hierarchy, we will have more flexibility in modifying the notification strat-
egy when necessary. In the next step, we will investigate the hierarchical
categorization on all levels. Classifying documents into a hierarchical struc-
ture of categories have been previously studied [3, 5, 10, 11, 13, 16, 18, 21].
Most research results showed limited improvement of hierarchical catego-
rizations over the flat ones, except the work done by McCallum et al. [13],
who showed a significant improvement of 29%. They used a näıve Bayes
classifier, and adopted the statistical shrinkage technique to smooth the pa-
rameter estimates of sparse children categories with their parents. Dumais
and Chen’s work [5] was also interesting in the sense that they have shown
that higher-level categorization mistakes cannot be recovered on lower lev-
els by simply combining the estimates of the parent and the child category
nodes. We believe that, in order to benefit from the hierarchical structure
of categories, intrinsic relations between categories on the same branch of
the hierarchy must be discovered and reflected in the computations.

In this paper, we were working with goods tenders only. In the next
phase, we plan to expand the applicability of the current work to services
as well as goods, and to vendors as well as tenders.
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6 Conclusion

New Brunswick’s online tendering system organizes tenders into a set of
categories arranged in a hierarchy of goods and services. Each category
has a unique GSIN code. Whenever a new tender is open for bidding,
a code is selected for it. Vendors select codes of interest, and they are
notified electronically only if their selected code shares a branch with the
code selected for the new tender. Thus selecting appropriate codes is vital to
both the purchasing agent and the vendor. Our TC system (semi-)automates
code selection for tenders, using historical data.

This work is significant for its effect in the application domain. Cur-
rently the live NBON system does not incorporate a text categorizer, and so
end-users need to select from among the 15,913 different categories. While
experienced users can select codes quickly, non-experts including members
of the general public, must navigate the hierarchy to select an appropriate
code. If text categorization methods can reduce this to a selection from
among 10 choices, much human time can be saved every day.

Our work is ongoing, but so far we have found that the näıve Bayes
approach applied to text categorization is appropriate for this task. We
plan to do more experiments with Bayesian networks and to investigate other
techniques. Besides describing our experiences with a real world application,
this paper also serves to bring together ideas from different spheres: näıve
Bayes applied to the Semantic Web, and näıve Bayes applied to e-business
applications.
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