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Abstract 
 

The goal of the machine simulator research project at IMTI is to develop a generic mechanical system 

simulator. With classical dynamics modeling techniques, dynamics equations for different multibody systems must be 

derived individually and separately prior to the simulation and control. This is only suitable to systems with fixed 

topologies or configurations. Therefore there is a need to develop a generic approach for arbitrary multibody 

systems. In this paper, we derive a generic form of dynamics equation by using recursive kinematics and dynamics. A 

topology matrix that defines the configuration of 3D open branch multibody systems is expressed explicitly in the 

equation. This leads to a system-independent form applicable to branch structures of arbitrary complexity. Based on 

this generic form of dynamic equation for open branch, we also developed constraint dynamics modeling and 

numerical algorithm. The practical applicability in real time simulation has been demonstrated with a few 

application examples. 

 

Keywords: Machine simulation, mechanical system,  multibody dynamics, real time simulation 

1. Introduction 

Designers and manufacturers are presently facing challenges to stay competitive and deliver products with high 

quality and low costs. Technologies such as virtual prototyping and virtual manufacturing are becoming enabling 

technologies to speed up the process by evaluating over virtual models much before the physical product are made 

and tested. Machine simulation is a vital component in virtual prototyping and manufacturing. 

 

Conventional machine simulation is based on the traditional dynamics modeling techniques. These techniques 

demand dynamics modeling to be done prior to simulation. While the dynamics modeling obtained is specific and 

only suitable to this system. Thus, the simulation of every new configuration of machine or a new product has to 

undergo the process of deriving dynamics modeling repetitively. This is a highly time consuming and expensive 

process.  

 

In this paper we present the methodology and results of our core project: Machine Simulator, in which the 

primary goal is to develop a generic system.  Developing a generic system requires new techniques for multibody 

dynamics. The idea is to derive a set of body-independent and system-independent dynamics equations, so that it can 

be used in arbitrary mechanical systems without the change of the formulation. 

2. Dynamics For Generic Mechanical System 

2.1 Topology Of Arbitrary System 

Parts (bodies) in a mechanical system are linked in a certain topologic relationship, called a configuration. This 

relationship can be presented by topologic matrix AIM[1]. We use the same definitions of topologic matrix AIM and 

attachment vector 
ie
as for 2D in, by extending 1×∈ S

ei
R to 33

3 )( ×∈ S

e RI
ξ

 for the 3D case [2].   
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2.2 Recursive Kinematics 

Without loss of generality, for a rigid body ei, let 3
RR ∈COM

i
and 3

RR ∈HP

i
 be the position vector of the center 

of mass (COM) and Hang Point (HP) (shown in Figure 1 (a)) in global coordinates (inertial frame)  respectively. 

Also, let 3
Rr ∈HP

i
and 3

Rr ∈HP

i
 be the vector from COM to HP in global coordinates and COM body-fixed 

coordinates, respectively, and )3(SOi ∈A  be the transformation matrix of COM body-fixed frame of body ei relative 

to the global frame. Finally, let 3
Rv ∈HP

i
be the unit vector of the axis of Hang Point joint of ei, and 

iω  and 3
Rα ∈i

 

be the angular velocity and acceleration vectors of ei in global coordinate, respectively. We have the following 

equations 

 HP

ii

COM

i

HP

i

COM

i

HP

i rARrRR +=+=  (1) 

 
i

HP

iui qvωω +=  (2) 

 r

i

HP

ii

COM

i

HP

i γrαaa +×+=  (3) 

 q

ii

HP

iui q γvαα ++=  (4) 

where 
iq  and 

iq  are the HP joint value of ei and its time derivative with respect to its parent body eu, respectively; 

and ( )HP

iii

r

i rωωγ ××=  and ( ) i

HP

ii

q

i qvωγ ×=     

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Multibody system       (b) Branch structure                             (c) A rigid body 

Figure 1   Branching type multibody system graph 

If we number the rigid bodies in the order of u, i, j, k, n, p, r, s from the layer of body ei to the lowest layer, we 

can have recursive equations for any body in the path, say body ep 

 ∑∑
==

++=
p

i

q
p

i

HP

up q
ξ

ξ
ξ

ξξ γvαα  (5) 

 ( ) ( )( )∑
=

++−×−−×+−×+=
n

i

dHP

pp

qHP

pp

HPHP

pipu

HP

i

COM

p q
ξ

ξξξξξξξ ,1,,, )( γrdγrdvrdαaa  (6) 

where 
ip ,d is the vector of from the HP of i to HP of p and ( )ξξξξξξ ,1,1 ++ ××= dωωγ d  

2.3 Dynamics Equation

 Applying Newton-Euler’s equation [3] [4] to rigid body ei, we have  

Joint 
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 ∑∑
Ω∈∀

+++=
1,

,,

ijej

AP

ij

HP

ii

ext

i

COM

iim FFWFa
ξ

ξ
 (7) 

 ( ) ( ) ∑∑∑∑
Ω∈∀Ω∈∀

+×+×+×−×+=
11 ,

,

,

,,,,, )(

ijij ej

AP

ij

HP

i

ej

AP

ij

AP

ij

HP

i

HP

iiii

ext

i

ext

i

ext

iii TTFrFrωJωFrMαJ
θθ

ξ
ξξ

η
η

θθ  (8) 

where, mi, 
θθ
iJ are the mass and inertia tensor, respectively, of body ei in global coordinates, ext

i,ξF  and ext

i,ξr  are the ξth 

external force and position vector from COM to its application position in global coordinates for body ei. 
ext

i,μM  is the 

μth external moment, Wi is gravity force vector;  HP

iF  and HP

iT  are the joint force and torque vectors at HP applied to 

ej, respectively. Finally, AP

ij ,F  and AP

ij ,T  are the joint force and torque at the jth Attachment Point joint (AP) applied to 

ei by the attachment body ej and AP

ij ,r  is the vector from the COM to jth AP in global coordinates.  

Eliminating HP

iF  by substitution of Equation (7) into(8), the dynamics equation for body ei can be expressed as 

 

( ) ∑∑
Ω∈∀Ω∈∀

−+×−+−×=
11 ,,

,

ijij ej

HP

j

HP

i

ej

HP

jij

Ext

i

J

i

COM

i

HP

iiii am TTFdTγrαJ
θθ  (9) 

where, ( )( ) i

HP

i

ext

i

HP

i

ext

i

ext

i

Ext

i WrFrrMT ×−×−+= ∑∑
ξ

ξξ
η

η ,,,
 and )( iii

J

i ωJωγ θθ×= .  

For an ideal joint without damping, combining recursive equation  (5), (6) and (9), we have a dynamic equation 

in terms of the joint acceleration
iq , extended moment of inertia 

iJ and four wrench terms as  

 
Att

i

Ha

i

Ext

i

v

iii FFFFqJ +++=
 (10) 

where v

iF  is the Coriolis and centrifugal wrench term, Ext

iF is the external force wrench term, Ha

iF  is the 

coupling term with the motion of parent body eu, and Att

iF is the coupling term for the attachment bodies 

 HP

ie

ii

sys

THP

ii i
J vIΧJv )(ˆ)( 3−=  (11) 
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i
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i

r

i
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ii
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i
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i
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i
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i mF γvγrvγJv −×−−=  (12) 
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i

THP

i

Ext

iF Tv=  (13) 

 ( )( ) u

Eff

i

THP

i

HP

i

T

e
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i
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i i
F αJvav −×−= ˆ  (14) 

 
( ) ( )

ii esys

THP

ie

i

sys

THP

i

Att

iF ΦvQv −−=
 (15) 

where
ξe
, 

ξe
ˆ , )( 3I

ξe
 and )(ˆ

3I
ξe

 are the attachment vectors of 
ξe , which reflects the topology of the system. In 

this equation, 
iJ  is not only the function of mass and inertia of the body itself but of all the attached bodies as well. 

Equation (10) is a generic dynamic equation for arbitrary mechanical system since the topology of the system is 

expressed explicitly in the equation.  

We have developed a numerical algorithm to solve the dynamics equations for generic system. More details 

about the numerical algorithm and validation can be found in [2] and [5]. Based on equation we have also developed 

point constraint dynamics and algorithm.   

3. Applications 

3.1 Simulation of a Robot 

This application shows the use of current generic approach for open branch system, a puma robot as show in Fig 

3. The robot is driven by separate motors for each joint using either torque control or velocity control. In the 
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demonstration process, the robot is assembled component by component in real time, which gives the idea how the 

techniques work for changeable mechanical system. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Puma robot model 

3.2 Simulation of a Four-Bar Mechanism 

With two constraint cases, we demonstrate the validation of the constraint modeling and numerical algorithm 

discussed in previous sections. The first application is a four-bar mechanism with Point-Point constraints, Figure 4 

(a).  The Bar 1 is connected to base with a rotate joint J1 and is driven by an external torque.  Bar 3, the constraint 

body C, has a connection to constraint source object at CP. This connection is physically a revolute joint too. Figure 

4 (b), (c) and (d) shows the external torques and joint velocity and constraint force with time, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Four-bar mechanism     (b) External torque 
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(c) Joint velocities    (d) Constraint force 

Figure 4 Four-bar mechanism simulation 

3.3 Simulation of a Crank-Slider  

The third example is a Crank-Slider mechanism as shown Figure 5 (a). A crank connected to the base with a 

rotational joint J1 and is driven by an external torque. In this example, there are two constraints. The point (CP1) at 

the center of the joint J3 between the Link and Slider and is constrained to move along the x-axis. Another point CP2 

on the Slider is also allowed moving along x-axis. This is the Point-Line constraint case. Figure 5 (b), (c) and (d) 

shows the external torques and joint velocity and constraint force with time, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Crank-Slider mechanism    (b) External torque 
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(c) Joint velocities    (d) Constraint force 

Figure 5 Crank-Slider mechanism simulation 

4. Conclusions 

The generic dynamics equation present in this paper is a generic approach for multibody systems that allows 

arbitrary mechanical systems to be simulated, without having to re-derive system dynamics equations repetitively. 

The use of the incidence matrix that defines the configurations of 3D open branch multibody systems leads to a 

system-independent form applicable to branch structures of arbitrary complexity. The generic dynamics equation is 

used for each individual body in the system to form a system of dynamics equations. We have developed 3D 

dynamics equation for open branch multibody systems connected by rotation joints such as pin, universal and sphere 

by using recursive kinematics and dynamics. Based on the open branch equation, we developed constraint dynamics 

modeling and associated numerical algorithm. 

  

Utilizing the C++ dynamic equation solver developed in IMTI, the real time machine simulator is a platform for 

generic mechanical system simulations. We have demonstrated several simulations applications such as puma robot, 

four-bar mechanism and crank-slider mechanism. The simulation have shown the procedure of the assembly or 

reconfiguration of the systems in real time, and demonstrated the applicability of the techniques in real time 

simulations for reconfigurable systems. Further research is being conducted for more complex systems. 
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