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Abstract. For the purpose of gene identification, we propose an approach to 
gene expression data mining that uses a combination of unsupervised and 
supervised learning techniques to search for useful patterns in the data. The 
approach involves validation and elimination of irrelevant data, extensive data 
pre-processing, data visualization, exploratory clustering, pattern recognition and 
model summarization. We have evaluated our method using data from 
microarray experiments in a Hepatitis C Virus transgenic mouse model. We 
demonstrate that from a total of 15311 genes (attributes) we can generate simple 
models and identify a small number of genes that can be used for future 
classifications. The approach has potential for future disease classification, 
diagnostic and virology applications. 

1   Introduction 

The field of bioinformatics involves a close link with a number of diverse research 
areas, from genomics and proteomics to computer science, mathematics and in 
particular data mining. This collaboration of disciplines has evolved because of: (i) 
the advances in data production and acquisition facilities, such as mircroarrays and 
high throughput genomics, (ii) the enormous amounts of data that cannot be analyzed 
using ordinary tools, and (iii) the strong interest from many groups (research 
institutes, hospitals, pharmaceuticals, etc.) who want to benefit from this wealth of 
data. Advancements in microarray technology, for example, have overwhelmed 
scientists with expression profiles of tens of thousands of genes from a variety of 
organisms. Researchers have undertaken many efforts to deal with these issues [5, 6, 
8, 13, 15 and 16], and have noticed the lack of powerful and efficient knowledge 
discovery tools, along with well defined knowledge discovery strategies.  

Knowledge discovery is the process of developing strategies to discover ideally all 
previously unknown knowledge from historical or real time data. Microarray related 
applications expect that the knowledge discovery process will help, such that one can 
(i) identify anomalies of certain genes or experiments, (ii) define relationships 



between genes and their functions based on expression profiles, and (iii) build 
diagnosis models for clinical classes, e.g. normal and diseased organs.  

With expression profiles from thousands of genes, the specific objectives of this 
study were (i) to develop a data mining strategy that can deal with a relatively large 
amount of microarray data, (ii) to efficiently search for patterns and meaningful 
relations and (iii) to identify genes that can differentiate between mice expressing 
Hepatitis C Virus proteins (transgenic) and non-expressing age matched controls 
(non-transgenic). We first explain the research problem in section 2. In section 3, we 
describe the data collection process and briefly introduce BioMiner software. In 
section 4 we give an overview of the data preprocessing. Section 5 describes our 
knowledge discovery process and section 6 presents the results. We conclude the 
paper in section 7. 

2   The Research Problem 

Hepatitis C virus (HCV) constitutes a major cause of chronic liver disease around the 
world. Approximately 200 million people worldwide are infected with HCV [4, 10, 
and 15]. The development of a suitable vaccine against HCV is a complicated and 
difficult task due to the broad genetic variability of the virus genome allowing it to 
escape control by the host immune response. There have been genomic studies on 
HCV using various models [1, 10, 11, 12, 13 and 15]. The lack of good in vitro 
models as well as small animal models of infection have hampered medical 
researchers’ abilities to characterize the mechanism by which the virus causes liver 
damage and to identify correlates of protection.  

In this study, transgenic mice expressing HCV core (E1 and E2) proteins were 
produced to exhibit liver abnormalities similar to those of natural HCV infections. 
Researchers are interested to compare gene expression in the livers of HCV-
transgenic mice to that of non-transgenic mice and correlate this with the pathology. 
We obtained gene expression data from HCV-transgenic experiments. We then 
applied our data processing and analysis tools and related data mining technology to 
examine the data, look into possible anomalies, build explicit models, and identify 
important genes. The overall data processing and knowledge discovery process is 
illustrated in Fig. 1 and explained in detail in the next sections.  
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3   Microarray Experiments, Data Collection and Bioinformatics Tools 

Microarray experiments were performed at the Division of Virology, Children’s 
Hospital of Eastern Ontario. RNA was extracted from the livers of 7 transgenic and 7 
non-transgenic mice and analyzed on Mouse cDNA microarrays. Total RNA was 
isolated using a Qiagen isolation kit (Mississauga, ON, Canada) and used as a 
template to generate cDNA labeled with Cyanine dye-conjugated (Cy3-green or Cy5-
red) dUTP (Amersham Pharmacia). Array images were collected for both Cy3 and 
Cy5 using a ScanArray XL 4000 fluorescent scanner (Packard Bio-chip, CA) with 10-
µm resolution to detect Cy3 and Cy5 fluorescence and image intensity data were 
extracted and analyzed using QuantArray 3.0 (Packard Bio-chip, CA) software. 

The data consisted of seven microarray experiments (biological repeats). Every 
data set (array) consisted of 30622 rows of readings of mouse genes, and 578 rows of 
controls. There was one pair (Row 1 and 2, 3 and 4, … 31199 and 31200) of duplicate 
readings for each gene (clone) or control. Columns specify readings from a non-
transgenic mouse (Cy3, Channel 1) and a transgenic (Cy5, Channel 2), respectively. 
These readings include background, intensity and many other experiment related 
technical parameters for each channel. Cui and Churchill [3] suggest that for a given 
number of arrays, more mice per treatment with fewer arrays per mouse is more 
powerful than fewer mice per treatment with more arrays per mouse. Overall, the 
amount of data was sufficient to understand the variance across the experiments. 

A specialized microarray data pre-processing tool, “Normaliser”, was used to 
perform background subtraction, normalisation and filtering of the raw data from 
QuantArray. This software is based on the general principles in microarray 
informatics and is built as an add-in package for Microsoft Excel 2000. We used 
BioMiner data mining software for the rest of data pre-processing and knowledge 
discovery experiments reported in this paper. BioMiner has been designed and built in 
house to provide support for biologists and bioinformaticians performing data mining 
research in functional genomics. One of the key advantages of the software is that all 
available forms of data pre-processing and analysis functionalities are integrated into 
one environment. The data pre-processing and data analysis modules consist of a 
collection of algorithms and tools to support data mining research activities in an 
interactive and iterative manner [6 and 16]. 

4   Data Preprocessing 

We started with the raw data from QuantArray that contained experimental results 
from Channel (Ch1) and Channel 2 (Ch2). For our knowledge discovery studies, only 
background and intensity columns for each channel of each gene were used. 
Following a preliminary investigation, Normaliser was used to transform the raw data. 
The data before and after normalisation were then compared for validation.  



4.1   Preliminary Investigation and Validation  

This process involved dividing the raw data for each array into Odd and Even subsets 
representing the duplicates. Using BioMiner, all seven arrays (biological repeats) 
were examined for their characteristics, e.g. mean and standard deviation. We 
compared characteristics among the arrays to study the variations and distributions.  

Two statistics need to be described, Skewness and Kurtosis. Skewness is a measure 
of symmetry, or lack of symmetry. A distribution or data set, is symmetric if it looks 
the same to the left and to the right of the center point (mean). Kurtosis shows 
whether the data is peaked or flat relative to a normal distribution. If the Kurtosis is 
not 0, then the distribution is either flatter (< 0) or more peaked (> 0) than normal.  

The examinations of various statistics helped us to understand the characteristics of 
our data, to identify possible anomalies, and if required to repeat the entire knowledge 
discovery process after eliminating certain array experiments. In particular, the 
Skewness and Kurtosis of one array (ID number: 12230633) were much higher than 
those of other repeats whose values were close to each other. The particular 
abnormality of this array will be discussed in detail, in later sections. 

4.2   Pre-processing: Background Subtraction, Normalisation and Filtering 

Normalisation, in the context of 2-channel microarray experiments is a transformation 
to compensate for systematic biases that exist between the two channels of intensity 
data. The normalisation procedures performed are consistent with the microarray 
normalisation recommended in [18]. This resulted in 3 new data columns; background 
subtracted, normalised, Ch1 and Ch2 intensity columns, and a flag column that was 
used for filtering the data. Filtering removed data points identified as anomalous. All 
seven microarray experiments were processed by Normaliser using the same settings 
to generate data sets of background subtracted, log-transformed, normalised and 
filtered intensity values and corresponding relative gene expression values (Log2 

ratios) for all 31,200 rows (genes and controls). Following are the steps: 
1. Background subtraction using the values computed by the quantitation software 

(QuantArray). 
2. Flagging the data for: 

i Spots with intensity in the 5th percentile or lower in either channel. 
ii Spots with intensity in the 98th percentile or higher in either channel. 
iii Spots with intensity/background less than 2.5. 
iv Spots flagged manually during image quantitation. 

3. Conversion of intensities to log2. 
4. Pre-filtering the flagged spots for computing the normalisation correction factors. 
5. Normalisation correction of Channel-2 intensities using a linear regression of 

Ch2 vs. Ch1 log2 intensities by sub-array, such that the slope is 1 and the 
intercept is 0.  

6. Computing the relative gene expression values (Ch2 log2 intensity – Ch1 log2 
intensity). 

7. Filtering of flagged data, if required in (Step 9 below). 
8. Averaging (mean) of spot duplicates, if required in (Step 9 below).  



9. Assembly of intensity and relative gene expression (log2 ratio) data sets of all 7 
experiments as follows: 

i Unfiltered, not averaged 
ii Unfiltered, averaged 
iii Filtered, averaged   

4.3   Additional Processing and Validation   

The objective of this step was to analyze the characteristics of the data sets after 
transformation. The new data sets (Sect. 4.2) were processed accordingly before 
applying BioMiner software for validation (Fig. 2). Special attention was paid to the 
filtering (Step 7, Sect. 4.2) since this step influences the research through eliminating 
some data. Therefore, filtered and unfiltered data sets were separate routes or 
directions through the knowledge discovery process. The unfiltered data set was split 
into two directions (or sub-routes). In the first sub-route, the paired spot duplicates 
(adjacent Odd and Even rows) were averaged as performed on the filtered data. In the 
second, the spot replicates were split into two separate data sets (Odd and Even). As 
to this second group (or sub-route), comparative examinations were carried out 
between the Odd and Even data sets.  

Using BioMiner software we observed that pre-processing had substantial effects 
on the data distributions. The histograms of Ch1 and Ch2 showed bell-shaped normal 
distributions and the scatter plots presented a linear relationship between Ch1 and 
Ch2. These were consistent with the objectives of pre-processing. The standard 
deviation of the ratio distribution of one array (ID: 12230633) was two-fold greater 
than almost all other arrays.  This is the same array that showed considerably higher 
Skewness and Kurtosis than other repeats (Sect. 4.1). This “abnormal” array was 
flagged to assess its influence on the knowledge discovery process. 

We now had three groups of data (Fig. 2) for knowledge discovery experiments: 
i Background subtracted, normalised, filtered data sets of seven arrays with 

transgenic (Ch2) and non-transgenic (Ch1) readings, and their ratios. For this 
group, the value for each gene (row) is the average of odd and even rows. 

ii As (i) but unfiltered. 
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iii  As (ii) but split into 2 data sets containing odd and even rows, respectively. The 
contents in this group were similar to the other two groups with two channels. 

5   The knowledge Discovery Process 

The knowledge discovery process involved choosing data mining algorithms, 
selecting suitable options and understanding what to do before taking the next step.  

5.1   Unsupervised Learning -- Clustering 

Based on the objectives of the study listed in section 1, the first strategy was to apply 
an unsupervised learning method (i.e. using the Clustering module of BioMiner) to 
identify genes that have certain common properties. This was done on all the data 
from the 7 arrays. We used this method to (i) group genes based on a similarity or 
distance measure, (ii) identify and select the most important groups (i.e. up- or down-
regulated), and (iii) reduce data dimensionality in order to narrow the search for 
patterns (“Data Reduction” in Fig. 1). We used K-Means clustering, where K is the 
number of clusters for each run. Two major routes for clustering are described: 

(i) Clustering genes of each array on values of the two channels: Filtered, averaged 
data sets were selected for this analysis. Here, “difference-in-shape” was used as the 
distance measure (Eq. 1). Each cluster is represented as a line connecting Ch1 and 
Ch2 centroids (average expression value of genes in the cluster). The slope of each 
line reflects the ratio of Ch2 over Ch1 of that cluster. The significance of regulation 
was jugged visually based on this slope. For each array, we selected two clusters that 
contained the most significantly differentially expressed genes (up- or down-
regulated: Ch2 vs. Ch1). Then, up- or down-regulated groups of all seven arrays were 
compared to select the most common genes among them. By experimenting with 
different values of K (number of clusters) a specific K was chosen such that the final 
output through this route yielded 41 to 159 most significantly modulated genes. 

(ii) Clustering genes on the ratios of all seven arrays together: Filtered, averaged 
(sub-route a) and unfiltered, averaged (sub-route b) data sets were studied separately. 
This time, “difference-in-size” was used as the distance measure (Eq. 2). Since ratios 
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from seven arrays were used directly for clustering, the significance of differential 
expression was also based on the ratios of Ch2 over Ch1. We selected one cluster 
with the most positive centroid (up-regulated) and the other with the most negative 
centroid (down-regulated), for two sub-routes (a and b), respectively. The k-value was 
set in the same manner as in route (i). 

5.2   Supervised Learning -- Pattern Recognition 

To build explicit models from these clusters of genes, classification techniques were 
used to identify the most informative genes that can discriminate between transgenic 
and non-transgenic mice. The Pattern Recognition module of BioMiner provides 
supervised learning techniques including discrimination and prediction algorithms 
mainly from the WEKA [17] machine learning toolkit. From this collection, the J4.8 
Decision Tree induction algorithm [14] was selected to generate tree structures for 
class assignments. Decision trees are easier to understand and interpret by domain 
experts, such as biologists, than regression trees (e.g. CART and MART [2, 7 and 9]). 
Rules can be derived from decision trees. In addition, decision trees are easier to 
combine with domain knowledge and incorporate into knowledge based systems. 

Fig. 3 shows the overall process of searching for patterns. Before applying the 
decision tree algorithm, three data sets were generated corresponding to the results of 
clustering described in the previous section (referred to as “Data Reduction” in Fig. 
3). In these data sets, rows (14 or 28 cases) were channels (Ch1 and Ch2) of all arrays 
and columns were genes (between 41 to 159 features). An extra column, containing 
the label information corresponding to Ch1 or Ch2 (the two classes to be classified), 
was the last attribute vector in the data. From amongst all attribute vectors (genes), 
the decision tree algorithm selected genes with the highest information value, which 
distinguish between the transgenic and non-transgenic mice. The result was a 
classification model, which included a threshold for classification along with a 
measure of strength. 

5.3   Clustering and Pattern Recognition with Exclusion of One Array 

During data processing and validation, one mouse array (biological repeat) was 
significantly different from the other six (Sect. 4.1 and 4.3). This “abnormality” was 
also identified in the results of clustering performed using ratios (Sect. 6). Clustering 
and Pattern Recognition were repeated without this array to see if different genes and 
models would be generated.  

There were no procedural changes for the clustering in Route (i) and Route (ii) 
(Sect. 5.1), since only the “abnormal” array was excluded. The reduced gene lists (i.e. 
the most differentially expressed genes, Sect 5.1) identified through clustering may be 
different, as well as genes (columns) in the corresponding data for pattern recognition 
(Fig. 3). Also for pattern recognition, the cases of transgenic and non-transgenic mice 
excluded those from the “abnormal” array in this round. Therefore, there were 12, 12 
and 24 rows for Route i, iia and iib respectively (Fig. 3). 



6   Results 

Using K-Means clustering with a pre-selected number (K) of clusters, we identified 
the most significant up- and down-regulated genes common to all or most arrays. 
Table 1 shows the number of identified genes in each of the 6 clustering runs. Runs 1 
to 3 include data from all 7 replicate arrays, and runs 4 to 6 exclude data from the 
“abnormal” array. All clustering runs resulted in a data reduction of between 97.4% 
and 99.4% and simplified the search for the most informative genes. 

Table 1. Results of clustering (* clustering runs that exclude data from one array) 

Run # No. of 
clusters (K) 

Original genes Genes identified 
through clustering 

Source of data 

1 5 12601 (avg.) 71 Filtered channel intensities 
2 11 5756 149 Filtered ratios 
3 15 15268 159 Unfiltered ratios 
4 (*) 5 12601 (avg.) 41 Filtered channel intensities 
5 (*) 11 5756 110 Filtered ratios 
6 (*) 21 15268 131 Unfiltered ratios 

 

Fig. 4 is an example of clustering performed on ratios of seven arrays (route ii). 
Each curve is a connection of centroids (Y-axis) of one array across the eleven 
clusters (X-axis). This shows the “abnormality” of one array (#12230633) that has 
been emphasized and investigated during processing and validation (Sect. 4). The 
numbers of genes identified through six runs of clustering, with or without this 
“abnormal” array were different (Table 1). This demonstrates the influences of 
including or excluding “abnormal” data on the knowledge discovery process. We 
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have higher confidence in the genes identified when the “abnormal” array was 
excluded. 

Following identification of significantly up- or down-regulated genes, we built 
models that use one or more of these genes to discriminate the two classes (transgenic 
vs. non-transgenic). The decision tree algorithm generated six fairly simple models 
from the six sets of significantly regulated genes identified through clustering. All 
these models achieved 100% classification accuracy and contained between 1-3 genes 
(Table 2). Fig. 5 shows one of the six models, with two genes. In this model, when 
gene S57 =< 9.111757, then it is Ch2 (transgenic), otherwise, when S57 > 9.111757 
and S101 <= 11.925628 then it is Ch1 (non-transgenic), else, when S57 > 9.111757 
and S101 > 11.925628, then it is Ch2.   

In the last column of Table 2, a total of 8 genes, from amongst all the genes 
identified through clustering, are used for classification. The first three models (Runs 
1 to 3) are quite different based on genes included in their decision trees. With the 
deletion of the suspected “abnormal” array, the decision trees generated accordingly 
(Runs 4 to 6) all agree on S2 as one of the most informative genes. Models 5 and 6 
are simpler in that they only involve one gene. The consistency (identification of S2 
gene) and simplicity of models appear to validate the deletion of the “abnormal” 
microarray experiment. This gene was also highlighted by some preliminary statistical 
analyses on these data sets, e.g. t-test with p-value of 0.01.  

The Pattern Recognition module may identify additional informative genes via 
“discover-and-mask” approach [6 and 16]. Genes discovered in the decision tree are 
removed (masked). The remainder of the data is reloaded into BioMiner to generate a 
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second decision tree that reports the next informative genes as nodes. This process 
may be repeated until (i) a drop in the discriminating accuracy of the decision tree, or 
(ii) until none of the remaining genes are able to distinguish the classes. 

Table 2. Genes identified in models  

Run # Data Sources – Channels (cases) Attributes (genes **) Genes identified  
1 Unfiltered odd and even (28) intensities  71 (Run 1) S43, S17 and S66  
2 Filtered average (14) ratios 149 (Run 2) S57 and S101 
3 Unfiltered average (14) ratios 159 (Run 3) S95 and S66 
4 (*) Unfiltered odd and even (24) intensities 41 (Run 4) S2 and S63 
5 (*) Filtered average (12) ratios 110 (Run 5) S2  
6 (*) Unfiltered average (12) ratios 131 (Run 6) S2  
Note:  * cases exclude data from one array; ** genes listed in Table1 

7   Conclusions 

This paper describes an approach for analyzing large amounts of gene expression 
data. The objective was to search for meaningful patterns related to discrimination 
between HCV transgenic and non-transgenic mice. The knowledge discovery 
experiments performed lead to classification models and the most informative genes. 
Looking at the classifiers generated, we can see the genes involved, the particular 
thresholds related to each gene in the model, the relationships (greater than or less 
than the thresholds), and the strength of these models.  

We have tested our method on microarray data of HCV mice experiments. The 
approach resulted in identification of a small number of the most informative genes, 
from a total of 15311. From the knowledge discovery point of view, a measure of 
success is the extent to which the algorithms establish the best models to discriminate 
different groups. However, from the medical point of view, success is ultimately 
measured in terms of a prediction and diagnosis of the HCV, especially at the clinical 
level. The approach proposed in this research has potential for future disease 
classification, diagnostic and virology applications. 

Also emphasized in our approach are the preprocessing, examination, and 
validation of microarray data before in-depth computation and analysis. These 
investigations provided us with a clear understanding of the data and resulted in the 
discovery of an “abnormal” array experiment. Comparison between the results from 
computations with or without the abnormality further highlighted this discovery. We 
emphasize that attention should be paid to the results of data quality evaluations, both 
before and after normalisation. In many studies on microarray data, validation of data 
quality has not been performed prior to gene discovery analyses.  
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