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Introduction 
 
Processing heterogeneous information is necessary in many domains, but it is specially important in the 
study of complex systems like geologic phenomena responsible for natural hazards. The developments in 
sensor, communication and computer technologies allows the monitoring and storage of different 
geophysical, geochemical and geological variables on a continuous base. In addition, field observation 
and laboratory analysis incorporate more information, also changing with time. Some of the problems 
associated with these large masses of information are: (a) the presence of heterogeneous variables (i.e. 
ratio, interval, nominal, ordinal, and other more complex like images, spectra, etc.), (b) the uncertainty 
associated with the observed variables in terms of observation or measurement errors, vagueness, 
subjectivity, etc, and (c) the incompleteness due to monitoring gaps, irregular sampling frequencies and 
missing data.  
In complex or poorly known processes, knowledge discovery oriented to unveil the underlying structure 
of the process is crucial, specially for revealing patterns and time dependencies, detecting abnormal 
behavior, deriving prediction criteria, and constructing forecasting procedures. 
This paper discusses a hybrid  approach based on a combination of soft-computing techniques for model 
discovery and model-change detection in multivariate time processes with different kind of variables, 
missing data and uncertainty. The models are represented by hybrid neural networks using heterogeneous 
neurons, which accept as input mixed, fuzzy and missing data. The method finds sets of non-linear 
models having bounded prediction accuracy over a target signal, and characterizes the overall time 
dependencies between the heterogeneous time series as probability distributions over their sets of time 
lags. The main steps are: a search in the space of dependency models, and a study of the probability 
distributions and their changes in a selected subset having prediction errors within a preset bound. 
An example is presented using a public domain set of meteorological data, consisting on 20 precipitation 
and temperature series from 10 stations. 
 
Heterogeneous Domains and Multivariate Time Series 
 
Processing heterogeneous information is a continuously growing need specially in geosciences where the 
complex natural systems being studied are characterized by variables of many different kinds (geological, 
geophysical, geochemical, etc). These variables are represented by magnitudes corresponding to different 
measurement scales (nominal, ordinal, interval and ratio), and also by more complex types of information 
as satellite images, instrument records, written reports, diagrams, etc. Some of them are obtained by 
measuring or recording instruments, whereas others are purely judgmental and subjective, determined by 
human experts. As consequence, they have different kinds of uncertainty  associated with them 
(imprecision, vagueness, etc). 
With the developments on sensor, sampling and laboratory technologies the databases grow at an 
enormous rate. Also, when observations are conducted for a given period of time (monitoring), not only 
they contain the information provided by variables which are different in nature, precision and 
objectivity, but also there is a time dependency component. Moreover, the complexity of the physical 
observations, electronic and/or mechanical malfunctionings, human errors and other factors, make these 
databases incomplete, usually containing large quantities of missing values. 
Crucial to the investigation in geosciences is the knowledge discovery process and the data mining of this 
information, where tasks like classification and prediction are of most importance. However, most data 
analysis methods work on single-type data, or allows only very few types simultaneously. Many of them 
have difficulties in handling missing values, and can not account for time dependencies. 
A formal approach for describing heterogeneous information was given in (Valdés  and Garcia 1997) for 
constructing neuron models and in (Valdés  2002b) for general observational problems. 



For describing heterogeneous observational data, different information sources are associated with the 
attributes, relations and functions. These sources are associated with the nature of what is observed (e.g. 
point measurements, signals, documents, images, etc). They are described by mathematical sets of the 
appropriate kind called source sets and denoted by Ψi , constructed according to the nature of the 

information source to represent (e.g. point measurements of continuous variables by subsets of the reals in 
the appropriate ranges, structural information by directed graphs, etc). They should also account for 
incomplete information, as for example, in the following way: ? is a special symbol denoting the missing 
information with two basic properties: (i) if S∈? (S being an arbitrary set) and f  is any unary function 
defined on S, f(?) = ?, and (ii) ? is an incomparable element w.r.t any ordering relation in any set to which 
it belongs.  
A heterogeneous domain is defined as a cartesian product of a collection of source sets: 

Ψ××Ψ= nH �1
ˆ , where n > 0 is the number of information sources to consider.  

As an example, consider the case of an heterogeneous domain where objects are characterized by 
attributes given by continuous crisp quantities, discrete features, fuzzy features, time-series, images, and 
graphs. Individually, they can be represented as Cartesian products of  subsets of real numbers( R̂ ), 
nominal ( M̂ ) or ordinal sets( Ô ), fuzzy sets( F̂ ), set of images ( Î ) , set of time series ( Ŝ ) and sets of 

graphs ( Ĝ ), respectively, all properly extended for accepting missing values. Thus, the heterogeneous, 

time dependent domain is )(ˆ x)(ˆ x)(ˆx)(ˆx)(ˆx)(ˆx)(ˆ)(ˆ tS
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Nn  is the number of nominal sets, On  of ordinal sets, Rn  of real-valued sets , Fn  of fuzzy sets , In  of 

image-valued sets, Sn  of time-series sets, and Gn  of graph-valued sets, respectively  (Fig-1). 
 

 
Figure 1. A heterogeneous, time-dependent multivariate process. Each row is an object described by 
nominal, ordinal, ratio, fuzzy, image, time-series and graph attributes, possibly with missing values (?), 
for a given time. The sampling interval is assumed to be the same for all attributes. 

 
Model Mining with Heterogeneous Neurons and Hybrid Neural Networks 
 
The classical approaches in time series consider mostly univariate, homogeneous (real-valued), time 
series,  without missing values (Box and Jenkins 1994)( Masters 1995)(Pole and others 1994). The 
purpose of model mining in heterogeneous, multivariate, time varying processes is to discover 
dependency models . A model expresses the relationship between values of a previously selected  time 
series (the target), and a subset of the past values of the entire set of series. Different classes of functional 
models could be considered, in particular, a generalized non-linear auto-regressive (AR) model like the 
one given by Equation-1. Note that for the same set of heterogeneous time series, a different model can be 
obtained for each of the series from the set, with different composition. Without loss of generality, the 
rest of the discussion will focus on a mining process targeting a single time series. 
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A hybrid soft-computing algorithm for solving this kind of problems  using genetic algorithms and 
heterogeneous  neural networks (Valdés  and García 1997, Valdés and others 2000, Belanche 2000),  has 
been given elsewhere (Valdés  2002). This approach requires the simultaneous determination of: (i) the 
number of required lags for each series, (ii) the particular lags within each series carrying the dependency 
information, and (iii) the prediction function. A requirement on function F is to minimize a suitable 
prediction error, usually the root mean squared error (RMSE). This is approached with a soft computing 
procedure based on: (a) exploration of a subset of  the model space with a genetic algorithm, and (b) use 
of a similarity-based neuro-fuzzy system representation for the unknown prediction function. Statistical or 
other classical approaches either have difficulties on handling these kinds of situations or can not handle 
them at all (Box and Jenkins 1994) (Pole and others 1994). Clearly, the size of the model space to search 
is immense and it grows exponentially (considering only 10 time series and the first 20 time lags, it 

contains about 10
60

models). The prediction function F is represented by a hybrid neural network with a 
hidden layer composed by heterogeneous neurons (h-neurons). A heterogeneous neuron is a general 
mapping YHHh →× ˆˆ: , where Ĥ  is a heterogeneous domain, and Y  is an arbitrary set. If Hwx ˆ, ∈ , 
and Yy ∈ , then ),( wxhy = A particular class of h-neurons is obtained when Y the real interval [0,1] and 
h is given by a composition of a similarity function ),( wxs (Chandon and Pinson 1981), and an isotone 
automorphism ]1,0[]1,0[: →g  (in general it is a non-linear function). In this case the h-neuron is given 
by ),(),( yxsgwxh �= and called a similarity-based neuron (Fig-2B). This neuron model is flexible 
(heterogeneous data with missing values are its natural input, without the need of data type transformation 
or imputation of missing values), and it is robust. Also it has the general function approximation property 
(Belanche 2000). 
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(A) (B) 
Figure 2(A). A similarity-based heterogeneous neuron. 
Both the input and the neuron weights are objects from a 
heterogeneous domain. The output is a similarity value. 

Figure 2(B). A hybrid neural network 
composed by a hidden layer of 
heterogeneous neurons (H), and an output 
layer of classical neurons (C). The input is a 
heterogeneous object and the output a real-
valued vector. 

Moreover, the s-neuron can be coupled with classical neurons (the scalar product is the aggregation 
function, and the sigmoid or hyperbolic tangent, the activation), forming hybrid neural networks (Fig-2B). 



 
The MVTSMM system is 
an implementation of this 
approach to model mining 
in heterogeneous time 
series as a parallel 
computing algorithm (Fig-
3). The arc is the parallel 
genetic algorithm evolving 
populations of similarity-
based hybrid neural 
networks. The binary 
strings encode dependency 
patterns for the target 
signal, and for each, a 
hybrid neural network is 
constructed and trained 
with a fast algorithm. The 
network represents the 
prediction function F, and 
is applied to a separate 

time-series test set. At the end of the evolutionary process the best models are collected. 
 
A Model Mining Example with Meteorological Data 
 

A multivariate time series data 
set consisting of 20 series with 
1140 observations of average 
monthly precipitation and 
temperatures from different sites 
in the Washington State (USA) 
was chosen. They were recorded 
during the period 1895-1989 
(Masters 1995), and compiled by 
the National Oceanic and 
Atmospheric Administration 
(USA). Originally, this data had 
no missing values (Fig-4). The 
precipitation signal for the West 
Olympic Coastal drainage region 
(the top series) was chosen as the 
target for prediction. Contrary to 
the standard practice in time 
series analysis, no preprocessing 
was applied to the  time series, in 
order to test the approximation 
capacity and robustness of the 
algorithm in the possibly worst 
conditions. A total of 1001 
models were found with a RMSE 
threshold given by the first 
quartile (3.818 ) and they are 
those giving good predictions on 
the test set.  

 
 
Figure 3. Multivariate Time Series Model Miner System Architecture 
(MVTSMM). The models with their RMSError under a preset 
threshold are collected at the end of the mining process. 

 
Target 

 

Figure 4. Meteorological data from Washington State. Upper 
10 are Precipitation series and lower 10, Temperature series. 
The first precipitation series was used as target. 
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A rough picture of the contribution of the different 
signals to this set of interesting models is given by 
the relative frequency with which  time lags from 
the corresponding signal occur as terms in 
Equation-1 (Fig5). It is interesting to see that the 
distribution is clearly multimodal, with some 
signals tending to contribute more frequently than 
others, in correspondence with the location of the 
different hydrological basins w.r.t the North 
Cascades Mountain Range. Moreover, although the 
class of precipitation signals (the first 10 in Figure-
4), contributes the most (as could be expected, 
since the target is a precipitation signal), there is an 
important contribution  from the temperature 
signals as could be expected. Sensitivity analysis 
should be performed as well, in order to evaluate 

the relative RMSE impact of the different lags contributing by the different signals. 
 
Anticipating State Changes in Time-Varying Processes: A Simulation Example 
 
One of the most important problems in predicting the behaviour of complex systems is to anticipate 
changes of state. In order to assess the potential of a detailed analysis of time series information with the 
MVTSMM algorithm, a single time series of length 900 was constructed as a convex combination 
mixture of two linear AR processes in the following way:  

)()3( 2)2(1)(  ),()2(2)1(1)( ttYctYctYttXctXctX εε +−+−=+−+−= , where 4.01 =c , 

5.02 =c , and )001.0,0()( Nt =ε is a gaussian noise with mean=0 and variance=0.001. Clearly, the two 

processes have the same statistical properties, but differ only in the time lags: (1,2) in the first, and (2,3) 
in the second, which is the least possible difference between the two (just one single consecutive time 
lag). The mixed process (Fig-6) is given by )())(1()()()( tYttXttZ αα −+= . 
 

 
Figure 6. Z(t) is a linear AR model computed as a convex combination ( )(tα )of two linear AR 
processes with identical coefficients and generating gaussian noise. The upper image shows the 
probability of each time lag to be included in a model with low prediction error, as a function of time. 
For each time, the mean RMSE of all models found, as a function of time, is shown at the top. 

 
Figure 5. Histogram of signal occurrence in the 
set of models with RMSError <= 3.8178 (the 
first quartile). 



 
The convex combination coefficient was not constant, but a function of time, such that 1)( =tα  for 

300≤t , 0)( =tα  for 600≥t , and it has a smooth transition between the two values for ]600,300[∈t .  
Then, the MVTSMM algorithm was applied on sliding windows of size 200 along the entire series, 
exploring models up a maximum depth of 10 time lags. Within each window, the first 100 values were 
used as test, and the remaining 100 as test. The 10-best discovered models were retained, and the mean 
RMSE of the 10-best models was computed, as well as an empirical probability distribution for the lags 
composing the model. In Figure 6 the distributions are displayed as a grey-level image where for each 
time slice at time t, a black-white grey scale spans the [0,1] probability values for the given lag (along the 
vertical). For t under 300, the image contains only two bright horizontal strips, corresponding to lags 1 
and 2, as expected, whereas for t over 600, the bright strips are those of lags 2 and 3. also as expected. In 
the transition zone (t within 300 and 600), the strip of lag 1 fades whereas that of lag 3 gradually gets 
brighter, and that of lag 2 remains unchanged. The midpoint (450) where the process starts to be more Y 
than X can be clearly identified, with 50 time intervals of anticipation. However, the RMSE and the Z 
process itself show no appreciable change. 
 
The simulation was purposely designed to make the detection difficult, but nevertheless, these results are 
very preliminary. They show, however, that if the dependency models are considered as random 
variables, an in-depth model mining with techniques like the one outlined may unveil the existence of 
hidden internal changes within the process. These hidden or subtle changes might indicate that the system 
is actually in a transient regime, possibly evolving towards a dangerous state. This information could be 
used as an early warning that a major change is about to come, long before the change happens.  
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