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INTRODUCTION

Terrestrial laser scanners (TLSs) measure 3D
coordinates in a scene by recording the range,
the azimuth angle, and elevation angle of
discrete points on target surfaces. They are
increasingly used in a variety of applications,
including manufacturing and  civil infrastructure
systems. However, the error sources of these
instruments are not yet adequately
characterized. There is a lack of standardized
test procedures [1] and detailed uncertainty
budgets for TLS measurements are seldom
available. As Lichti et al [2] described,
measuring curved surfaces using TLS has
always proved problematic. In this context, we
describe here the challenges involved in
measuring a spherical geomefry using TLS.

Spherical geometry is commonly found in
manufacturing environments. In addition, sphere
targets are sometimes introduced into a scene
to register scans from multiple positions of a
TLS. Target spheres are also used to construct
calibrated reference lengths to evaluate the
performance of a TLS [3, 4]. A spherical
geometry is preferred for registration and
performance evaluation experiments because its
geometry appears the same from all view points,
and it is reasonably straightforward to reduce
the point cloud data to a single point, its center.

However, from experiments performed at the
laboratories of the Dimensional Metrology Group
at NIST, we know that some TLS systems are
incapable of obtaining a reliable point cloud from
the surface of a spherical target. The changing
surface curvature, averaging of the laser spot on
the surface, multiple reflections from nearby
surfaces and many other factors contribute to
the scanned data of the sphere appearing either
smaller (squished) or larger (flared) than the
actual sphere. This not only means that the
radius of the sphere is incorrectly determined
but there is also an error in locating the center of

the sphere, whose error direction depends on
the scanner position. Center location error is of
consequence in multiple applications including
scan registration and scanner performance
evaluation experiments conducted using scale
bars with sphere targets on ends.

In this paper, we explore the problem of sphere
measurements  through  experiments and
simulations, highlighting the challenges in
measuring as simple a geometry as a sphere
using TLS.

SPHERE SQUISHING/FLARING AND
UNCONSTRAINED RADIUS

Several factors affect the sphere point cloud
data as mentioned earlier. We discuss
experiments conducted to estimate the effect of
mounting and point density on sphere radius in
this section.

Effect of mounting

In order to examine the effect of mounting
conditions on the observed sphere radius, we
mounted a 50 mm nominal radius media-blasted
aluminum semi-sphere in three different ways as
shown in Fig. 1. In case (a), the sphere is
mounted centrally on an 18 in x 18 in (45.72 cm
X 45.72 cm) aluminum plate with a clearance of
0.5in (1.27 cm) around the sphere. In case (b),
laser absorbing black flock paper is glued
around the sphere (forming a 1.5 in (3.81 cm)
annulus) to absorb some of the secondary
reflections. In case (c), the sphere is mounted
on a much smaller aluminum plate that also has
black flock paper glued on it.

The form error of the sphere was measured to
be 10 ym on a coordinate measuring machine
(CMM). The flatness of the plate (Fig. 1(a) and
(b)) was measured on a CMM to be 55 pm over
its entire surface but only 20 um over a central
circular region of radius 200 mm.



FIGURE 1. (a) a 50 mm radius sphere mounted
centrally on an 18 in x 18 in (45.72 cm x 45.72
cm) plate, (b) 1.5 in (1.27 cm) ring of flock paper
glued around the sphere to absorb secondary
reflections, (c) sphere mounted on a smaller
plate with flock paper glued on it

52

50 W
E 48|
é —H—a
L 46 | —%—b
; ==
S a4y

42 ¢

40 : .

0 5 10 15 20

Distance (meters)

FIGURE 2. Unconstrained least-squares best-fit
radius as a function of distance for three
different cases of mounting, case (a)
corresponds to Fig. 1(a), case (b) corresponds
to Fig. 1(b), and case (c¢) corresponds to Fig.
1(c).

The sphere is scanned four times each at
distances of 2 m through 16 m in steps of 2 m
and an unconstrained least-squares best-fit
sphere is fit to the data. The scans were
performed at 90 points per degree (ppd) along
the azimuth and elevation angle directions. Fig.
2 shows the unconstrained least-squares best-fit
radius (average from the four scans) for each of
the three cases which illustrates that the
mounting of the sphere has a significant
influence on the unconstrained radius.

When mounted on a plate with no laser
absorbing flock paper, secondary reflections
from the plate have a significant impact on the
data quality causing the sphere to appear
increasingly squished at far distances. The
radius drops from 48 mm at 2 m down to as low
as 40 mm at 16 m. In case (c) where a much
smaller plate with laser absorbing flock paper is
used, secondary reflections are significantly
reduced resulting in the radius holding steady at
50 mm even at 16 m scan distance. It should be
noted that points in the outer periphery of the
sphere are not considered in the determination
of the center; only the region of the sphere that
lies within a central cone angle of 120° are used
in the calculation.

Effect of point density

To examine the effect of point density on the
observed radius, a white plastic sphere of
nominal radius 75 mm is scanned at different
point densities from six ppd through 57 ppd
(equal sampling intervals along both the vertical
and horizontal axis directions). The sphere was

placed at a distance of about 5 m from the

instrument. The data is fit wusing an
unconstrained radius least-squares best-fit
sphere algorithm and the resulting radius is
shown in Fig. 3.

Changing point density affects the mirror rotation
speed (for the instrument used in this study),
likely resulting in changing the extent of spatial
averaging over the curved sphere surface,
thereby affecting sphere radius. Fig. 3 shows the
radius changes by at least 3 mm from 6 ppd to
57 ppd.
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FIGURE 3. Unconstrained radius as a function
of point density

SPHERE SQUISHING/FLARING AND CENTER
ERROR

While the error in the radius can be determined
by comparing the radius obtained by the TLS
against that obtained using a reference
instrument such as a coordinate measuring
machine (CMM), the error in the center is not as
easily estimated because the location of the true
center of the sphere is an unknown quantity. As
the amount of squishing and flaring increases, it
proportionally changes the location of the center
as determined by the TLS.

The error in the center location arises because
the squishing/flaring effect is more pronounced
on the outer periphery of the sphere, i.e., region
where the angle of incidence is larger. It is
assumed that the TLS records the correct range
when the laser beam is normally incident on the
surface, i.e., the region of the sphere that is
closest to the TLS (see Fig. 4). A least-square
fit, constrained to the calibrated radius of the
sphere, does not eliminate the center error as
described in the simulations in the next sub-

Measured surface

section.

To estimate the magnitude of the error in the
center location of the sphere, we consider the
artifact shown in Fig. 1 (b). We refer to this as
the plate-sphere artifact. The distance from the
center of the sphere to the plate is calibrated
using a CMM. The plate serves as the reference
for the TLS measurements; an error in locating
the center of the sphere will appear as an error
in the sphere-center to plate distance. The idea,
therefore, is to infer the sphere center location
error from the error in the sphere-center to plate
distance.

In the next sub-section, we describe a simulation
to estimate the error in the center based on the
extent of squishing/flaring, ie., the
unconstrained radius obtained from the
measured point cloud. Subsequently, we
describe experimental data in support of this
simulation.

Simulations

The schematic in Fig. 4 illustrates profiles of a
real sphere surface (solid gray line) and the
point cloud (solid black line) of that sphere as
measured by a TLS system. The measured
surface in this illustration appears more
ellipsoidal than spherical, with the long axis
oriented along the ranging direction, i.e., the
sphere appears squished. The data are
segmented so that data within a cone opening
angle of 120° is retained. As can be seen in the
figure, a constrained fit based on the calibrated
radius of the sphere produces a center Os that is
farther away from the TLS than the true center
O. An unconstrained fit produces a center Oq
that is closer to the TLS than the true center O.

To evaluate the effect of sphere
squishing/flaring, the quantity of interest is the
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FIGURE 4. Error in the center coordinate because of apparent squishing of sphere



error in the center O10. It is difficult to quantify
the center error 010 because the true center O
is an unknown quantity. However, the measured
data does provide another potentially useful
quantity, the unconstrained least-squares best-fit
radius, from which we can estimate the error in
the center 010 through a simple simulation.

For this purpose, we first perform an
unconstrained orthogonal least-squares fit on
the measured data to determine the
unconstrained radius ruw. This provides an
estimate of the extent of squishing or flaring of
the sphere for this TLS/target combination under
these measurement conditions. We then
numerically generate a sphere data set with a
radius ry, centered at a distance r-rec from the
origin where r is the calibrated radius of the
sphere, and truncated over a cone opening
angle of 120°. The data is generated at the
same sampling interval as that of the measured
data. We then perform a constrained orthogonal
least-squares fit with a radius equal to the
calibrated radius of the sphere target. The
distance of the constrained center from the
origin of the coordinate system is an estimate of
the center error 040. In Fig. 5, we plot the
center error as a function of the unconstrained
radius for a sphere of nominal radius 50 mm.
The plot shows that the error in locating the
center increases by 0.24 mm for every 1 mm
change in the observed unconstrained radius.
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FIGURE 5. Center error along the TLS ranging
direction as a function of unconstrained radius

The plot in Fig. 5 may be assumed to be linear
for all practical purposes, although in reality it is
not. The slope of the graph is -0.24 for a cone
opening angle of 120°. The slope factor can be
calculated for other cone opening angles in the

same manner as described above. While Fig. 5
is based on a sphere of nominal radius 50 mm
placed 10 m away and sampled at 92 ppd,
simulations indicate that the results are not
strongly influenced by the distance to the target,
the point density, or the radius of the sphere.

Verifying the simulation through an

experiment
In order to experimentally validate the above

simulation, we mounted a sphere of nominal
radius 50 mm on an aluminum plate as shown in
Fig. 1(b). The front surface of the plate is media-
blasted to a matte finish. The sphere-center to
plate distance was calibrated on a contact probe
CMM and determined to be 0.02 mm.
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FIGURE 6. (a) Unconstrained radius as a

function of distance (b) Sphere-center to plate
distance

The artifact is scanned four times each at
distances of 2 m through 20 m in increments of



3 m. The sphere data from the scan is fit to an
unconstrained radius least-squares best-fit
" sphere and the resulting average radius from the
four scans as a function of range is shown in
Fig. 6 (a). It is clear that there is considerable
squishing at the 20 m distance compared to the
2 m distance, with an unconstrained radius of
46.9 mm at 20 m and 49.7 mm at 2 m. From the
simulations in the previous section, we
anticipate the center to have moved by -
0.24%(46.9-49.7) = 0.672 mm. The
experimentally determined change of the
sphere-center to plate distance is 0.66 mm,
which is in excellent agreement with the
simulations. Fig. 6(b) shows the change in the
sphere-center to plate distance with respect to
that at the reference position (2 m distance)
obtained experimentally at the different ranges
along with the simulation predictions based on
unconstrained radius. This experiment validates
the simulation and clearly confirms the
movement of the constrained fit center because
of sphere squishing/flaring.

CONCLUSIONS

TLSs are increasingly used in applications
requiring accuracies on the order of a few tenths
of a millimeter or more. However, the error
sources in these systems are not carefully
documented and detailed uncertainty budgets
are not available. In this context, we describe
the challenges associated with measuring a
spherical geometry using a TLS. We have found
that the sphere point cloud obtained from a TLS
is impacted by the material in close vicinity to
the sphere and this sometimes results in the
sphere appearing squished or flared. Other
factors such as averaging of the returns over a
laser spot, the shape of the spot, etc., also affect
squishing/flaring. While the error in the observed
radius due to squishing/flaring can be easily
quantified, the error in the center location is
more challenging to estimate. For this purpose,
we built the plate-sphere artifact, where the
distance from the center of the sphere to the
plate is calibrated. We infer the error in the
sphere center location from the calculated
distance between the sphere center and the
plate. The experiments and simulations
described in this paper indicates that care must
be taken when processing TLS data because of
the potential for error sources that are not yet
understood.

Many applications require stitching of point
clouds which in turn require registration. Based

on the results in this study, obtaining sub-
millimeter accuracy during registration using
sphere targets will be a challenge. Also, this
study clearly indicates that if relative range
measurements are performed (i.e.,
measurements along the radial direction of a
scanner) using sphere targets, the observed
error may not only be due to the intrinsic error in
the range measurement technology, but also
due to the geometry of the sphere target and the
properties of the surfaces that surround it.
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