
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Visual Support for Version Management
Wein, M.; Cowan, Wm.; Gentleman, W. M.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7ac75c74-c88b-46f6-91cb-c3e4b7d622e4

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7ac75c74-c88b-46f6-91cb-c3e4b7d622e4

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l’information

Visual Support for Version
Management

M. Wein*, Wm Cowan** and W. M. Gentleman*
*Software Engineering Laboratory
**University of Waterloo

March 1992

NRC No. 33170

This report also appears in Proceedings of the 1992 ACM/SIGAPP Symposium on Applied

Computing (SAC) ’92, Kansas City KS, March 1–3 1992, pp. 1217–1233.

Copyright 1992 by

National Research Council of Canada

Permission is granted to quote short excerpts and to

reproduce figures and tables from this report,

provided that the source of such material is fully

acknowledged.

Additional copies are available free of charge from:

Publication Office

Institute for Information Technology

National Research Council of Canada

Ottawa, Ontario, Canada

K1A 0R6

Copyright 1992 par

Conseil national de recherches du Canada

Il est permis de citer de courts extraits et de

reproduire des figures ou tableaux du présent rapport,

à condition d’en identifier clairement la source.

Des exemplaires supplémentaires peuvent être

obtenus gratuitement à l’addresse suivante:

Bureau des publications

Institut de technologie de l’information

Conseil national de recherches du Canada

Ottawa (Ontario) Canada

K1A 0R6

Visual Support for Version Management

M. Wein*, Wm Cowan** and W. M. Gentleman*
* National Research Council of Canada

** University of Waterloo

Abstract

Development of large systems requires a disciplined
approach to dealing with configuration management. The
cognitive load placed on the programmer is potentially large
and the burden can be eased considerably if the programmer
is presented with a clear view of the file system containing
source files of the system under development, and the view
is augmented with suitable tools. The paper presents the
argument that tools and the techniques which exploit the
visual metaphor and provide good reference models will
increase the effectiveness and productivity of the
programmer. This paper discusses the perceptual issues
involved and presents the benefits of the visual approach in
the context of a novel configuration control system.

Introduction

Software engineering of large systems is a hard problem: an
important factor in its difficulty is the largeness of the
enterprise. Software systems have a very large number of
parts and the software engineer must move frequently
between different views of the system: from individual
statements to libraries of functions, from instructions to data
to execution state. To cope with this complexity
programmers often build visual metaphors of the system as
they work on it, encouraged by a variety of sources, from
undergraduate textbooks to on-line tools. Clearly, tools and
techniques for software engineering should consider the
existence of the programmer’s visual metaphor, since ones
that support and enhance it increase productivity, while ones
that conflict with it have the opposite effect.

This paper discusses the role, that visualization plays in
software engineering, concentrating on a particular
application: configuration and version management. This
application is attractive for researchers interested in visual
metaphors because all operations are centred on a single
well-structured entity: that part of the file system that stores
all aspects of a program — source, executables and tools.
This entity is generally far too complex for any programmer
to hold completely in his or her conscious mind at one time.
Consequently it must be accessed, navigated and
manipulated using a variety of views at different scales. In
discussing these tools we will demonstrate the configuration
management metaphor used in developing the Harmony
Operating System [1], showing how its integration with the
natural view of a file system makes it easy to understand and
use. The configuration management system has been
presented previously [2, 3], but the emphasis was on
software engineering problems, and although pictorial
illustrations of the visual metaphors it uses are essential for
explaining it, its important visual properties have never been
discussed.

The next section gives a brief overview of configuration
management systems, and is followed by a discussion of the
dominant visual metaphor for a file system, emphasizing
how it exploits properties of the human visual system. The
specific model for configuration and version management is
then described, and placed in a visual metaphor that accords
well with that of the file system. The paper then closes with
a discussion of tools and working styles that follow from the
visual metaphor, followed by a discussion and suggestions
for further research.

A comment on terminology is in order. The original term
“version control” was subsequently modified to “revision
control,” implying evolution over time. This paper
concentrates on maintaining many simultaneously valid
versions, in fact, entire and consistent configurations.
Therefore, the functions performed by the system discussed
here are both for version and revision control as well as for
database aspects of configuration management.

History of Configuration Management

The first system for version control (or revision control) was
introduced as a commercial product [4] and it was followed
by the two popular systems, SCCS [5] and RCS [6]. The
principal features of these systems that have become part of
many successors are: (1) support for evolution over time
with a scheme of storing deltas or changes from one version
to the next and, (2) control over concurrency of revision
through a discipline of check-out and check-in of files thus
ensuring one writer at a time. Both of these systems assume
that there is a single, shared underlying file system. This
assumption was a natural one at the time these systems were
introduced. Both SCCS and RCS have been used extensively
in managing versions of programs with an emphasis on
managing evolution over time.

The approaches to revision control found in SCCS and RCS
have been generalized to support development on networked
workstations (on a local area network) [7, 8, 9]. Further
generalization to Wide Area Networks is reported in [10]
where bandwidth limitations are overcome through
discretionary, but controlled replication of files, as required.

The evolution of revision control, from one that is centred
on a single file tree in a time-sharing system, to a distributed
system has been driven by changes in computing
environments as software development migrated to
workstations to take advantage, among others, of the richer
user interface where improved visualization tools are
possible.

The original systems assumed a linear evolution of versions
with only a few branches and consequently few

2

simultaneously valid versions. Increased complexity of
target environments, particularly in realtime systems has
further increased the cognitive burden on the programmer. A
theoretical study of Directed Acyclic Graphs of evolving
versions is reported in [11]. The need for a consistent
framework for software development with a clear model of
the process in a distributed environment is discussed in [12].
An in-depth and recent discussion of Configuration
Management by one of the originators of the discipline is
presented in [13]. The first and apparently the only prior
instance of recognition that a visual metaphor is applicable
for navigating in complex structured environments was
described in the context of an approach to managing
documents in an automated office [14]. This paper
highlights the fact that there is an overall increase in this
cognitive burden on the developer and presents an analysis
of how programmers navigate in file systems, how they
visualize these systems.

Visualizing File Systems

A file system is usually viewed as a tree. The file system
may be an actual tree structure or it may be presented to the
programmer as such. Even when the file system is not a tree
but is, for example record-oriented, as in Cedar [8], the
navigation tools are those of a tree-structured file system
(Unix cd syntax for relative or absolute moves). Trees have
the advantage of having a visualization that is extended in
two dimensions: depth and breadth. In addition there is a
root, which provides a reference point. Also, the concepts of
Zoom and Pan are well-understood and can be used for
display purposes and furthermore, are well-defined for a
structure such as the file tree. They can be used as concrete
operations within a real visualization of the file system, or as
virtual operations within a purely mental representation. In
the latter case the are natural analogues to operations
performed continually by the human visual system.

The simplest navigation system is, in fact the Unix
command cd — one step at a time, based on “unique
designator” of a file which is the complete path from the
root. The complete path is usually a combination of implicit
notation (current directory) and explicit notation (list of
steps: xxx/yyy/zzz). Navigation in a file tree is similar
to navigating while driving a car: the current location plus
direction indicators are used to indicate the immediate
direction to take. (We assume here that directories are well-
enough named and that the model of the file system in the
programmer’s head is effective. If so, directories function as
well as direction indicators, as highway ones do.) The
prevalent directory model, as in Unix gives a pin-hole view
of the file system, and that only when cd is augmented by
another command, pwd, to discover the current location.

A better navigation system is one that uses a two-
dimensional representation to show the file system extended
in two dimensions, so that one is navigating as if with a road
map, but is in fact even better. Instead of locating the
destination and finding a route to it which is then followed
step by step, as occurs when one is using a map for
navigation, the destination is achieved as part of the
selection process. In this respect it may be more like using

an airline timetable. The destination is chosen; the timetable
provides an assurance that there is a path from the current
location to the destination; choosing to take the path
produces the destination without any concern for
intermediate points that are passed through. (Control over
intermediate points may still be interesting to a user who is
interested in performance: don’t pass through O’Hare!) The
main technical problem is the question of scaling. (One
author’s home Macintosh has 10,000 files; a typical “source
tree” has comparable number.) Large numbers of nodes
cannot be shown individually on a 1000x1000 display. (The
home Macintosh must use 400 pixels per node!) Devices of
adequately high resolution — film recorders can put about
5,000,000,000 pixels on a page which is more than adequate
to produce static renderings. However, these are unsuited for
displaying the dynamic structure of a file system.

One answer to coping with scaling lies in employing pan and
zoom. Users easily construct an overview based on two
capabilities: the ability to perform visual search in parallel,
making it possible to find an object with pre-defined
characteristics efficiently, and the related ability to
remember the locations of objects and the contents of
locations easily. A fascinating ability of an idiot savant was
reported by Luria in The Mind of a Mnemonist [15], where
the entire basis for the ability to remember many facts was
based on using the spatial metaphor. Likewise, the project at
Media Lab at MIT to construct the media room [16] was
based on everyone’s dependence on spatial relationships.
Taking advantage of these abilities the standard strategy that
humans use to organize complicated visual input is as
follows: Locate objects of interest by processing an
overview in parallel; then direct attention at interesting
objects that have been located; attention can then be further
focussed on sub-objects if desired. A visual representation
with well-designed zoom and pan facilities interacts well
with these human capabilities. The user can begin with a
view of the file system showing only large scale features,
find the part that contains the needed files, zoom in, centred
on that part to see greater detail, iterating until the node of
interest is found. In general, the user forms a model of the
file system extended in space, knowing the location of the
desired file. Then, landmarks visible on the large scale view
allow him or her to select a smaller scale view, and so on
until the file of interest appears. The scheme is particularly
effective if views, with at least two scales, are presented at
any one time. A well-designed tree usually allows the larger
scale views to be constructed using only the higher levels of
the tree. As a result the structure is both cognitively and
computationally efficient.

Three comments about this scheme must be made. First, an
interface like the Macintosh Finder or the OpenLook
Filetool does not really implement this scheme. The Finder
shows all files in each open folder, so is a peephole into the
system, not a bird’s eye view. It is, in fact, common for users
of the Finder to keep open all folders between the current
folder and the root, using a systematic arrangement of
windows on the screen. Multiple branches are presented by
keeping the corresponding windows open. A utility like
MacTree Plus [17] is much closer to being able to present
the scalable view of the file system that is desirable (see
Figure 2). The OpenLook Filetool adds a graphical display

3

of the path from the root to the current directory, which is
useful information, but incomplete compared to the large
scale overview. In particular, it presents a strictly linear path
along one set of branches.

Second, the user’s ability to retain information about the
contents of different locations in the spatial metaphor
depends on the file system maintaining the same spatial
structure, but how precisely, is currently an open question. It
is obvious that major rearrangements of the large scale
structure of the file tree make the zooming paradigm
unworkable, and that minor changes in which files maintain
their relative positions is quite acceptable. But the point at
which acceptable changes become unacceptable is not
known, although the problem arises in other interface
applications [18].

Third, much information about the mapping of the file
system structure onto two-dimensional space is maintained
internally by the programmer, making frequent reference to
the pictorial representation unimportant once the structure is
well-learned. Thus, it is common to find programmers using
the spatial metaphor even when spatial display tools are not
available to them. For example, when a programmer draws a
representation of part of a file system on a napkin in a
restaurant it is almost always laid out in accord with this
metaphor. In this case they are using a spatial memory as an
aid similar to the one used so impressively by Luria’s
mnemonist.

The DaSC Model of Configuration and Version
Management

Rationale and basic system

The DaSC (Database Selectors Cel) model for configuration
and version management places the software source files
into an overlapping set of layers. Changes and evolution are
supported by the layer model where the current view of a
particular version is the view through all the relevant layers
with the most recent layer on top and the original release in
the bottom layer. The basic major release of the system is in
the bottom read-only layer. The term Cel in DaSC is derived
from the animator’s Cel which is a sheet of celluloid on
which portions of an animation image are drawn. A
complete frame of an animated film is a sandwich of cel
layers, each containing a portion of the image.

At the National Research Council of Canada the DaSC
system is used for version control of a realtime
multiprocessing operating system for configurable single-
board computers. The target systems are building-block
computers with a different valid version for each
configuration. The need to maintain additional valid versions
for different development systems and compilers further
escalates the problem. Thus, the DaSC system must support
fifteen to twenty simultaneously valid versions, all of which
evolve over time. The software engineering requirement for
supporting many valid versions is described in [2] and [3]
while the visualization issues are discussed here. In order to

discuss the issues of visualization the actual system needs to
be described in more detail.

The first step in the organization is to place each function in
a separate file in the file tree, as shown on the right of Figure
1. Each file contains one function or one abstraction, for
example a set of related “.h” definitions. No conditional
compilation (no #ifdefs) is used because these constructs,
especially nested ones, lead to programs that are virtually
unreadable by humans. Instead the directory structure is
used to place siblings (different versions of a function) in
adjoining directories as shown in Figure 1, where
differentiation with respect to processor type and board type
have been highlighted. Here, the function fcn1.c is
specific to the board type. Each sub-directory under
“boards” is specific to the board type and contains a board-
specific version of fcn1.c. Note that all the versions have
the same name and are differentiated by the path to the
directory. The functions on the src side of the tree also do
not contain any #include statements so that the entire src
branch is independent of the development system, i.e. of the
pathname syntax.

A specific version is defined by a selector file on the left
branch (inc) of the file tree as shown on the left of Figure 1.
A selector file contains pointers to all the components that
represent a specific valid version. A selector file is
composed only of #include statements, each of which
consists of the pathname to the selected variant. The exact
form a pathname depends on the syntax of the particular file
system on the development platform, though its semantics
depends only on the file system being a tree, which is true of
all file systems supported. Because all #include
statements are confined to the inc side of the file tree, all
dependencies on the file system syntax are concentrated on
that side of the tree. A more detailed view of the a fragment
of the base layer is shown in Figure 2, which shows a part of

the src tree for the tool bound.1 The inset window in Figure
2 shows a portion of the selector file for the version with
Unix pathname syntax (slash separators). On any one
development platform, of course, only the selector files with
the appropriate syntax can be compiled.

Evolution over time

Evolution over time is indicated by adding layers that are
placed on top of the master read-only layer containing the
major release of the software. A hollow file tree containing
no files and only some of the branches is created in the
Working layer and functions that need to be modified are
copied to the corresponding directories on src side of the
Working layer, as shown in Figure 3. As well, the selector
file for the new version is placed on the inc side in the
Derived layer, as shown in Figure 3. All #include
statements in the new selector file still point to targets in the
Master layer, except the two entries for the modified files
that are now in the Working layer. Thus the composite view

1 Bound is a tool for calculating stack size required by a
task.

4

of the revised version consists of the ordered set of the three
layers. Compiling and linking of the selector file in the
Derived layer produces a binary executable for the new
version. All the derived files that the tools produce (listing,
map, .s files and cross-reference) are placed in the inc

directory in the Derived layer (hence the name). For
example, say the program illustrated in Figure 2 needed
revision, where the two files bound.h and bitfield.c
needed to be revised. The two files are copied to the
Working layer and modified as required. The selector file
shown in the inset of Figure 2 is copied to the Derived layer
and the two lines pointing to the two files are changed as
shown in Figure 4. The principal tool for these operations is
the editing system, as described later. The new selector file
may then be compiled and will pull in the revised versions
while all original files remain intact in the Master layer.

An important consequence of the layer model is that the
bottom layer is read-only and can be replicated on each
workstation for each developer — a second one is shown on
the right of Figure 3. This arrangement reduces bandwidth
requirements for running tools because there are no network
accesses and more importantly, permits development while
either detached from, or intermittently attached to the
network. It should be noted that the scheme uses “free-
wheeling” concurrency control based on the concept of
optimistic concurrency control in databases [19, 20, 21].
Multiple writers are permitted to proceed and in great
majority of cases no actual collision occurs and the update is
accepted, while in a small number of cases a collision is
detected and resolved as a special case.

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "Master/har ..efmt/coffaux/symtab.h"
#include "Working / .. rc/bound.h"
#include "Master/har .. imagefmt/imagefmt.h"
#include "Master/har .. m680x0/m680x0.h"
#include "Master/har .. parse/parse.h"
#include "Master/har .. adddescen.c"
#include "Working / .. rc/bitfield.c"
...
Fig. 4. The selector file from the inset of Fig. 2, copied to the
Derived layer and with two pointers revised to select items in the
Working layer (shown in bold).

Visualizing Multiple Versions

The layer model is easy to visualize. The master layer sits at
the bottom, forming a foundation for the structure. Above it
float partial trees containing modifications. These trees are
exactly the same in size and shape to those parts of the
foundation that they modify. This easy-to-understand
structure captures the essence of DaSC model in a single
representation which may be presented graphically but is
more likely to be used mentally by the programmer.

The visual model can be viewed from two interesting
directions. From above it shows the current state of the
system, with newer versions obscuring the older versions
below them. Furthermore passing down through the layers
offers a series of views that show the system as it was at

earlier stages of the revision process, views that are often
important when the programmer is reviewing progress or
comparing the present state of the system with objectives
that were set out in the context of an earlier version. From an
edge on viewpoint the programmer sees the progress of the
revisions. In this perspective large scale views allow easy
differentiation between regions of the tree that have been
heavily modified and ones that are relatively untouched.
When the programmer then zooms on the large scale
representation individual files can be seen as modified or
not. Additionally, the local context of this modification is
also easily visible: it is easy to see that a file was modified
earlier or later than similar files that lie near it in the source
tree.

This model is very natural. It plays such an essential role in
explaining the system that we believe most programmers
visualize it when using the DaSC version management
system. Part of its naturalness lies in the transformation of a
temporal sequence of modifications into spatial extension.
Such transformations are common in the physical sciences
when motion is presented in static images, and is also
common when sequences of states are presented in
undergraduate computer science textbooks.

An essential feature of this representation is preservation of
the structure of the file system as changes are made. The
DaSC system requires rigid preservation of file system
structure, and, as noted in our earlier description of file
system visualization, this constancy is exactly what human
cognition requires to make effective use of spatial memory
aids. Furthermore the changes that do occur within the DaSC
system, such as including files for a new compiler or CPU,
insert individual files in well-defined positions in the file
tree. In the visual representation neighbouring files are
squeezed aside to make room, preserving the overall
structure, a jostling model similar to the one used in window
systems [18]. The rigid overall structure requires definition
of the file structure at the beginning of the project, with the
expectation that it will be retained to avoid upsetting the
mental models of all participating programmers. This
constancy may be considered a drawback or an advantage. It
provides no places for genuinely novel parts that get added
to the system later. On the other hand it severely limits the
programmer’s natural tendency to graft parts carelessly onto
the file system.

This visualization uses the third dimension to indicate
progress through time of a two-dimensional visualization of
the file system. A possible alternative strategy might be to
use the additional dimension to encode configuration
information like compiler or CPU instead. In fact, one of the
authors, WC, originally advocated using a field-structured
file system to create a matrix that would encode
configuration information. This idea shows immediately
why encoding configuration information spatially is not
useful: there are so many possible dimensions of
configuration that the result is a structure of many
dimensions. Techniques for effective display of such
structures simply do not exist, and it is doubtful that they can
be visualized successfully by any but very exceptional
programmers.

5

Tools For Configuration and Version Management

Navigating and working in the visually oriented system
described here requires tools. A consequence of the
approach is the need to work with a large number of files,
therefore the approach can be affective only if it is supported
by suitable tools for multi-file editing.

First of all, one must be able to view large portions of the
file system simultaneously even if only to refresh the visual
reference model. At the time when the system was first
placed into use, the Macintosh computer offered the most
suitable environment with its own Finder and because it
offered the richest set of tools from third-party developers.
The file tree representation in Figure 2 was produced with a
tool MacTree Plus [17]. This tool is now being supplanted
by newer ones from other developers.

The key element in the development process is the multi-file
programmer’s editor [22]. The programmer is able to open
for editing a large number of files, as shown in Figure 5,
where all code files can appear, if desired, tiled on the
screen, permitting rapid shift of attention from one file to the
next. The customary “grow-box” is used to zoom in on a
file, perform some editing task and zoom the tile back to its
small icon-like appearance in the tiled array. What
distinguishes the current generation of editors (and word
processors) on personal computers is their ability to open
many documents. Many traditional Unix-based editors run a
separate copy of the editor for each open file. As a
consequence, it is impossible to perform global operations,
such as regular-expression searches, on all open documents.
There is still a shortcoming in the editor being used, in that
the view of the file system from the Finder is different from
that seen from the editor (or any other Macintosh
application). A better symmetry of view is preserved in the
interface of the NeXT computer.

see end of document

Figure 5 Multifile editor with several files open. Each document
window can be enlarged rapidly for editing.

The macro script facilities within the editor are used to
manage files in the layer model. For example, a script is
used to copy a file from one layer to the corresponding place
in the tree in another layer. If necessary, the script creates all

the intermediate nodes to the desired location in the tree.
Doing this by macro is essential to maintaining the precise
visual identity needed for successful visualization, not to
mention the ability of operating on the file system using
programmed tools. (It is interesting in this context that the
requirements necessary for program management of a data
structure—the file system—concur exactly with those
necessary for human interaction — visualization—with the
data structure.) Most commonly, this process is used to
create a layer with a hollow tree containing no files, where a
few files to be edited, will be placed. Of course, a new
version of the selector file must be created in the Derived
layer, as shown in Figure 3, to contain pointers to the revised
files. The selector file has one other useful function. It is
often used as a collection of pointers, to open a specific file:
Double-click on an entry and execute a script that extracts
the pathname and opens the file. The user then requests with
a specific menu selection that the screen be re-tiled.
Automatic re-tiling is undesirable because it would have
rearranged all the open documents and thus violating the
principle of stability of screen layouts.

Another interactive tool that was written constructs the most
recent version of a selector file by taking each entry in the
selector file and searching upper layers for the existence of
more recent versions [23]. It is not the date stamp but the
order of layers that determines the time line to the most
recent version.

A final tool [23] is used to coalesce layers in a consolidation
process, which is done to produce a new release, either a
major one (one final layer) or a minor one (one layer on top
of the un-modified base layer). Prior to consolidating layers
one must execute a macro script to identify conflicts
between layers that may have been produced by different
programmers. From the visualization’s point of view
coalescence of layers does not change the appearance of the
original composite layers. They are now merely one or two
layers instead of the original several layers.

The tools are described here from the point of view of their
consistency with, and the contribution to, the perceptual
model. Of course, these tools include many algorithmic
functions that are necessary in a working environment. A
detailed discussion of the tools is given in [23].

Conclusions

The premise presented in this paper is that programmers can
cope with complexity if they work in an environment in
which the complexity has a representation that is easy to
visualize. Such representations can be explicitly displayed,
or they can provide the programmer with a spatial model
that is mental, or a combination of both. In general, systems
that are cognizant of these perceptual issues are likely to be
more successful than other non-visual ones.

The paper discussed the perceptual and visual aspects of the
layer oriented approach to configuration control in managing
the evolution over time of the source file system for an
operating system that supports many simultaneously valid
versions. Within this context some of the useful tools, both
developed as part of the project and also commercial ones,
were discussed.

6

Future work will include the further development of tools
that accord well with the visual models described here, and
new tools that will allow programmers to manipulate such
models directly. One possible benefit of such tools is that all
programmers on a project begin using the same spatial
representations, with a probable increase in productivity.
The authors have already established that the layer model is
a useful exchange medium between cooperating
organizations where portions of a system are being
developed in both organizations.

Acknowledgments.

Many ideas as well as the implementations of the various
tools and scripts were developed by S.A. MacKay, assisted
by a number of students. A detailed discussion of the tools is
in preparation [23].

References

[1] W.M. Gentleman, S.A. MacKay, D.A. Stewart, and
M. Wein, “Using the Harmony Operating System,
Release 3.0,” NRC/ERA-377, National Research
Council of Canada, Ottawa, Ont., February 1989.

[2] Gentleman, W.M., MacKay, S., Stewart, D., and
Wein, M., “Commercial realtime software needs
different configuration management,” Proceedings of
2nd International Workshop on Software
Configuration Management (SCM), Princeton, NJ.
October 24–27, 1989. Published in Software Eng.
Notes, Vol. 17, Nr. 7, pp.152–161; 1989.

[3] W.M. Gentleman, “Managing Configurability in
Multi-Installation Realtime Programs,” Proceedings of
the Canadian Conference on Electrical and Computer
Engineering, Vancouver, B.C., pp. 823–827,
November 3–4 1988.

[4] DeJong, S.P., “The System Building System (SBS),”
IBM Research Report RC4486, IBM Yorktown
Heights, New York, August 1973.

[5] Marc J. Rochkind, “The Source Code Control
System,” IEEE Transactions on Software Engineering,
Vol. SE-1, No. 4, December 1975, pp. 364–370.

[6] Walter F. Tichy, “RCS – A System for Version
Control,” Software - Practice and Experience, Vol. 15,
No. 7, July 1985, pp. 637–654.

[7] D.B. Leblang and R.P. Chase Jr., Computer Aided
Software Engineering in a Distributed Workstation
Environment, Sigplan Notices, Vol. 19, No. 4, 1984,
pp. 104–112.

[8] B. W. Lampson and E. E. Schmidt, Organizing
Software in a Distributed Environment, Sigplan
Notices Vol. 18, No. 6, June 1983, pp. 1–12.

[9] David B. Leblang, Robert P. Chase Jr. and Howard
Spilke, “Increasing Productivity with Parallel
Configuration Manager,” in Berichte of the German
Chapter of ACM, Vol. 30, ed. J.F.H. Winkler.
Proceedings of the International Workshop on Version

and Configuration Control, Grassau, January, 1988,
pp. 21–37.

[10] B. Donovan and J.B. Grimson, A Distributed Version
Control System for Wide Area Networks, Software
Engineering Journal, Vol. 5. No. 5, 1984, pp. 255–
262.

[11] N. Nishimura, Complexity on Tree-Based Version
Control, Lecture Notes in Computer Science, Vol.
382, 1989, pp. 472–486.

[12] J. Walpole, G.S. Blair, J. Malik and J.R. Nicol, A
Unifying Model for Consistent Distributed Software
Development Environments, Software Engineering
Symposium on Practical Software Development, ’88,
Sigplan Notices Vol. 24, No. 2, Feb 1989.

[13] Walter F. Tichy, “Tools for Configuration
Management,” in Berichte of the German Chapter of
ACM, Vol. 30, ed. J.F.H. Winkler. Proceedings of the
International Workshop on Version and Configuration
Control, Grassau, January, 1988, pp. 1–20.

[14] J.W. Davison and S.B. Zdonik, A Visual Metaphor for
Database with Version Management, ACM
Transactions on Office Information Systems, Vol. 4,
No. 3, July 1986, pp 226–256.

[15] A. R. Luria, The Mind of a Mnemonist: a little book
about a vast memory, translated by Lynn Solotaroff,
Basic Books: New York, 1968.

16] C.M. Schmandt, “Interactive Three-dimensional
Computer Space,” Proc SPIE, Conf. on processing and
display of three-dimensional data, Aug 1982.

[17] MacTree Plus, The hard disk management for the
Macintosh, Go Technology, 1988.

[18] K.G. Schlueter, Perceptual Synchronization in
Window Systems, M. Math. Thesis, University of
Waterloo, Waterloo Ontario 1990.

[19] H.T. Kung and J.T. Robinson, “On Optimistic
Concurrency Control,” ACM Transactions on
Database Systems, Vol. 6, No. 2, June 1981, pp. 213–
226.

[20] L. Lamport, “Concurrent Reading and Writing,”
Communications of ACM, Vol. 20, No. 11, November
1977, pp. 806–811.

[21] M. L. Kersten and H. Tebra, “Application of an
Optimistic Concurrency Control Method,” Software
Practice and Experience, Vol. 14, No. 2, February
1984, pp. 153–168.

[22] V. Romano and J. Lewak, “QUED/M Programmer’s
Editor,” Paragon Concepts, Solana Beach CA, 1988.

[23] S.A. MacKay, A Set of Tools for Software
Development in DaSC , in preparation.

7

Figures

inc
src

selectors

source files

•

Fig.1 A tree of selector files is in the inc branch on the left. The tree of
functions is on the right in the src branch. Function fcn1.c depends on the type of
processor board and five versions are placed in five directories under boards .
Function fcn2.c depends on processor type and three versions are placed in three
directories under m680x0 .

68000 68020 68030
fcn2.c fcn2.c fcn2.c

m680x0

fcn1.c fcn1.cfcn1.cfcn1.cfcn1.c

iov68 dvme134 dy750 ataristchorus

boards

sys

root

8

Fig. 2. A portion of the file tree for the tool bound. The inset window shows a portion
of the selector file for the Unix (AU/X) version of the tool, with Unix style pathnames
with “/” separators.

9

inc src

inc src

inc src

Master - read only

Working

Derived

selector

revised files

Layer model of the file system. Master layer is read-only. Revised files are
placed in the Working layer. The new selector file is placed in the Derived layer
with revised entries pointing to new files in the Working layer.

Fig. 3.

Master - read only
(another user)

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "Master/har ..efmt/coffaux/symtab.h"
#include "Working/ .. rc/bound.h"
#include "Master/har .. imagefmt/imagefmt.h"
#include "Master/har .. m680x0/m680x0.h"
#include "Master/har .. parse/parse.h"
#include "Master/har .. adddescen.c"
#include "Working/ .. rc/bitfield.c"
...
Fig. 4. The selector file from the inset of Fig. 2, copied to the Derived layer and with two pointers revised to select items in
the Working layer (shown in bold).

1
0

Figure 5 Multifile editor with several files open. Each document window can be enlarged rapidly for editing.

11

