
Publisher’s version / Version de l'éditeur:

Proceedings of the ICSE 2009 Workshop on Cooperative and Human Aspects of
Software Engineering, 2009-06-12

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

https://doi.org/10.1109/CHASE.2009.5071401

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Coordination in the large-scale software teams
Begel, Andrew; Nagappan, Nachiappan; Poile, Christopher; Layman, Lucas

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7632c525-3e8d-4bc4-900d-8f6d6c6b58af

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7632c525-3e8d-4bc4-900d-8f6d6c6b58af

Coordination in Large-Scale Software Teams

Andrew Begel, Nachiappan Nagappan
Microsoft Research

Redmond, WA, USA
andrew.begel@microsoft.com, nachin@microsoft.com

Christopher Poile
Edwards School of Business
University of Saskatchewan

Saskatoon, SK, Canada
poile@edwards.usask.ca

Lucas Layman
National Research Council

Ottawa, ON, Canada
lucas.layman@nrc.gc.ca

Abstract

Large-scale software development requires coordination

within and between very large engineering teams which

may be located in different buildings, on different company

campuses, and in different time zones. From a survey an-

swered by 775 Microsoft software engineers, we learned

how work was coordinated within and between teams and

how engineers felt about their success at these tasks. The

respondents revealed that the most common objects of co-

ordination are schedules and features, not code or inter-

faces, and that more communication and personal contact

worked better to make interactions between teams go more

smoothly.

1. Introduction

Coordination between software development teams is

one of the most difficult-to-improve aspects of software en-

gineering. Kraut and Streeter argue that the software indus-

try has been in crisis mode for its entire existence, and a

root cause is the difficulty in coordinating work between

teams of developers [9]. Researchers have studied pro-

fessional software development teams empirically to gain

greater understanding of how software development pro-

cesses, tools, and people impact coordination. The im-

portance of intra- and inter-team coordination is a fore-

most concern as software development increasingly be-

comes globally distributed, and remains a persistent chal-

lenge in other disciplines as well.

To understand inter- and intra-team dependencies in

large-scale software development, we conducted a web-

based survey of 775 Microsoft developers, testers and pro-

gram managers. We asked engineers how they coordinate

tasks with teams they depend on and with teams that depend

on them, and how they communicate with their dependen-

cies when things go wrong. We then asked how develop-

ers feel about working with dependent teams to understand

where they would like to see improvement. We described

some aspects of this research in prior work [1].

We find that it is important to consider the different roles

that people play on their teams when coordinating with oth-

ers. Processes and tools intended for software developers

may not be appropriate for program managers. The two

job roles “live” in different applications in their daily work;

tools intended for one role’s applications just may not be

used by the other. In addition, intra-team and inter-team co-

ordination communication modes are very different. It may

be easy to pay a personal visit to a team member who likely

sits on the same floor as you, but much more difficult and

socially awkward to visit a collaborator from another team,

especially when that collaborator is not a friend. We also

find that the overhead of communication and maintaining

relationships between individuals who coordinate on dif-

ferent teams is high, but necessary to getting work done

successfully. Many respondents to our survey wished they

could get more information and action about their depen-

dencies with less active communication requirements. Even

though coordination is difficult, we find that even in a cross-

section of one of largest software companies in the world,

almost all engineers are required to coordinate with others

to get their work done.

2. Survey Design

The research was conducted using an anonymous web-

based survey offered over a period of two weeks in Au-

0% 10% 20% 30% 40% 50% 60% 70% 80%

Other

Status

Prioriizaion of work items

Code

Documentaion

Bugs

APIs

Features

Release schedule

Depend on from other teams Other teams depend on this

Figure 1. What engineers depend on from

other teams, and what other teams depend

on from them.

gust 2007 inside the Microsoft Corporation. An invitation

was sent by email to 2,535 developers, testers, program

managers (PMs), architects and user experience engineers,

consisting of a 10% random sample of employees in each

job role. At Microsoft, program managers gather customer

requirements, write design specifications, and manage the

project schedule. Developers turn design specifications into

implementation specifications, and write the code. Testers

turn design specifications into testing specifications, write

test harnesses, and conduct black box testing. Architects

do long-range and product-wide planning, and user experi-

ence engineers design user interfaces and conduct usability

studies. Respondents were offered a chance to win a single

$250 gift certificate as incentive for completing the survey.

The survey questions were divided into three sections:

demographics, details about how coordination occurs in

one’s team, and perceptions of how well coordination was

practiced within one’s team and its dependencies. A Likert

scale of “All of the time, Frequently, Occasionally, Rarely,

Almost Never, N/A” was used. All of the survey questions

reported on in this paper can be found in Appendix A.

3. Data and Results

We received 820 responses, of which 45 were invalid (we

removed duplicate and empty surveys), for an overall re-

sponse rate of 30.6% (775 / 2,535). In our sample of 775 re-

spondents, 39.2% are developers, 33.6% are testers, 20.3%

are program managers, and the rest (6.9%) have other job

roles. 76.5% of respondents were individual contributors;

the rest (23.5%) were leads or managers. Respondents had

an average of 9.6 years (SD: 6.3) of experience as soft-

ware engineers, and spent 5.0 years (SD: 4.1) working at

Microsoft.

We asked developers how they depended on other teams

and how they coped when dependencies went awry. The

first question asked survey recipients what artifacts they

depended on from other teams, and what artifacts other

teams depended on from them. The responses are shown

in Figure 1. The respondents report 72% depend on an-

other team’s release schedule and 71% depend on the fea-

tures of another team’s product. At a slightly lesser level are

APIs (62%), bugs (62%), documentation (61%) and code

(58%). Prioritization of work items and status are around

50%. When considering what other teams depend on from

them, however, status becomes the most frequent, rising to

62%, leaving features (57%), bugs (55%), release sched-

ules (55%) and documentation (52%) less frequent. Less

than half of the respondents say that other teams depend on

their code (46%), prioritization of their work items (45%)

or their APIs (38%).

When asked how they kept track of the work items they

depended on from other teams (shown in Figure 2) most

respondents (69% overall) reported using email. 61% use a

work item database and 56% talk about them at status meet-

ings. After that there is a large drop to keeping track of de-

pendencies in your head (38%) followed by using Outlook

tasks (30%), Sharepoint websites (29%), using a point per-

son in charge of keeping track of dependencies (27%) and

Excel spreadsheets (26%). Keeping a list on paper, text ed-

itor or personal whiteboard follows. Note that only 16% of

people keep track of work items outside their team by read-

ing the source code checkin messages, and very few (2%)

keep track of their work items on a public whiteboard.

Notice, too, that program managers (PMs) use a greater

diversity of tools to keep track of dependencies, almost

10% greater in many tools than developers and testers. The

biggest disparities are that PMs use Sharepoint websites

twice as much as developers, and use Excel spreadsheets

three times as much as developers. Developers use source

code checkin messages 60% more often than PMs or testers.

Also illuminating are the ways to how engineers com-

municate to unblock themselves from a critical dependency

(shown in Figure 4). When the dependency is within their

team, almost all (89% and 88%) respondents said they

would send an email and pay a personal visit to the per-

son blocking their work. Instant messages and phone calls

came in a distant second place (55% and 54%), followed by

a setting up a one-time meeting (45%), escalation to their

manager (38%), and communicating via work item database

(38%). When the dependency is outside their team, almost

all still use email (89%) to communicate, but paying a per-

sonal visit drops to 48%. Instead, people use the phone

(59%), escalation to a manager (52%) or one-time meetings

(51%) as a substitute.

From the data in the chart, it appears that respondents

would use a point person to keep track of dependencies

more for external rather than internal collaborations. In ad-

dition, having a manager talk to another group’s manager is

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Dev PM Test

Figure 2. The tools that engineers use to keep track of dependencies on other teams, divided by job

role. The ’other’ category is not shown for clarity of presentation.

2%

5%

5%

6%

9%

10%

10%

12%

49%

53%

57%

59%

63%

0% 10% 20% 30% 40% 50% 60% 70%

Reorganize team

Cancel project

Never take criical dependencies

Other

Interact only with people I trust

Eliminate affected features

Avoid unreasonable people

Switch to a new development methodology

Eliminate code dependencies

Reprioriize affected work items

Have a backup plan in order to ship without the

dependency

Align product schedules

Minimize code dependencies

Figure 3. How engineers mitigate (antici-

pated) problems with dependencies on other

teams.

much more common with external dependencies than inter-

nal ones (25% vs. 8%).

Notice also, that 98% of respondents depend on people

outside their teams (only 2% report that they do not have

any dependencies in Figure 4).

Since not all collaborations with other people and teams

go as planned, we asked participants how they mitigate

anticipated and/or real problems with their dependencies.

There were five strong responses (shown in Figure 3, three

that minimize the dependency itself, and two that adjust the

project schedule. 63% of respondents would minimize all

code dependencies on other teams. 59% would align their

product’s schedule with their dependencies’ schedules in

order to ship only when their dependencies have finished

their own work. This can be problematic if a dependency

slips their schedule. 57% of respondents say that their team

makes sure to have a backup plan to ship their own product

without the problem dependency. 53% would reprioritize

their work items, potentially slipping a feature or work item

to the next release. 49% would eliminate all code depen-

dencies, which could mean to “clone and own” (copy and

paste) the desired functionality from the other team’s code-

base. All of the other responses, including canceling the

project (5%) and reorganizing the team (2%) are much less

frequent.

Communication overhead and maintaining relationships

takes a big toll on coordination practices and effectiveness

(see Figure 5). Almost 50% of respondents say that they

need to proactively ask their colleagues for status frequently

or all the time. Lack of communication causes problems

as well for 23% of respondents who need frequently or all

the time find that work items they depend on have changed

without any notification. When communication does occur,

25% of respondents say it is frequently or always difficult

to get a team they collaborate with to implement a change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Give up

I rarely have dependencies on people

Other

Inimidaion

Do not need to -- They do what I want when I ask

Find somebody else to do their work

Accept less than what I wanted

One of my superiors talks to one of their superiors

Atend their war room meeing

Escalate to their point person in charge of tracking dependencies

Escalate to their manager or above

Escalate to my point person in charge of tracking dependencies

Work item database

Escalate to my manager or above

Set up a one-ime meeing

Phone

Instant Message

Email

Personal Visit

Unblock dependency within your team Unblock dependency outside your team

Figure 4. How engineers communicate with one another when they need to unblock themselves from

a critical dependency.

they require. 48% of respondents find that must maintain

constant contact with the team they depend on is the way

to get what they want. This contributes greatly to over-

head in depending on other teams. It is also probable that

much of this overhead is due to other team’s deprioritizing

their dependent’s work items. Only 30% of respondents say

that their dependencies frequently or always tell them where

their needs fit into their dependencies’ priorities. This lack

of information often causes anxiety in teams that have many

of these dependencies. Even worse, if a team had a choice

of teams to depend on, they would certainly choose the ones

that place them number one on their priority list, rather than

a team that served too many masters.

A solution that many teams have found to work best for

them is to maintain personal connections with the people

who work in the teams they depend on. 87.6% of respon-

dents agree with the statement “I feel that having personal

connections with teams that I depend on is helpful to me.”

4. Discussion

From the survey results in Figure 1, we can see that

most respondents work on teams that consume software

from others. This is consistent with the demographics of

Microsoft’s software teams. As a company, Microsoft cre-

ates platforms and applications that depend on those plat-

forms. There are necessarily fewer platforms than appli-

cations. What was surprising from the survey responses is

that most teams depend on other teams’ release dates and

features more than other teams’ code or APIs. This implies

that teams worry more about a feature shipping on a par-

ticular date than the details of how the functionality will be

implemented.

The teams that provide libraries offer status as their main

consumable, followed by features and schedules. Without

being privy to the inner workings of other teams’ processes,

status updates are one of the only ways for a team to manage

its dependency on another team’s software prior to the ship

date. Will they finish in time? Will the requested features

and work items be completed? The lack of this informa-

tion can make team leads anxious and unable to mitigate the

problems associated with teams that may not deliver what

was promised. We see these problems in the perception data

(see Figure 5) where pinging people for status occurs quite

often. Respondents also noted that work items they de-

pended on were changed without any change notification.

We presume these were not changes to say that the work

items were done early or with more features than requested.

The change in status is one thing, but the lack of notification

of the change aggravates whatever anxiety the dependent

teams were already feeling about their dependency.

Another surprising result from the data (shown in Fig-

ure 2) is that the fourth most popular way to keep track

of dependencies is to use one’s memory. In cases where

engineers have few and infrequent dependencies, this may

work just fine. We do not have data to support or refute this.

We hope that when engineers must maintain more signifi-

cant relationships between their team and others, they use

more robust forms of written material. The third most pop-

ular tool is a status meeting, usually occurring face-to-face

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

5. The teams I depend on tell me explicitly where my needs fit into their

prioriies.

4. I need to maintain constant contact with the team I depend on in order to get

what I want.

3. It is difficult to get a team I depend on to implement a change I require.

2. I need to ping the people I depend on for status.

1. Work Items that I depend on are changed without my knowledge.

All of the ime Frequently Occasionally Rarely Almost Never N/A

Figure 5. How engineers perceive the success of coordination communication.

or held via audio or video conferencing. This corroborates

with the perception data (Figure 5), where respondents re-

port that in order to get what they want from another team,

they must maintain constant contact with them. Status, bug

triage, and similar kinds of meetings are held frequently by

teams to manage their workflow. Attending another team’s

meeting can give one great insight into what their priorities

are and how they evolve over time.

We present the data in Figure 2 split by job role to il-

lustrate the different distribution of answers. Program man-

agers (PMs) at Microsoft handle requirements, scheduling

and coordinate feature and work item completion with other

program managers, developers, and testers. Thus, it should

be unsurprising that they use tools to track dependencies

simply more than developers or testers. However, PMs’

greater dependence on tools is important for tool builders

who aim to help resolve coordination problems between

teams. These tools will likely be most effective if they

“live” in the same applications that program managers al-

ready find themselves in. From the survey data, we can see

that this is often not in the code, itself. Thus, to most effec-

tively resolve team coordination issues with a tool, it is im-

portant for tool builders to note that non-programmer PMs

ought to be their target audience, rather than the developers

who create the code or the testers who validate it. We can

make this argument stronger by noting again that the main

objects mediated in a dependency are features and product

schedules, both items maintained by program managers, not

by developers or testers.

From Figure 4, we can see that the way coordination

occurs within teams is very different than between teams.

Within teams, personal visits and email are the most pop-

ular ways to fix blocked dependencies. The parties know

one another and are comfortable visiting in person to ex-

plain their issues and get them resolved. When dependen-

cies cross teams, however, the frequency of in-person visits

drops by almost half. It is likely quite awkward to pay a

visit to someone whom one does not know, and interrupt

their work (which hopefully is unblocking the issue at the

same time, but probably not) for something that may not be

immediately important to the person. But from the other

survey responses, we can see that attending another team’s

status meeting is fairly accepted practice, and thus may be

a good substitute for a personal visit. As can be observed

in Figure 4, almost all of the answers were chosen more

frequently by respondents with external dependencies than

those with internal dependencies. Thus, the diversity of

methods to unblock oneself is high, along with the asso-

ciated communication overhead required to avail oneself of

them all. This communication overhead likely contributes

to feelings that more work is required to manage external

dependencies than internal ones.

Finally, over half of the respondents report that their

teams have contigency plans to deal with unfulfilled depen-

dencies, either delaying, replacing, or canceling requested

functionality. Only 5% report that their projects are can-

celed for the lack of the dependency, thus, the projects re-

ported about by these respondents appear modular enough

to adapt to unanticipated failures of collaboration between

teams. If, as reported in the perception data in Figure 5,

more teams would tell their dependents explicitly where

they stood in the team’s priorities, perhaps the numbers of

projects that are delivered with less functionality than de-

sired could be reduced by teams seeking out other less bur-

dened teams to meet their needs.

5. Threats to Validity

Our survey was conducted at Microsoft Corporation;

while we imagine its results apply broadly to software de-

velopers at other companies, studies at other sites would be

useful to highlight behaviors which may be affected by Mi-

crosoft norms and culture.

6. Related Work

Coordination problems are inherent in any sort of dis-

tributed work situation. Many researchers have looked into

coordination problems in software development organiza-

tions and discovered difficulties caused by geographic dis-

tance [7, 10], team size [5], lack of personal contact [8],

lack of awareness [6], poor knowledge flow and commu-

nication breakdowns [2], and architectural modularity [3].

Kraut and Streeter [9] found that developers preferred to

communicate frequently and informally to coordinate with

one another on schedules, bugs, tests and design reviews.

de Souza and Redmiles [4] surveyed developers and cat-

alogued how they managed dependencies, both for poten-

tial problems with coordination that they expected to expe-

rience and problems they expected to cause for others.

7. Conclusion

From these survey results, we can learn some lessons

about how to improve intra- and inter-team coordination.

While most teams experience challenges in coordination,

the majority appear to get their tasks done, albeit with less

completed than they had hoped for. We saw that examining

the needs and methods of engineers with different job roles

can help to focus process changers and tool builders on less

obvious audiences for their interventions, hopefully to ef-

fective results. Another takeaway message from our paper

is that creating and maintaining personal relationships be-

tween individuals on teams that coordinate is indicated by

many respondents as a good way to successfully collabo-

rate with colleagues. However, while more communication

between teams can help improve coordination, it can also

increase process overhead. Creating tools that engender

the right kinds of communication, such as automatic status

gathering and change notification could help people keep up

with their dependencies more efficiently.

For as long as specialization and collaboration has been

around, many possible solutions to coordination problems

have been tried and will continued to be invented. The data

in this paper helps identify some of the potential target areas

and audiences for such interventionary solutions.

References

[1] A. Begel. Effecting change: Coordination in large-scale

software development. In Workshop on Cooperative and

Human Aspects of Software Engineering, pages 17–20,

Leipzig, Germany, May 2008. ACM.

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of the

software design process for large systems. Communications

of the ACM, 31(11):1268–1287, 1988.

[3] C. R. B. de Souza, D. Redmiles, and P. Dourish. ”break-

ing the code”, moving between private and public work

in collaborative software development. In Proceedings of

GROUP, pages 105–114, Sanibel Island, FL, 2003. ACM

Press.
[4] C. R. B. de Souza and D. F. Redmiles. An empirical study

of software developers’ management of dependencies and

changes. In ICSE ’08: Proceedings of the 30th international

conference on Software engineering, pages 241–250, New

York, NY, USA, 2008. ACM.
[5] J. Fred P. Brooks. The mythical man-month. In Proceedings

of the international conference on Reliable software, page

193, New York, NY, 1975. ACM Press.
[6] C. Gutwin, R. Penner, and K. Schneider. Group awareness in

distributed software development. In Proceedings of CSCW,

pages 72–81, Chicago, IL, 2004. ACM Press.
[7] J. D. Herbsleb and R. E. Grinter. Splitting the organiza-

tion and integrating the code: Conway’s law revisited. In

Proceedings of ICSE, pages 85–95. IEEE Computer Society

Press, 1999.
[8] P. Hinds and C. McGrath. Structures that work: social struc-

ture, work structure and coordination ease in geographically

distributed teams. In Proceedings of CSCW, pages 343–352,

Banff, Alberta, Canada, 2006. ACM Press.
[9] R. E. Kraut and L. A. Streeter. Coordination in software

development. Communications of the ACM, 38(3):69–81,

1995.
[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two

case studies of open source software development: Apache

and mozilla. ACM Transactions on Software Engineering

Methodology, 11(3):309–346, 2002.

Appendix A: Survey Questions

1. Which of the following items do you depend upon from other

teams? i.e. you need the following from them in order to

complete your task, or a change in the following with affect

your task.

(a) APIs
(b) Code.
(c) Release schedule
(d) Bugs
(e) Features
(f) Prioritization of work items
(g) Status
(h) Documentation
(i) Other

2. Which of the following items do other teams depend on you

to provide? i.e., they need the following from you in order to

complete their task, or a change in the following will affect

their task.

(a) APIs
(b) Code.
(c) Release schedule
(d) Bugs
(e) Features
(f) Prioritization of work items
(g) Status

(h) Documentation
(i) Other

3. How do you keep track of the items that you depend upon

outside your team?

(a) Mental list
(b) List on paper
(c) List in text editor
(d) List on my personal whiteboard
(e) List on a public whiteboard
(f) Excel spreadsheet
(g) Source code checkin messages
(h) Outlook tasks
(i) Work item database
(j) Email
(k) Sharepoint website
(l) Wiki

(m) Status meetings
(n) Point person in charge of tracking dependencies
(o) The person I depend on reminds me
(p) I do not keep track
(q) Other

4. When you get blocked on a critical dependency within your

team, in what ways do you communicate to unblock your-

self?

(a) Personal visit
(b) Email
(c) Phone
(d) Instant Message
(e) Work item database
(f) Set up a one-time meeting
(g) Attend their bug triage meetings
(h) Escalate to my manager or above
(i) Escalate to their manager or above
(j) Escalate to my point person in charge of tracking de-

pendencies
(k) Escalate to their point person in charge of tracking de-

pendencies
(l) One of my superiors talks to one of their superiors

(m) Intimidation (i.e. pay a visit and do not leave until you

get what you want)
(n) Find someone else to do the work
(o) Accept less than what I wanted
(p) Give up
(q) I rarely have dependencies on people within my team
(r) Do not need to – They always do what I want when I

ask
(s) Other

5. When you get blocked on a critical dependency outside your

team, in what ways do you communicate to unblock your-

self?

(a) Personal visit
(b) Email
(c) Phone
(d) Instant Message
(e) Work item database
(f) Set up a one-time meeting
(g) Attend their bug triage meetings
(h) Escalate to my manager or above
(i) Escalate to their manager or above

(j) Escalate to my point person in charge of tracking de-

pendencies
(k) Escalate to their point person in charge of tracking de-

pendencies
(l) One of my superiors talks to one of their superiors

(m) Intimidation (i.e. pay a visit and do not leave until you

get what you want)
(n) Find someone else to do the work
(o) Accept less than what I wanted
(p) Give up
(q) I rarely have dependencies on people within my team
(r) Do not need to – They always do what I want when I

ask
(s) Other

6. What do you do in your own project to mitigate the effects

(potential or actual) of depending on other teams?

(a) Minimize code dependencies
(b) Eliminate code dependencies (e.g. “clone and own”)
(c) Never take critical dependencies
(d) Align product schedules
(e) Reprioritize affected work items
(f) Avoid unreasonable people
(g) Interact only with people I trust
(h) Cultivate in-person relationships (e.g. become

friendly, put a face to the name)
(i) Switch to a new development methodology (e.g.

Scrum, Feature Crews)
(j) Have a backup plan in order to ship without the depen-

dency
(k) Cancel the project
(l) Reorganize the team

(m) Other

7. Likert-style questions. Answers: All of the time, Frequently,

Occasionally, Rarely, Almost Never, N/A.

(a) Work items that I depend on are changed without my

knowledge.
(b) I need to ping the people I depend on for status.
(c) It is difficult to get a team I depend on to implement a

change I require.
(d) I need to maintain constant contact with the team I de-

pend on in order to get what I want.
(e) The teams I depend on tell me explicitly where my

needs fit into their priorities.

