
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Pre-Processing by a Cost-Sensitive Literal Reduction Algorithm
Lavrac, N.; Gamberger, D.; Turney, Peter

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=762cc364-39a5-4a55-a4c9-4a9b737a2f61

https://publications-cnrc.canada.ca/fra/voir/objet/?id=762cc364-39a5-4a55-a4c9-4a9b737a2f61

Preprocessing by a cost-sensitive
literal reduction algorithm: REDUCE 1

Nada Lavra�c

J. Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Dragan Gamberger

Rudjer Bo�skovi�c Institute
Bijeni�cka 54, 10000 Zagreb, Croatia

Peter Turney

Institute for Information Technology
National Research Council Canada

M-50 Montreal Road, Ottawa, Ontario, Canada, K1A 0R6

Abstract

This study is concerned with whether it is possible to detect what information contained
in the training data and background knowledge is relevant for solving the learning problem,
and whether irrelevant information can be eliminated in preprocessing before starting the
learning process. A case study of data preprocessing for a hybrid genetic algorithm shows
that the elimination of irrelevant features can substantially improve the e�ciency of learning.
In addition, cost-sensitive feature elimination can be e�ective for reducing costs of induced
hypotheses.

1 Introduction

The problem of relevance was addressed in early research on inductive concept learning [11].
Recently, this problem has also attracted much attention in the context of feature selection
in attribute-value learning [1,5,14]. Basically one can say that all learners are concerned with
the selection of `good' literals or features which will be used to construct the hypothesis.

This study is concerned with whether it is possible to detect what information contained
in the training data and background knowledge is relevant for solving the learning problem,

1ISSEK Workshop Mathematical and Statistical Methods in AI, September 19{21, 1996, Udine, Italy

1

and whether irrelevant information can be eliminated in preprocessing before learning. An
important di�erence between our approach and most other approaches is that, when deciding
about the relevance of literals, we are concerned with �nding `globally relevant' literals w.r.t.
the entire set of training examples, as opposed to �nding the `good literals' in the given local
training set (i.e., a set of examples covered by the currently constructed rule in rule induction
systems, or a set of covered examples in the current node of a decision tree in TDIDT systems).
This is important since the elimination of globally irrelevant literals guarantees that literal
elimination will not harm the hypothesis formation process and that during the reduction of
the hypothesis space the optimal problem solution will not be discarded. The aim of this
study is to distinguish between a set of literals that are relevant for learning and a set of
irrelevant literals that can be discarded before learning (i.e., before even entering the `good
literal' competition). Such �ltering of irrelevant literals can thus be viewed as a part of
preprocessing of the set of training examples.

This paper presents a case study of data preprocessing for a hybrid genetic algorithm which
shows that the elimination of irrelevant features can substantially improve the e�ciency of
learning. In addition, cost-sensitive feature elimination can be e�ective for reducing costs of
induced hypotheses.

The paper is organized as follows: Section 2 introduces the representational formalism, the
so-called p=n pairs of examples, gives the de�nition of irrelevant literals and presents a the-
orem which is the basis for literal elimination. Section 3 presents the cost-sensitive literal
elimination algorithm REDUCE. Section 4 introduces the problem domain, the 20 and the
24 trains East-West Challenges, and presents the results of our experiments that show that
the performance of a hybrid genetic algorithm RL-ICET [16] can be signi�cantly improved
by applying REDUCE in preprocessing of the dataset. The results of RL-ICET are also
compared to those of C4.5 [13].

2 Relevance of literals and features

Consider a two-class learning problem where training set E consists of positive and negative
examples of a concept, and examples e 2 E are tuples of truth-values of terms in a hypothesis
language. The set of all terms, called literals, is denoted by L.

2.1 Representation of training examples

Let us represent the training set E as a table where rows correspond to training examples and
columns correspond to literals. An element in the table has the value true when the example
satis�es the condition (literal) in the column of the table, otherwise its value is false. If the
training set does not have the form of tuples of truth-values, a transformation to this form
is performed in preprocessing of the training set.

2

2.1.1 Learning of propositional descriptions

In the attribute-value learning setting, the transformation procedure is based on analysis of
the values of examples in the training set. For each attribute Ai, let vix (x = 1::kip) be the kip
di�erent values of the attribute that appear in the positive examples and let wiy (y = 1::kin)
be the kin di�erent values appearing in the negative examples. The transformation results in
a set of literals L:

� For discrete attributes Ai, literals of the form Ai = vix and Ai 6= wiy are generated.

� For continuous attributes Ai, literals of the form Ai � (vix + wiy)=2 are created for
all neighboring value pairs (vix; wiy), and literals literals Ai > (vix + wiy)=2 for all
neighboring pairs (wiy; vix). The motivation is similar to that suggested in [2].

� For integer valued attributes Ai, literals are generated as if Ai were both discrete
and continuous, resulting in literals of four di�erent forms: Ai � (vix + wiy)=2, Ai >
(vix + wiy)=2, Ai = vix, and Ai 6= wiy.

2.1.2 Inductive logic programming

Inductive logic programming (ILP) refers to �rst-order learning of relational descriptions in
the representation formalism of logic programs [7]. In this setting, a LINUS transformation
approach is assumed that is appropriate for a limited hypothesis language of constrained
nonrecursive clauses [6,7]. For example, if the training examples about the target relation
daughter(A1; A2) are given in the training set, and the background knowledge consists of
the de�nitions of a unary relation female and binary relation parent, the transformation
of training examples results in a matrix of binary values true and false whose rows corre-
spond to training examples, and columns correspond to the following literals: female(A1),
female(A2), parent(A1; A2), parent(A2; A1), parent(A1; A1), parent(A2; A2), and A1 = A2.

2.2 p/n pairs of examples and relevance of literals

Assume the set of training examples E represented by a truth-value table where columns
correspond to the set of literals L, and rows are tuples of truth-values of literals, representing
training examples ei. The table is divided in two parts, P and N , where P are the positive
examples, and N are the negative examples. We use P [N to denote the table E.

To enable a formal discussion of the relevance of literals, the following de�nitions are intro-
duced:

De�nition 1. A p=n pair is a pair of training examples where p 2 P and n 2 N .

3

De�nition 2. Literal l 2 L covers a p=n pair if in column l of the table of training examples

E the positive example p has value true and the negative example n has value false. The set
of all p=n pairs covered by literal l will be denoted by E(l).

De�nition 3. Literal l covers literal l0 if E(l0) � E(l).

To illustrate the above de�nitions consider a simple learning problem with 5 training exam-
ples: three positive p1, p2 and p3, and two negative n1 and n2, described by truth-values of
literals li 2 L. The truth-value matrix E, showing just some of the truth-values, is given in
Table 1.

Examples Literals

::: ::: l2 ::: ::: l4 ::: ::: ::: l8 ::: :::

p1
P p2 true true false

p3

n1 false false true

N n2 false true true

Table 1: Coverage of literals, coverage of p=n pairs.

Literal l2 in Table 1 seems to be relevant for the formation of the inductive hypothesis since
it is true for a positive example and false for both negative examples. This is due to the fact
that l2 covers a positive example, and does not cover the negative examples, and is thus a
reasonable ingredient of the hypothesis that should cover the positive examples and should
not cover the negatives examples.

Literal l2 covers two p=n pairs: E(l2) = fp2=n1; p2=n2g. Literal l8 is inappropriate for
constructing a hypothesis, since it does not cover any p=n pair: E(l8) = ;. Literal l4 seems
to be less relevant than l2 and more relevant than l8; it covers only one p=n pair: E(l4) =
fp2=n1g. Literal l2 covers l4 and l8, and literal l4 covers l8, since E(l8) � E(l4) � E(l2).

Table 1 thus gives the following intuition: the more p=n pairs a literal covers the more relevant
it is for hypothesis formation. This may be formalized by the next de�nition.

De�nition 4a. Literal l0 is irrelevant if there exists a literal l 2 L such that l covers l0

(E(l0) � E(l)). In other words, literal l0 is irrelevant if it covers a subset of p=n pairs covered

by some other literal l 2 L.

Assume that literals are assigned costs (for instance, cost can be a measure of complexity -
the more complex the literal, the higher its cost). Let c(l) denote the cost of literal l 2 L.
The de�nition of irrelevance needs to be modi�ed to take into account the cost of the literals.

De�nition 4b. Literal l0 is irrelevant if there exists a literal l 2 L such that l covers l0

(E(l0) � E(l)) and the cost of l is lower than the cost of l0 (c(l) � c(l0)).

4

Our claim is that irrelevant literals can be eliminated in preprocessing. This claim is based on
the following theorem, which assumes that the hypothesis language L is rich enough to allow
for a complete and consistent hypothesis H to be induced from the set of training examples
E.2

Theorem 1. Assume a training set E and a set of literals L such that a complete and
consistent hypothesis H can be found. Let L0 � L. A complete and consistent hypothesis H
can be found using only literals from the set L0 if and only if for each possible p=n pair from
the training set E there exists at least one literal l 2 L0 that covers the p=n pair.

Proof of necessity: Suppose that the negation of the conclusion holds, i.e., that a p=n pair
exists that is not covered by any literal l 2 L0. Then no rule built of literals from L0 will be
able to distinguish between these two examples. Consequently, a description which is both
complete and consistent can not be found.

Proof of su�ciency: Take a positive example pi. Select from L0 the subset of all literals Li

that cover pi. A constructive proof of su�ciency can now be presented, based on k runs of
a covering algorithm, where k is the cardinality of the set of positive examples (k = jP j).
In the i-th run, the algorithm learns a conjunctive description hi, hi = li;1 ^ : : : ^ li;m for
all li;1; : : : li;m 2 Li that are true for pi. Each hi will thus be true for pi (hi covers pi), and
false for all n 2 N . After having formed all the k descriptions hi, a resulting complete and
consistent hypothesis can be constructed: H = h1 _ : : : _ hk.

2

The importance of the theorem is manifold. First, it points out that when deciding about the
relevance of literals it will be signi�cant to detect which p=n pairs are covered by the literal.
Second, the theorem enables us to directly detect useless literals that do not cover any p=n
pair. This theorem is the basis of the REDUCE algorithm for literal elimination.

3 Cost-sensitive literal elimination

3.1 Cost-sensitive literal elimination algorithm REDUCE

Algorithm 1 implements the cost-sensitive literal elimination algorithm, initially developed
within the ILLM learner [3]. This algorithm is the core of REDUCE [9].

The complexity of Algorithm 1 is O(jLj2�jEj), where jLj is the number of literals and jEj is
the number of examples. This algorithm can be easily transformed into an iterative algorithm
that can be used during the process of generation of literals [8].

2Hypothesis H is complete if it covers all the positive examples p 2 P . Hypothesis H is consistent if it
does not cover any negative example n 2 N .

5

Algorithm 1. Cost-sensitive literal elimination

Given: CL { costs of literals in L

Input: P , N { tables of positive and negative examples, L { set of literals

RP P , RN N , RL L

for 8 li 2 RL (i 2 [1; jLj]) do
if li has value false for all rows of RP then

eliminate li from RL

eliminate column li from RP and RN tables
if li has value true for all rows of RN then

eliminate li from RL

eliminate column li from RP and RN tables
if li is covered by any lj 2 RL for which c(lj) � c(li) then

eliminate li from RL

eliminate column li from RP and RN tables
endfor

Output: RP , RN { reduced tables of positive and negative examples, RL { reduced set of
literals

The algorithm can be e�ciently implemented using simple bitstring manipulation on the
table of training examples E. For this purpose, the table E is transformed into Et as follows:

8p 2 P : replace true by 1 and false by 0
8n 2 N : replace false by 1 and true by 0

In this representation, examples e 2 Et and literals l 2 L are bitstrings. Coverage can now
be checked by set inclusion. Recall that literal l covers literal l0 if Et(l

0) � Et(l). Thus, if l
0

has value 1 only in (some of) those rows as l has 1 and in no other rows, l0 can be eliminated.

3.2 Relevance of features

The term feature is used to denote positive literals such as for example Ai = v, Aj � w,
and r(Ai; Aj). In the hypothesis language, the existence of one such feature implies the
existence of two complementary literals: a positive and a negative literal. Suppose that we
consider the feature Color = black and that the attribute Color has three possible values:
black, white, red. Since each feature implies the existence of two literals, the necessary
and su�cient condition that a feature can be eliminated as irrelevant is that both of its
literals Color = black and Color 6= black3 are irrelevant. This statement directly implies
the procedure taken in our experiment. First we convert the starting feature vector to the
corresponding literal vector which has twice as many elements. After that, we eliminate
the irrelevant literals and, in the third step, we construct the reduced set of features which
includes all the features which have at least one of their literals in the reduced literal vector.

It must be noted that direct detection of irrelevant features (without conversion to and from
the literal form) is not possible except in the trivial case where two (or more) features have
identical columns in table Et. Only in this case a feature f exists whose literals f and :f
cover both literals g and :g of some other feature. In a general case if a literal of feature f

3We use either the notation :(Color = black) or Color 6= black to denote a negative literal.

6

covers some literal of feature g then the other literal of feature g is not covered by the other
literal of feature f . But it can happen that this other literal of feature g is covered by a
literal of some other feature h. This means that although there does not exist a feature f
that covers both literals of the feature g, feature g can be irrelevant.4

4 Utility study: The East-West challenge

Michie et al. [12] issued a \challenge to the international computing community" to discover
low size-complexity Prolog programs for classifying trains as Eastbound or Westbound. The
challenge was inspired by a problem posed by Michalski and Larson [10].

The original challenge [12] included three separate tasks. Michie later issued a second chal-
lenge, involving a fourth task. Our experiments described here involve the �rst and fourth
tasks. The �rst task was to discover a simple rule for distinguishing 20 trains, 10 East-
bound and 10 Westbound, whereas the fourth task involved 24 trains, 12 Eastbound and 12
Westbound. In these two tasks, the set of trains was classi�ed into East and West using an
arbitrary human-generated rule (theory). The challenge was to discover the humen-generated
theorys or a simpler theory (rule).

For both tasks, the winner was decided by representing the rule as a Prolog program and
measuring its size-complexity. The size-complexity of the Prolog program was calculated
as the sum of the number of clause occurrences, the number of term occurrences, and the
number of atom occurrences.

4.1 RL-ICET

A cost-sensitive algorithm ICET was developed for generating low-cost decision trees [15].
ICET is a hybrid of a genetic algorithm and a decision tree induction algorithm. The ge-
netic algorithm is Grefenstette's GENESIS [4] and the decision tree induction algorithm is
Quinlan's C4.5 [13]. ICET uses a two-tiered search strategy. On the bottom tier, C4.5 uses
a TDIDT (Top Down Induction of Decision Trees) strategy to search through the space of
decision trees. On the top tier, GENESIS uses a genetic algorithm to search through the
space of biases.

ICET takes feature vectors as input and generates decision trees as output. The algorithm
is sensitive to both the cost of features and the cost of classi�cation errors. The East-West
Challenge involves data in the form of relations, and theories in the form of Prolog programs.
For the East-West Challenge, ICET was extended to handle Prolog input. This algorithm is
called RL-ICET (Relational Learning with ICET) [16].

4This analysis helps us to see that the standard approach to rule construction which is based on feature
selection is sub-optimal. Most rule learners use a two-phase approach: �rst, the best feature is selected, and
second, for a selected feature, one of the two complementary literals (positive or negative) is used to construct
a rule. We suggest that learning should be based on tuples of truth-values of positive and negative literals,
rather than on feature vectors.

7

RL-ICET is similar to the LINUS learning system [6,7] since it uses a three-part learning
strategy. First, a preprocessor translates the Prolog relations and predicates into a feature
vector format. The preprocessor in RL-ICET was designed specially for the East-West Chal-
lenge, whereas LINUS has a general-purpose preprocessor. Second, an attribute-value learner
applies a decision tree induction algorithm (ICET) to the feature vectors. Each feature is
assigned a cost, based on the size of the fragment of Prolog code that represents the corre-
sponding predicate or relation. A decision tree that has a low cost corresponds (roughly) to a
Prolog program that has a low size-complexity. When it searches for a low cost decision tree,
ICET is in e�ect searching for a low size-complexity Prolog program. Third, a postprocessor
translates the decision tree into a Prolog program. Postprocessing with RL-ICET is done
manually, whereas LINUS performs post-processing automatically.

4.2 Feature construction in RL-ICET

Much of the success of RL-ICET in the East-West challenge tasks may be attributed to
its preprocessor which translates the Prolog descriptions of the trains into a feature vector
representation.

The data about each train in the East-West challenge were represented using Prolog. For
example, the �rst train, shown below, is represented by the following Prolog clause:

eastbound([c(1, rectangle, short, not_double, none, 2, l(circle,1)),

c(2, rectangle, long, not_double, none, 3, l(hexagon, 1)),

c(3, rectangle, short, not_double, peaked, 2, l(triangle, 1)),

c(4, rectangle, long, not_double, none, 2, l(rectangle, 3))]).

The relatively compact Prolog description was converted by a simple Prolog program into a
feature vector format (tuples of truth-values of features) to be used for decision tree induction.
This resulted in rather large feature vectors of 1199 elements. The large vectors were required
to ensure that all the features that are potentially interesting for the �nal solution are made
available for ICET.

What follows is a brief outline of the feature construction procedure that occurs in the pre-
processing of the training set. We started with 28 predicates that apply to the cars in a train,
such as ellipse(C), which is true when the car C has an elliptical shape. For each of these
28 predicates, we de�ned a corresponding feature. All of the features were de�ned for whole
trains, rather than single cars, since the problem is to classify trains. The feature ellipse, for
example, has the value true when a given train has a car with an elliptical shape. Otherwise
ellipse has the value false. We then de�ned features by forming all possible unordered
pairs of the original 28 predicates. For example, the feature ellipse_triangle_load has
the value true when a given train has a car with an elliptical shape that is carrying a triangle
load, and false otherwise. Note that the features ellipse and triangle_load may have

8

the value true for a given train while the feature ellipse_triangle_load has the value
false, since ellipse_triangle_load only has the value true when the train has a car that
is both elliptical and carrying a triangle load. Next we de�ned features by forming all possi-
ble ordered pairs of the original 28 predicates, using the relation infront(T, C1, C2). For
example, the feature u_shaped_infront_peaked_roof has the value true when the train has
a U-shaped car in front of a car with a peaked roof, and false otherwise. Finally, we added
9 more predicates that apply to the train as a whole, such as train_4, which has the value
true when the train has exactly four cars. Thus a train is represented by a feature vector,
where every feature has either the value true or the value false.

Each feature was assigned a cost, based on the complexity of the fragment of Prolog code
required to represent the given feature. The complexity of a Prolog program is de�ned as a
sum of the number of clause occurrences, the number of term occurrences and the number of
atom occurrences. Table 2 shows some examples of constructed features and their costs.

Feature Prolog Fragment Cost

(Complexity)

ellipse has car(T;C); ellipse(C): 5

short closed has car(T;C); short(C); 7
closed(C):

train 4 len1(T; 4): 3

train hexagon has load1(T; hexagon): 3

ellipse peaked roof has car(T;C); ellipse(C); 9
arg(5; C; peaked):

u shaped no load has car(T;C); u shaped(C); 8
has load(C; 0):

rectangle load infront infront(T; C1; C2); 11
jagged roof has load0(C1; rectangle);

arg(5; C2; jagged):

Table 2: Examples of features and their costs.

The feature vector for a train does not capture all the information that is in the original
Prolog representation. For example, we could also de�ne features by combining all possible
unordered triples of the 28 predicates. However, these features would likely be less useful,
since they are so speci�c that they will only rarely have the value true. If the target concept
should happen to be a triple of predicates, it could be closely approximated by the conjunction
of the three pairs of predicates that are subsets of the triple.5

4.3 Previous results of RL-ICET

RL-ICET was the winning algorithm for the second task in the �rst East-West Challenge,
and it performed very well in the other three tasks.

5This kind of translation to feature vector representation could be applied to many other types of structured
objects. For example, consider the problem of classifying a set of documents. The keywords in a document are
analogous to the cars in a train. The distance between keywords or the order of keywords in a document may
be useful when classifying the document, just as the infront relation may be useful when classifying trains.

9

Since the initial population of biases in ICET is set randomly, ICET may produce a dif-
ferent result each time it runs. Therefore, when solving a problem, ICET needs to be run
several times. The best (lowest cost) decision tree that was generated for the �rst compe-
tition [16] is shown below. The total cost of the tree equals 18 units (obtained as a sum of
short_closed = 7, train_4 = 3, u_shaped = 5, and train_circle = 3).

short_closed = 1: 1 (8.0)

short_closed = 0:

| train_4 = 0: 0 (7.0)

| train_4 = 1:

| | u_shaped = 0: 0 (2.0)

| | u_shaped = 1:

| | | train_circle = 0: 0 (1.0)

| | | train_circle = 1: 1 (2.0)

The induced decision trees were converted into Prolog programs by hand. For example, the
above decision tree was converted to the following Prolog program.

eastbound(T) :-

has_car(T, C),

((short(C), closed(C));

(len1(T, 4), u_shaped(C), has_load1(T, circle))).

The above Prolog program was the entry for the �rst competition. This program has a
complexity of 19 units, which shows that the cost of the decision tree (18 units) is only an
approximation of the cost of the corresponding Prolog program, since some Prolog code needs
to be added to assemble the Prolog fragments into a working whole. This extra code means
that the sum of the sizes of the fragments is less than the size of the whole program. It is
also sometimes possible to subtract some code from the whole, because there may be some
overlap in the code in the fragments. The ideal solution to this problem would be to add
a post-processing module to RL-ICET that automatically converts the decision trees into
Prolog programs. The complexity could then be calculated directly from the output Prolog
program, instead of the decision tree. Although post-processing with RL-ICET was done
manually, it could be automated, as demonstrated by LINUS, which has a general-purpose
post-processor.

4.4 Feature elimination by REDUCE

The objective of the experiments was to show the utility of the literal elimination algorithm
REDUCE. Two experiments were performed separately for the 20 and 24 trains problems. In
both experiments, the RL-ICET preprocessor was used to generate the appropriate features
and to transform the training examples into a feature vector format. This resulted in two
training sets of 20 and 24 examples each, described by 1199 features.

10

In order to apply the REDUCE algorithm we �rst converted the starting feature vector of 1199
elements to the corresponding literal vector which has twice as many elements, containing
1199 features generated by the RL-ICET preprocessor (positive literals) as well as their
negated counterparts (1199 negative literals). After that, we eliminated the irrelevant literals
and, in the third phase, constructed the reduced set of features which includes all the features
which have at least one of their literals in the reduced literal set.

The experimental setup, designed to test the utility of REDUCE, was as follows. First, 10
runs of the ICET algorithm were performed on the set of training examples described with
1199 features. Second, 10 runs of ICET were performed on the training examples described
with the reduced set of features selected by REDUCE.

Ten runs were needed because of the stochastic nature of the ICET algorithm: each time it
runs, it yields a di�erent result (assuming that the random number seed is changed). If we
compared one single run of ICET on 1199 features to one run of ICET on the reduced feature
set, the outcome of the comparison could be due to chance.

The results were compared with respect to execution times, costs of decision trees induced by
ICET, and the complexity of Prolog programs after the RL-ICET transformation of decision
trees into the Prolog program form (notice that the transformation into the Prolog form is
currently manual and sub-optimal, which means that a tree with lowest cost found by ICET
is not necessarily transformed into a Prolog program with lowest complexity).

The results of the experiment are summarized in Tables 3 and 4. The average results of 10 runs
of RL-ICET were compared with respect to the costs of decision trees and execution times.
Notice that all the experiments are independent of each other, e.g., results of experiment 4
should not be compared to the results of experiment 14. Only average results are relevant
for the comparison.

4.4.1 Results of the 20 trains experiment

With the 20 train data, REDUCE cut the original set of 1199 features down to 86 features.
In this way, the complexity of the learning problem was reduced to about 7% (86/1199) of the
initial learning problem. Results of 10 runs of ICET on the 1199 feature set are the results
reported in [16], whereas results of 10 runs of ICET on the training examples described with
86 features are new.

The results show that the e�ciency of learning signi�cantly increased. In the initial problem
with 1199 features, the average time per experiment was about 2 hours and 17 minutes,
whereas in the reduced problem setting with 86 features the average time per experiment
was about 12 minutes. The di�erence between times t1 and t2 is signi�cant at the 99.99%
con�dence level. This shows the utility of literal reduction for genetic algorithms which are
typically expensive in terms of CPU time.

The average cost of descriptions induced from the 86 feature set has decreased (from 20 to
18.6), but the di�erence between decision tree costs c1 and c2 is not signi�cant. The variance
(or the standard deviation) of the costs was also reduced, i.e., the costs of the decision trees

11

86 features 1199 features
Trial T ime Cost Compl: T rial T ime Cost Compl:

t1 c1 cm1 t2 c2 cm2

1 11 : 05 18 22 11 2 : 21 : 32 24 25
2 11 : 19 21 27 12 2 : 21 : 34 21 22
3 12 : 55 18 22 13 2 : 19 : 15 20 22
4 11 : 35 18 22 14 2 : 19 : 32 20 22
5 15 : 16 18 22 15 2 : 16 : 20 18 19
6 11 : 35 18 19 16 2 : 23 : 52 22 23
7 11 : 32 18 22 17 2 : 24 : 09 21 22
8 11 : 38 18 22 18 2 : 18 : 41 16 20
9 11 : 28 18 22 19 2 : 16 : 58 18 22
10 11 : 18 21 23 20 2 : 23 : 09 20 22

Sum 119 : 41 186 223 Sum 23 : 25 : 02 200 219

Mean 11 : 57 18:6 22:3 Mean 2 : 16 : 54 20 21:9

Table 3: Summary of results in the 20 trains East-West challenge.

generated from 1199 features vary more than the costs of the trees generated from 86 features:
var(c1) = 1:6 (sd(c1) = 1:3) and var(c2) = 5:1 (sd(c2) = 2:3).

The lowest cost decision tree (16 units) reported in Table 3 was generated in trial 18, with
the full set of 1199 features. However, all of the features that appear in the tree in trial 18 are
also in the reduced set of 86 features, so REDUCE does not prevent RL-ICET from possibly
discovering this tree (if the genetic search algorithm is lucky). Notice that the sub-optimal
transformation into the Prolog form transforms the lowest cost decision tree into a Prolog
program with complexity 20, which is higher than the minimal size-complexity non-recursive
Prolog program (size 19) for the 20 train problem, generated from decision trees generated
in trials 6 and 15.

It is important to note that, using the reduced set of 86 features, in Trial 6, the same best
tree as reported in [16] and obtained by Trial 15 from 1199 features, was induced (cost =
18, complexity = 19, see Section 4.3). The fact that the same optimal non-recursive Prolog
program was induced and the substantial e�ciency increase con�rm the usefulness of our
approach for learning with genetic algorithms.

It is also interesting to observe that the trees induced by RL-ICET from the set of 1199
features use mostly the features of the reduced 86 feature set; however, some other fea-
tures are used as well (in Trial 11: triangle load one load, in Trials 13, 14 and 20:
no roof infront short, in Trial 17: triangle load).

4.4.2 Results of the 24 trains experiment

In this experiment, REDUCE decreased the number of features from 1199 to 116. In this way,
the complexity of the learning problem was reduced to about 10% (116/1199) of the initial

12

learning problem. The results show that the e�ciency of learning signi�cantly increased. In
the initial problem with 1199 features, the average time per experiment was nearly two hours,
whereas in the reduced problem setting with 116 features the average time per experiment
was about 14 minutes. The di�erence between times t1 and t2 is signi�cant at the 99.99%
con�dence level.

116 features 1199 features
Trial T ime Cost Compl: T rial T ime Cost Compl:

t1 c1 cm1 t2 c2 cm2

1 14 : 35 20 33 11 1 : 54 : 15 27 33
2 14 : 26 18 30 12 1 : 55 : 29 21 28
3 14 : 59 18 30 13 2 : 00 : 25 26 31
4 14 : 17 21 34 14 1 : 56 : 31 25 28
5 13 : 32 18 28 15 1 : 56 : 47 25 30
6 13 : 31 22 27 16 1 : 57 : 14 24 27
7 14 : 29 18 28 17 1 : 56 : 52 28 31
8 13 : 54 23 28 18 1 : 56 : 33 23 28
9 13 : 51 23 33 19 1 : 49 : 08 27 30
10 14 : 30 18 29 20 1 : 47 : 46 28 41

Sum 2 : 22 : 04 199 300 Sum 19 : 11 : 00 254 307

Mean 14 : 12 19:9 30 Mean 1 : 55 : 05 25:4 30:7

Table 4: Summary of results in 24 trains East-West challenge.

The average cost of decision trees induced from the 116 feature set has also decreased. The
di�erence between decision tree costs c1 and c2 is signi�cant at the 99.99% con�dence level.
Our hypothesis that variance (standard deviation) of the output of RL-ICET can be reduced
is only weakly supported since the inequality of variance is insigni�cant: var(c1) = 4:8
(sd(c1) = 2:2) and var(c2) = 5:2 (sd(c2) = 2:3).

Turney's original entry in Michie's 24 train challenge was the following tree whose total cost
equals 23 units:

peaked_roof = 1: 1 (6.0)

peaked_roof = 0:

| double = 1:

| | train_diamond = 0: 1 (5.0)

| | train_diamond = 1: 0 (1.0)

| double = 0:

| | closed_hexagon_load = 1: 1 (1.0)

| | closed_hexagon_load = 0: 0 (11.0)

The tree is transcribed into a Prolog program of size 23:

13

eastbound(T) :-

has_car(T, C),

(arg(5, C, peaked);

(double(C), not has_load0(C, diamond));

(has_load0(C, hexagon), closed(C))).

Notice that the cost of this decision tree is only slightly below average for 1199 features,
is above average for 116 features, and is higher than the cost of the minimal decision tree
induced from the 116 feature set (minimal cost is 18). However, this Prolog program has
a lower complexity than any of the 20 Prolog programs generated in this experiment. This
tree/Prolog program was generated with all of the _infront_ features disabled.6 When the
infront features are removed, the number of features drops from 1199 to 415.

When comparing the features of the above best tree with the set of 116 features,
all features appearing in the tree appear also in the reduced 116 feature set, except
closed_hexagon_load. However, the feature closed_infront_closed substitutes for
closed_hexagon_load in the 116 feature set. This means that the reduction algorithm could
have removed from the feature set either closed_hexagon_load or closed_infront_closed,
but has, due to its ignorance about the transformation procedure into Prolog encodings, ran-
domly decided to eliminate closed_hexagon_load. The resulting substition does not change
the cost of the tree (cost = 23), but the corresponding Prolog program is larger (complexity
= 26):

peaked_roof = 1: 1 (6.0)

peaked_roof = 0:

| double = 1:

| | train_diamond = 0: 1 (5.0)

| | train_diamond = 1: 0 (1.0)

| double = 0:

| | closed_infront_closed = 1: 1 (1.0)

| | closed_infront_closed = 0: 0 (11.0)

eastbound(T) :-

has_car(T, C),

(arg(5, C, peaked);

(double(C), not has_load0(C, diamond));

(infront(T, C1, C2), closed(C1), closed(C2))).

4.5 Costs versus complexity: Results for 20 and 24 trains

Due to the imperfect transformation of decision trees into Prolog rules, it is hard to achieve the
optimal result in terms of the complexity of induced Prolog rules (the goal of the competition

6Disabling this feature was due to the suspicion that the \infront" features weren't very useful, since S.
Muggleton had decided to rede�ne the \append" predicate by adding cut to it.

14

was to minimize Prolog code complexity); that is, RL-ICET optimizes the cost of decision
trees and not the complexity of Prolog encodings.

To test the correlation between the costs of decision trees and the complexity of Prolog rules
we have tried to �nd the correlation between costs and complexity.

To this end, we have computed the correlation between cost and complexity for the 20 trains
experiment: corr(c1; cm1) = 0:73 and corr(c2; cm2) = 0:86, and for the 24 trains experiment:
corr(c1; cm1) = 0:22 and corr(c2; cm2) = 0:66. From these correlations we speculate that:

� the correlation decreases as the number of trains increases, and

� the correlation decreases as the number of features decreases.

Similar conclusions hold also if the correlations between cost and complexity are computed
on vectors of 20 elements (and not 10 elements as above), merging the results of the 20 and
the 24 trains experiments.

The complexity of the Prolog programs is only weakly correlated with the cost of the decision
trees. The ideal correlation (1.0) was not achieved due to the imperfect transformation of
decision trees into Prolog rules. This transformation is performed in two steps. In the
�rst step, a Prolog program is created whose structure is nearly identical to the structure
of the decision tree. The second step employs ways to compress the Prolog program, by
removing redundant sections of code and altering the structure of the program; this step
actually disturbs the correlation between the cost of the decision trees and the complexity
of the Prolog programs. If the second step were eliminated, there would be a much higher
correlation between the cost and the complexity, but there would also be a large increase in
the complexity of Prolog programs.

The ideal solution to this problem would be to fully automate the transformation of the
decision trees to Prolog programs and then modify RL-ICET to search for the least complex
Prolog program, instead of the least costly decision tree.

4.6 Applying C4.5 in the East-West Challenge

We have compared the results of RL-ICET with the ones achieved using C4.5 [13]. This ex-
periment was made in order to check whether our claims of the usefulness of feature reduction
can be made more general.

To do so, C4.5 was �rst applied to the 24 trains problem, using the default settings. C4.5
generated a tree that makes one error on the training data; it misclassi�es one of the 24 trains.
This is because of one of the default C4.5 parameters settings: the parameter that sets the
minimum number of objects that can be at one leaf in the tree. The default value is two.
In the experiments on 20 trains and 24 trains, C4.5 was therefore run with the parameter
setting which sets the minimum number of objects at one. In this way, C4.5 generates trees
that make no errors on the training data.

15

4.6.1 Results of C4.5

Results of using C4.5 are given in Table 5. Feature reduction does not help C4.5 to �nd
a better solution in terms of costs: using feature reduction, C4.5 becomes slower and gains
nothing, since feature reduction itself takes about 5 minutes (real 4:49.00, user 3:32.50, system
0:40.34, times measured on a HP Workstation).

20 Trains 20 trains 24 trains 24 trains
86 features 1199 features 116 features 1199 features

Cost 22 22 23 23
T ime (seconds) 1 1 1 2

Table 5: Results of C4.5.

4.6.2 Comparing RL-ICET and C4.5

From the comparison of Table 4 and Table 5 we see that for the 116 feature dataset RL-ICET
has lower average cost (19.9) than C4.5 (cost 23), but not for the 1199 feature data (average
cost 25.4 for RL-ICET and cost 23 for C4.5). From the comparison of Tables 3 and 5 we see
that RL-ICET has lower average cost than C4.5 both for the 86 feature dataset (average cost
of 18.6 units for RL-ICET and 22 units for C4.5) and for the 1199 feature dataset (average
cost of 20 units for RL-ICET and 22 units for C4.5).

In order to see how much literal reduction contributes to the favourable results achieved by
RL-ICET, let us separately analyse the results for the reduced and original datasets. For
reduced feature sets, the results are favourable for RL-ICET when compared to C4.5.

For the reduced datasets the results are as follows:

86 features, 20 trains: both the minimal cost (18) and the average cost (18.6) are lower
than the cost of the tree induced by C4.5 (22).

116 features, 24 trains: both the minimal cost (18) and the average cost (20) are lower
than the cost of the tree induced by C4.5 (23).

For the original 1199 feature datasets the results are as follows:

1199 features, 20 trains: both the minimal cost (16) and the average cost (20) of the trees
induced by RL-ICET are better than the cost of the tree induced by C4.5 (22).

1199 features, 24 trains: the minimal cost (21) of the tree induced by RL-ICET is lower
than the cost of the tree induced by C4.5 (23). However, the average cost of trees
induced by RL-ICET (25.4) is higher.

16

In summary, we may claim that feature reduction helped RL-ICET to achieve very favourable
results. In both experiments (20 and 24 trains) it helped RL-ICET to outperform C4.5,
when comparing costs of decision trees, both in terms of minimal and average costs. In both
experiments it helped RL-ICET to substantially reduce the execution time; however, even on
reduced feature sets, RL-ICET of course needs much more time than C4.5.

5 Summary

This work is a study of the problem of relevance for inductive learning system, applicable
both in attribute-value (feature vector) learning and in the LINUS transformation approach to
inductive logic programming. Irrelevant literal elimination, such as performed by REDUCE,
assumes that the goal of the learning algorithm is to �nd a simple (low size or low cost)
hypothesis. This assumption applies to most existing learning systems.

The presented case study of data preprocessing shows that cost-sensitive elimination of irrel-
evant features can substantially improve the e�ciency of learning and can reduce the costs of
induced hypotheses. This study, using the hybrid genetic decision tree induction algorithm
RL-ICET on two East-West Challenge problems, together with other presented results in
feature reduction con�rm the usefulness of feature reduction in preprocessing.

In order to evaluate the e�ects of feature reduction, we have also compared the results of
ICET (with and without feature reduction) with the results achieved using C4.5 [13]. In both
experiments, feature reduction (reduction to 86 and 116 features, respectively) helped ICET
to outperform C4.5 when comparing costs of decision trees, both in terms of minimal and
average costs. On the other hand, the application of REDUCE did not help C4.5 itself to
induce a lower cost solution from examples described with fewer features.

More detailed information on this study is available in two technical reports of J. Stefan
Institute, Ljubljana, that can be obtained upon request from the authors.

Acknowledgements

This research was supported by the Slovenian Ministry of Science and Technology, the Croat-
ian Ministry of Science, the National Reseach Council of Canada and the ESPRIT IV project
20237 Inductive Logic Programming 2. The authors are grateful to Donald Michie for his
stimulative interest in this work, and to Sa�so D�zeroski for his involvement in earlier experi-
ments.

17

References

1. Caruana, R. and D. Freitag: Greedy Attribute Selection, in: Proceedings of the 11th International
Conference on Machine Learning, Morgan Kaufmann, 1994, 28{36.

2. Fayyad, U.M. and K.B. Irani: On the handling of continuous-valued attributes in decision tree
generation, Machine Learning, 8 (1992), 87{102.

3. Gamberger, D.: A Minimization Approach to Propositional Inductive Learning, in: Proceedings of
the 8th European Conference on Machine Learning, Springer, 1995, 151{160.

4. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms, IEEE Transactions
on Systems, Man, and Cybernetics, 16 (1986), 122{128.

5. John, G.H., R. Kohavi and K. Peger: Irrelevant Features and the Subset Selection Problem, in:
Proceedings of the 11th International Conference on Machine Learning, Morgan Kaufmann, 1994,
190{198.

6. Lavra�c, N., S. D�zeroski and M. Grobelnik:. Learning Nonrecursive De�nitions of Relations with
LINUS, in: Proceedings of the 5th European Working Session on Learning, Springer, 1991, 265{281.

7. Lavra�c, N. and S. D�zeroski: Inductive Logic Programming: Techniques and Applications, Ellis
Horwood, 1994.

8. Lavra�c, N., D. Gamberger and S. D�zeroski: An Approach to Dimensionality Reduction in Learning
from Deductive Databases, in: Proceedings of the 5th International Workshop on Inductive Logic
Programming, Scienti�c Report, Katholieke Universiteit Leuven, 1995, 337{354.

9. Lavra�c, N., D. Gamberger and P. Turney: Cost-Sensitive Feature Reduction Applied to a Hybrid
Genetic Algorithm, in: Proceedings of the 7th International Workshop on Algorithmic Learning
Theory, Springer, 1996, 127{134.

10. Michalski, R.S. and J.B. Larson: Inductive Inference of VL Decision Rules, ACM SIGART Newslet-
ter, 63 (1977), 38{44.

11. Michalski, R.S.: A Theory and Methodology of Inductive Learning, in: Machine Learning: An
Arti�cial Intelligence Approach (Eds. R. Michalski, J. Carbonell and T. Mitchell), Tioga, 1983,
83{134.

12. Michie, D., S. Muggleton, D. Page and A. Srinivasan: To the International Computing Community:
A new East-West Challenge. Oxford University Computing Laboratory, Oxford, 1994. [Available at
URL ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/trains.tar.Z.]

13. Quinlan, J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

14. Skalak, D.: Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing
Algorithms, in: Proceedings of the 11th International Conference on Machine Learning, Morgan
Kaufmann, 1994, 293{301.

15. Turney, P.: Cost-Sensitive Classi�cation: Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm, Journal of Arti�cial Intelligence Research, 2 (1995), 369{409. [Available at
URL http://www.cs.washington.edu/research/ jair/home.html.]

16. Turney, P.: Low Size-Complexity Inductive Logic Programming: The East-West Challenge as a
Problem in Cost-Sensitive Classi�cation, in: Advances in Inductive Logic Programming (Ed. L. De
Raedt), IOS Press, 1996, 308{321.

18

