

NRC Publications Archive Archives des publications du CNRC

Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells

Kolesnikov, Y. S.; Nokhrina, K. P.; Kretynin, S. V.; Volotovski, I. D.; Martinec, J.; Romanov, G. A.; Kravets, V. S.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1134/S0006297912010014 Biochemistry (Moscow), 77, 1, pp. 1-14, 2012-01-27

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=740b4fe5-17f1-4ef7-a4bf-ad2d609c57c2 https://publications-cnrc.canada.ca/fra/voir/objet/?id=740b4fe5-17f1-4ef7-a4bf-ad2d609c57c2

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

REVIEW

Molecular Structure of Phospholipase D and Regulatory Mechanisms of Its Activity in Plant and Animal Cells

{running title} PLD STRUCTURE AND ACTIVITY IN PLANT AND ANIMAL CELLS

Y. S. Kolesnikov¹, K. P. Nokhrina², S. V. Kretynin¹, I. D. Volotovski³, J. Martinec⁴, G. A. Romanov⁵, and V. S. Kravets¹*

KOLESNIKOV et al.

¹Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 1, 02094 Kiev, Ukraine; fax: +38 (044) 573-2552; E-mail: kravets@bpci.kiev.ua
²Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada; E-mail: Kateryna.Nokhrina@nrc-cnrc.gc.ca
³Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, ul. Akademicheskaya 27, 220072 Minsk, Belarus; E-mail: volot@biobel.bas-net.by
⁴Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 16502 Prague 6, Czech Republic; fax: +420 (225) 106-456, E-mail: martinec@ueb.cas.cz
⁵Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276 Moscow, Russia; E-mail: gar@ippras.ru

Received February 1, 2011 Revision received March 23, 2011

Abbreviations: G α , α -subunit of heterotrimeric G-protein; PKC, protein kinase C; PLD, phospholipase D; PtdIns(4,5)P₂, phosphatidylinositol-4,5-bisphosphate.

* To whom correspondence should be addressed.

Abstract—Phospholipase D (PLD) catalyzes hydrolysis of phospholipids with production of phosphatidic acids, which often act as secondary messengers on transmission of intracellular signals. This review summarizes data of various leading laboratories on specific features of organization and regulation of PLD activity in plant and animal cells. The main structural domains of PLD (C2, PX, PH), the active site, and other functionally important parts of the enzyme are considered. Regulatory mechanisms of PLD activity are characterized in detail. Studies associated with molecular design, analysis, and synthesis of new nontoxic substances capable of inhibiting different PLD isoenzymes *in vivo* are shown to be promising for biotechnology and medicine.

DOI: 10.1134/S000629791201001?

Key words: phospholipase D, domains, calcium, lipids, G-proteins, protein kinases, protein–protein interactions

Phospholipase D (EC 3.1.4.4) (PLD) is an enzyme widely distributed in plants [1, 2] and animals [3, 4]; it catalyzes hydrolysis of the phosphodiester bond in structural phospholipids (phosphatidylcholine, phosphatidyl ethanolamine, etc.) with production of phosphatidic acid and low molecular weight water-soluble compounds of choline or ethanolamine type [5]. Phosphatidic acid is considered to be not only a necessary structural element of membranes but also an important secondary messenger of hormone and stress signaling cascades [6, 7] and as a regulator of membrane transport [8]. Phosphatidic acid can also be generated by diacylglycerol kinases [9].

PLD was found and cloned in plants, and the model plant *Arabidopsis thaliana* has been shown to have 12 PLD genes [10, 11]. PLD is very sensitive to external and internal factors, and its multiformity is favorable for fine coordination of enzyme activity and features of cell metabolism. PLD is actively studied on different organizational levels in both plants and animals.

This review analyzes the data on PLD of plants and animals and also gives the authors' concept about the involvement of PLD in transmission of signals of such important phytohormones as cytokinins. In particular, known regulatory mechanisms of PLD activity are analyzed, and comparative characteristics of these enzymes in different cells are presented. A wide spectrum of factors known to play key roles in PLD regulation is considered, the organization of the enzyme is analyzed, its role in the regulation of cell metabolism is determined, and lines for studies on lipid signaling systems are described.

Studies in biochemistry and molecular genetics are favorable for determination of the role of PLD in plant and animal cells [12]. There are data on the involvement of PLD in malignancies [13], angiogenesis [14], leukocyte adhesion, and chemotaxis [15]; the functions of the enzyme are considered in platelets [16], nerve cells [17], myocardium [18], lungs [19], in transfer of intracellular membranes [20, 21], and signal transmission in animals [6, 22-25] and plants [2, 11]. Moreover, the therapeutic potential of PLD inhibitors has been considered [4]. However, the published data on the regulatory mechanisms of PLD activity in plants and animals and on the involvement of PLD in signal transmission have not been analyzed yet. The purpose of this review is to fill this gap and to inform readers about researches in this field.

PLD of animal cells is encoded by two genes and exists in two forms: PLD1 and PLD2 [26, 27]. PLD1 (120 kDa) is mainly present on endomembranes of the cell and is transported under the influence of extracellular stimuli. PLD2 (106 kDa) is located on the plasma membrane, has low *in vivo* activity, and is moderately stimulated by known activators of PLD1. Plants are found to have many genes of various PLD isoenzymes that encode high molecular weight multidomain proteins with molecular weights of 90-125 kDa. In *Arabidopsis* plants there are 12 genes of PLD: PLD $\alpha(3)$, $\beta(2)$, $\gamma(3)$, δ , ε , and $\zeta(2)$ [2]; in rice there are 17 genes of PLD: PLD $\alpha(8)$, $\beta(2)$, $\delta(3)$, κ , $\zeta(2)$, and ϕ [28]. In *Arabidopsis* PLD α 3 [29], PLD δ [11], PLD ζ 1 [2], and PLD ε [30] are located mainly on the plasma membrane, PLD ζ 2 is connected with the tonoplast membrane [31], PLD α 1 shuttles between the cytosol and membranes [2], whereas PLD γ 1 is located on intracellular membranes [2]. The location of PLD β is not strictly determined [2]. PLD α 1 is the most active and PL ζ 1 and PLD ϵ are the least active isoenzymes in plants. In the absence of activators and calcium in the incubation medium all PLD isoenzymes of plant cells are inactive *in vitro*.

SPECIFIC FEATURES OF PRIMARY STRUCTURE OF PLD

Active site of PLD. PLDs from animal and plant cells have a modular structure where sites responsible for catalysis are surrounded by regulatory sequences (figure). The active site of PLD consists of four conservative amino acid sequences (I-IV) among which II and IV are especially conservative in various organisms. Every motif of II and IV contains the sequence, HxKxxxxDxxxxxGSxN (abbreviated HKD, where x are nonconservative amino acids), and due to this sequence PLD can catalyze hydrolysis of phospholipids [32]. Residues of histidine (H), lysine (K), and aspartic acid (D) are directly involved in hydrolysis of phosphodiester bonds of phospholipids. The histidine residue in this case acts as a nucleophile that attacks the phosphorus atom of the substrate [32-34]. The catalytic site of PLD is formed when the HKD sequences are in the correct proximity. The PLD-catalyzed hydrolysis of the phosphodiester bond is supposed to occur in two stages by the so-called ping-pong mechanism: successive attack of the substrate by imidazole residues of histidines, each of which is a component of the catalytic sequences of HKD. As a result, the phosphatidic acid residue of the cleaved phospholipid covalently binds transiently with the imidazole group of histidine of PLD producing a short-lived intermediate that can be easily cleaved on attack by a water molecule [35, 36].

{Figure} Features of organization of phospholipase D of animal and plant cells. DRY, binding site of α -subunit of the heterotrimeric G-protein; G $\beta\gamma$, β - and γ -subunits of the heterotrimeric G-protein; I and III, conservative domains; PtdIns(5)P, phosphatidylinositol-5-phosphate; PtdIns(4,5)P₂, phosphatidylinositol-4,5-bisphosphate; PtdIns(3,4,5)P₃, phosphatidylinositol-3,4,5-trisphosphate

Key:
1) Plants
2) PLD
3) P
4) actin
5) Animals
6) acylation
7) PKCδ PKCα
8) tubulin
9) casein kinase
10) cyclin-dependent kinase (PLD2)
11) ribosomal S6 kinase 2
12) interaction with choline,
13) translocation to caveola
14) active site sequence

15) binding site of oleic acid

16) binding domain of lipids and calcium ions

17) conservative domain

18) binding site of polyphosphoinositides

- 19) plextrin-homologous domain
- 20) binding site of $G\alpha$
- 21) phox-homologous domain
- 22) phosphorylation site
- 23) negative regulation and caspase cut site

Lipid-binding PLD sequences. Lipids can modify PLD in plant and animal cells. In particular, some phospholipids usually act not as substrates but as cofactors of the enzyme. The PLD activity depends on binding of the cofactor phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P₂). In animals this is explained by the presence within the active site limits (between motifs III and IV) of a conservative sequence that includes residues of basic and aromatic amino acids [37, 38]. This sequence ensures high levels of PLD1 and PLD2 activities and also promotes the translocation of PLD1 to membranes in response to extracellular signals [39, 40].

The amino acid sequence of PLD enriched by basic and hydrophobic residues is involved in binding polyphosphoinositides [37]. This structure and its inverted repeat (RxxxxKxRR and RKxRxxxR) in PLDB of Arabidopsis and tomatoes surround the C-terminal sequence HKD [2, 41]. PLDB1 contains all four residues of basic amino acids (mainly Arg) binding polyphosphoinositides, whereas one of them in PLDy and PLD ζ is replaced by a nonpolar or acidic residue. This structure in PLD δ has two conservative residues of basic amino acids, whereas in PLD α and PLD ϵ there is only one such residue and the other residues are replaced by nonpolar or acidic ones [2, 11]. In addition to inverted repeats that bind polyphosphoinositides (called PBR2), PLDβ also contains another site binding these lipids (PBR1) that is located near the *N*-terminal sequence of HKD [2]. PBR1 is believed to be an independent binding site of $PtdIns(4,5)P_2$ and of some other phosphoinositides; it consists of highly conservative amino acid residues and contains many side chains of lysine, arginine, and histidine residues. The specific binding of PtdIns(4,5)P₂ with them plays an extremely important role in the regulation of plant PLDB by this phospholipid because it promotes conformational rearrangements strengthening the enzyme association with the substrate [2, 41, 42]. PLD α and PLD δ contain amino acid substitutions in the abovementioned binding site of $PtdIns(4,5)P_2$ [2]. The phosphate group in the 4'-OH position of the inositol ring of PtdIns(4,5)P₂ plays a key role in formation of ionic bonds with lysine residues K437 and K440 of the PLDB molecule [2].

Domain C2 interacting with lipid membranes depending on the Ca²⁺ concentration is another type of phosphoinositide-binding sequences of plant PLDs. This domain is not strictly specific to PtdIns(4,5)P₂. At low level of Ca²⁺ negatively charged PtdInsP and PtdIns(4,5)P₂ molecules attract positively charged amino acid residues R and K in the C2 domain and thus favor the binding with substrates of PLD α of *Arabidopsis* and catalysis by PLD β and PLD γ [2, 43]. Binding sites of PtdIns(4,5)P₂ in domain C2 are also found in PLD α of cabbage [44], poppy [45], and tomatoes [46]. The C2 domain in PLD α of tomatoes binds with high affinity phosphatidic acid but

not phosphatidylcholine, but association with phosphoinositides is markedly weakened on increase in the level of their phosphorylation [46].

Domain PX. PLD of animals and PLD^C of plants contain the Nterminal domain PX (named after the protein p47phox that is a subunit of NADPH oxidase of phagocytes), which includes a conservative sequence enriched in proline residues [2, 28]. The PX domain of PLD1 selectively binds PtdIns(5)P, thus promoting the translocation of the enzyme to membranes of endocytic vesicles [39], and also interacts with PtdIns(3)P and $PtdIns(3,4)P_2$ on the membranes [47]. This domain contains two binding sites of membrane phospholipids: one of them is highly specific to PtdIns(3,4,5)P₃, PtdIns(3)P, PtdIns(5)P, and other phosphoinositides, whereas the other also binds phosphatidic acid, phosphatidylserine, and other negatively charged lipids. The concurrent binding of phospholipids with the abovementioned sites synergistically increases the affinity of domain PX for the membranes [48, 49]. The PX domain of PLD1 plays an important role in regulation of the enzyme translocation into endocytosis sites on the membranes under the influence of extracellular signals [40, 49]. In PLD1 and PLD2 this domain can stimulate the GTPase activity of the protein dynamin [50] and ensure the binding with PLD2 and activation of PLD2 of phospholipase Cy1 [51], tyrosine kinase Syk [52], and protein kinase Cζ [53].

Domain PH. PLD1 and PLD2 of animals [38] and also PLDZ of plants [2, 28] include the domain PH (plextrin-homologous domain) responsible for specificity of localization of these enzymes in cells. The PH domain is located near the C-terminus of the PX domain. Deletions or point mutations in the domain of PLD1 and PLD2 do not influence the activity in vitro [47, 54], but inactivate the enzymes in vivo due to disturbance of their localization in cells [38, 40]. The PH domain of PLD2 binds PtdIns(4,5)P₂ with moderate affinity but with high selectivity [38]. Deletion of this domain in PLD1 lowers the binding of this phosphoinositide [47], but did not influence the in vitro activation of PLD1 and PLD2 by phosphoinositides [37, 38]. This suggests the presence in the PLD structure of other sites of association with PtdIns(4,5)P₂. The PH domain of PLD1 and PLD2 contains conservative cysteine residues (Cys240 and Cys241) that can be palmitylated and thus ensure the binding with the membranes independently of phosphoinositides [55-57], which stabilizes the interaction of the enzyme with the lipid bilayer [56]. Palmitylation promotes the translocation of PLD1 into endocytosis sites on the membranes under the influence of an extracellular stimulus [40] and the translocation of PLD2 from early endosomes onto the plasma membrane [38].

Loop-shaped sequence. The primary structure of PLD1 of animal cells is uniquely characterized by the presence of a loop-shaped domain consisting of 116 amino acid residues (a.a.). Insertion of this sequence into PLD2 does not change the activity of this isoenzyme. The loop-shaped domain of PLD1 contains a site of negative regulation, which possibly is responsible for the low basal *in vitro* activity of PLD1 as compared to that of PLD2 [54]. This conservative sequence belonging to PLD1 also contains sites of cleavage by caspases. The *in vitro* action of caspases on this sequence weakens the sensitivity of PLD1 to protein kinase C but increases its sensitivity to small GTPases [58].

Sites of Ca²⁺ binding. Based on specific features of the primary structure of the *N*-terminal domains binding lipids, PLD are subdivided onto

C2-PLD (PLD α , PLD β , PLD γ , PLD δ , and PLD ϵ of plants) and PX/PH-PLD (PLDZ of plants and PLD1/2 of animals) (figure). The presence of Nterminal conservative domain C2 consisting of 130 a.a. and binding Ca²⁺ and phospholipids is a unique feature of the majority of plant PLDs [2]. The binding of Ca²⁺ with the domain C2 provides for the PLD translocation to substrate on the membrane and induces changes in the enzyme conformation [46]. A direct binding of Ca^{2+} in three-looped structures of the C2 domain [11] has been shown for PLDa and PLDB of Arabidopsis [2]. Calcium forms a coordination bond with four or five acidic amino acid residues in the calcium-binding loops (CBL) of the PLD domain C2. The main role in coordination of Ca^{2+} in the C2 domain of PLDB, γ , and δ is played by two aspartic acid residues in the Ca²⁺-binding loop 3 (CBL3), the only Asn residue in the Ca^{2+} -binding loop 2 (CBL2), and Asp in the Ca^{2+} binding loop 1 (CBL1) [2, 43]. In PLDa two of these amino acids are replaced in CBL1 and CBL2 by basic or neutral residues [11, 43], whereas the C2 domain of PLDE does not have any amino acid binding with calcium [30]. In PLD α of other plants coordination bonds with Ca²⁺ are created with f asparagine and aspartic acid [59], glutamine and glutamic acid [41], and also their combination [42]. The above-described amino acid substitutions are responsible for the low affinity of PLD α and PLD ϵ for Ca²⁺, and therefore these isoenzymes hydrolyze phospholipids only in the presence of high concentrations of Ca^{2+} [2] or at low pH values increasing the affinity for calcium. The Ca^{2+} binding has been also observed in the active site of PLD α [60] and PLD β , where it is stimulated by phosphatidylserine [61].

Other functional regions of PLD. PLDs of animal cells also contain other functional regions on the *N*- and *C*-termini. In particular, the *N*terminal amino acid sequence of human PLD1 (residues 1-49 and 216-318 including the PH domain) plays a key role in the stimulation of this enzyme by protein kinase C α [62]. Moreover, the sequence consisting of 155 *N*terminal amino acids of human PLD1, especially Ser2, is involved in the interaction with polymerized F-actin [63]. The actin-binding domain of plant PLD located between catalytic subdomains in the limits of the conservative domain III contains asparagines and threonine residues that are directly involved in the actin binding [64]. The *C*-terminus of PLD can regulate the enzyme localization in the cells, contribute to its interaction with small GTPases of the RhoA family, and also play an extremely important role in stabilizing the active conformation of the catalytic site of PLD [65, 66].

In plants an amino acid sequence DRY located on the *N*-terminal end of the HKD *C*-subdomain is responsible for the binding of PLD α 1 with the heterotrimeric G-protein subunit G α . Except for PLD ζ and PLD γ 2, this sequence is also present in other PLD isoenzymes of *Arabidopsis* [67]. Potential phosphorylation sites of serine, threonine, and tyrosine residues are found in the primary structure of PLD γ of *Brassica oleracea* and also in homologs of poppy PLD α [45, 68].

REGULATORY MECHANISMS OF PLD ACTIVITY

Activity of PLD is controlled by hormones, neurotransmitters, and other physiologically active molecules influencing the enzyme through specific regulatory mechanisms. And PLD is often contributes to signal transmission through production of phosphatidic acid as a secondary messenger. In particular, PLD is involved in transmission of signals of classic plant hormones such as abscisic acid [11] and cytokinin [69].

Regulation of PLD activity by calcium ions. Calcium plays an important role as a modifier of PLD activity in plant cells, in particular under the influence of cytokinin [70] and also as a cofactor of PLD isoenzymes containing the C2 domain [2, 43, 61]. Calcium ions activate PLD α and PLD β through binding with the C2 domain. This leads to conformational changes in the enzymes that result in strengthening the substrate binding and weakening the association with PtdIns(4,5)P₂ [2]. Calcium also binds with the active site of PLD β , which increases its affinity for the activator (PtdIns(4,5)P₂) as discriminated for the affinity for the substrate (phosphatidylcholine) [61]. In turn, the binding of PtdIns(4,5)P₂ with the active site of the enzyme increases its affinity for the substrate [2]. In plants there are PLDs with activities depending on millimolar and micromolar concentration of Ca²⁺ *in vitro*.

Phospholipases D of plant cells are active *in vitro* in the presence of Ca^{2+} concentrations of 10-100 mM and hydrolyze phospholipids independently of the presence in the substrate mixture of lipid cofactors (PtdInsP or PtdIns(4,5)P₂). In particular, Ca^{2+} (1-100 mM) *in vitro* activates PLD α isolated from cabbage [60], strawberry [42], Vigna sinensis [71], sunflower [72], and poppy [45]. The maximal activity of PLD α 1 in *Arabidopsis* is observed at the Ca²⁺ concentration of 25 mM. On using pure phosphatidylcholine as a substrate, the activity of this enzyme is stimulated at Ca²⁺ concentrations of 20-100 mM [2]. At the Ca²⁺ concentration of 50 mM, the other PLD isoenzyme, PLD ϵ , is also active [30]. Such high concentrations of Ca²⁺ activate those plant PLD isoenzymes that have the C2 domain with low affinity for Ca²⁺ [2].

Plant PLDs are also stimulated my micromolar concentrations of Ca^{2+} [5]. In the case of PLD β , this is due to a high affinity of the C2 domain for Ca^{2+} [2]. Activities of PLD β and PLD γ of *Arabidopsis* are maximal at 50 μ M Ca²⁺. PLD γ is less stimulated by Ca²⁺ than PLD β and PLD α . Increase in Ca²⁺ concentration (>50 μ M) is associated with a decrease in the activities of PLD γ and PLD β [2, 43]. Activities of the PLD γ subtypes PLD γ 1 and PLD γ 2 depend on the Ca²⁺ concentration similarly [73]. Moreover, PLD α of castor bean in acidic medium (pH 4.5-5.0) is also stimulated *in vitro* at low Ca²⁺ concentration (50 μ M), but on increase in the pH value the active concentration of Ca²⁺ increases to millimolar values [2]. The activity of isoenzyme PLD δ of *Arabidopsis* is observed *in vitro* at both micro- and millimolar Ca²⁺ concentrations. The activity of PLD δ in the presence of an activator (oleic acid) is maximal at 100 μ M Ca²⁺ [11]. PLD ϵ is also active *in vitro* at micromolar Ca²⁺ concentrations, but only in the presence of oleic acid [30].

Plant cells also contain calcium-independent PLDs: PLD ζ 1 of *Arabidopsis* [2] and PLD of mustard seeds [74]. Moreover, Ca²⁺ does not markedly change the *in vitro* activity of purified PLD1 from animal cells [26].

Modification of PLD activity by lipids. PLDs are regulated by various lipids, and among them polyphosphoinositides are considered to be especially important modifiers of cytoskeleton dynamics, membrane transport, and enzyme activity [75]. PLDs sensitive to these phospholipids are involved in transmission of intracellular signals of hormones, in

particular of cytokinins in plants [76-78]. In animal cells the catalytic activities of PLD1 and PLD2 are sensitive to PtdIns(4,5)P₂, which acts as their cofactor [26]. The binding of PtdIns $(4,5)P_2$ with PLD1 and especially with PLD2 is important for the stimulation of these enzymes [37, 55, 79]. PLD2 is allosterically activated by phosphatidylinositol-4,5-bisphosphate in *vitro* [37]. Optimal concentrations of this lipid provide for a positive effect of activators (proteins Rho, ARF1, and PKCa) on PLD1 in vitro promoting the PLD binding with a lipid bilaver [80]. The enzyme of $PtdIns(4,5)P_2$ biosynthesis, phosphatidylinositol-4-phosphate-5-kinase I α , is favorable for an increase in PLD activity in Cos7 cells. The PLD2 activity increases under conditions of a simultaneous expression of the genes encoding PLD and the abovementioned phosphoinositide kinase [79]. As discriminated from other phosphoinositides, PtdIns(3,4,5)P₃ binds with residue Arg179 in the PX domain of PLD1 [49], stimulates the enzyme activity [49, 81], and also promotes the translocation of PKC ζ into the cell nucleus [82], which results in activation of the nuclear PLD.

In plants polyphosphoinositides are important cofactors of PLD β , PLD γ , and PLD ζ , and in their absence these isoenzymes are inactive in vitro. PLDB of Arabidopsis displays the most pronounced specificity. This isoenzyme is stimulated *in vitro* over a wide range of PtdIns(4,5)P₂ concentrations [11]. PLD β is less sensitive *in vitro* to other phosphatidylinositol phosphates [2]. PtdIns(4)P and PtdIns(4,5)P₂ are additive in increasing the activities of PLD β and PLD γ [2, 43]. As discriminated from PLD γ 2, PLD γ 1 is the most sensitive to PtdIns(4,5)P₂ [73]. PLD α does not depend on polyphosphoinositides in the presence of optimal Ca²⁺concentrations but is stimulated by these lipids *in vitro* in acidic medium in the presence of micromolar Ca^{2+} concentrations [2, 11]. The activity of PLDS of Arabidopsis depends on PtdIns(4,5)P2 because this lipid increases the affinity of the enzyme active site for the substrate [11, 83]. The PLD ζ depends only on PtdIns(4,5)P₂ [2], whereas PtdIns(3,4)P₂ is a cofactor of PLDE at micromolar concentrations of Ca^{2+} [30]. Thus, PtdInsP₂ acts as a cofactor of PLDB, PLDy, PLDE, and PLDC of Arabidopsis. Note that PLD activity independent of PtdInsP₂ has been detected in mustard seeds [74].

Other lipids also are negative modifiers of PLD. In particular, C_2 -, C_6 -, C_8 - and double-chained ceramides inhibit the activity of PLD by affecting its interactions with protein activators [84], acting on the catalytic site of PLD or on its binding with PtdInsP₂ [85, 86]. Lysophospholipids also specifically inhibit PLD *in vitro* independently of the small GTPase Arf and PtdInsP₂. They directly bind with PLD and noncompetitively inhibit the enzyme in animals [87] and plants [88].

Unsaturated fatty acids, products of lipid cleavage, are believed to be activators of animal PLD2 *in vitro*. This enzyme can be stimulated synergistically by PtdIns(4,5)P₂ [89, 90]. PLD δ and PLD ϵ of *Arabidopsis* under *in vitro* conditions depend on oleic acid [11, 30], but this may be associated with modification of properties of the lipid bilayer with which these isoenzymes are associated [83]. The mechanism of the inhibitory effect *in vitro* of N-acetylethanolamines (N-laurylethanolamine, N-myristoylethanolamine) on the activity of PLD α from *Arabidopsis*, castor bean, and cabbage [91] is unknown.

Regulation of PLD activity by G-proteins. The cells of animals contain specific protein factors that are important for activation of PLD.

These factors are small monomeric GTPases of the Rho and ARF families of the Ras superfamily. Rho GTPases play an important role in the regulation of various processes in animal cells, including transcription, cell cycle, secretion, cell transformation, and cytoskeleton rearrangements [92]. Small GTPases of the Rho family are also considered as modifiers of PLD activity. Some of these proteins — Rac1, Cdc42, and especially RhoA — allosterically activate PLD1 increasing its catalytic activity by lowering the Michaelis constant [80]. In the presence of nonhydrolyzable analogs of GTP, small GTPases Rac1, Cdc42, and RhoA activate PLD1 [26, 93, 94] and PLD2 [95] *in vitro*. RhoA [96, 97], Rac1 [98], and Cdc42 [99] are PLD1 stimulators *in vivo*. The C3-exoenzyme from *Clostridium botulinum*, which inhibits the functioning of Rho proteins via their ADP-ribosylation, decreases the activity of PLD1 [82].

The binding of RhoA with the *C*-terminus of PLD1 [33, 80, 100] depends on residues of basic amino acids of the sequence 946-962 of the enzyme and on activation site I of the RhoA protein. A similar site of Cdc42 also plays an important role in the mechanism of binding and activation of PLD1 [101]. Other important binding sites of RhoA on the *C*-terminus of human PLD1 are residues Ile870, Gln975, and Asp999 [102]. The Rho proteins interact with PLD1 only in an active GTP-bound state [103]. Some Rho GTPases (RhoA, Rac1, and Cdc42) stimulate PLD1 synergistically with ARF1, but not with PKC α [80]. Although RalA GTPases cannot directly stimulate PLD1 and PLD2 [104, 105] by forming a complex with Rho and ARF proteins [106, 107]. This confirms the synergic influence of two monomeric GTPases on PLD activity.

PLD activity also depends on some cytosolic GTPases representing ADP-ribosylation factors (ARF). The PLD1 activity *in vitro* increases 10-15-fold on incubation with ARF proteins (ARF1, ARF3, ARF4, ARF5, and ARF6) [26, 47, 108], whereas the activity of PLD2 increases 1.5-2-fold (but independently of GTP) [54]. ARF1 and ARF6 activate PLD1 *in vivo* [109, 110], whereas ARF6 activates PLD2 [111]. Comparatively to ARF6, ARF1 preferentially activates PLD1 *in vitro* [112], whereas ARF6, as differentiated from ARF1, markedly stimulates PLD2 *in vivo* [108]. ARF1 stimulates PLD1 *in vitro* synergistically with Rho proteins (RhoA, Rac1, Cdc42) [80, 112] and PKC α [80]. Synergistic effect of ARF1 and Rho is observed only at optimal concentrations of PtdInsP₂ [80].

The translocation of ARF to membranes plays an important role in the mechanism of activation of PLD. The translocation of ARF6 stimulates PLD1 [113] and PLD2 [108] *in vivo*. The importance of ARF protein exemplified by ARF1 is proved by its necessity for the activation of PLDs. ARF1 activates PLD1 *in vitro* by increasing the catalytic constant without changes in the K_m value [80]. The replacement of GDP by GTP in ARF6 is important for activation of PLD [114], and this explains the stimulatory effect of guanine nucleotide exchange factors on the activity of PLD1 *in vivo* [115, 116]. The *N*-terminus of PLD2 (amino acids 1-308) is essential for modification of this enzyme activity through ARF. The first 73 *N*-terminal amino acids of ARF are involved in the activation of PLD1 [117], whereas the sequence of amino acids 35-94 plays an important role in the interaction of these proteins [118]. Thus, small GTPases of the Rho and ARF families are key activators of PLD in animals.

Both α - and β/γ -subunits of heterotrimeric G-proteins (G_q, G_i, G₁₂) contribute to the PLD activation by various hormones in animal cells, although this process occurs in vivo with direct involvement of proteins Rho, protein kinase C [119, 120], ARF6, or tyrosine kinase Src [121, 122]. The direct influence of heterotrimeric G-proteins results in inactivation of PLD. Combination of $G\beta_{1\gamma_1}$ subunits suppresses PLD1 and PLD2, whereas $G\beta_{1\gamma_1}$ and $G\beta_{2\gamma_2}$ inhibit PLD1 stimulated in vitro and in vivo. These protein complexes interact with the N-terminal region of PLD within limits of the PX and PH domains (amino acid residues 3-311) [123]. In plant cells the binding of PLD α with the G-protein α -subunit (G α) in the GDP-form suppresses PLD activity in vitro [67, 124]. Addition of GTP into the system restores the PLD activity. And the interaction of PLD α 1 with G α stimulates the GTPase activity of $G\alpha$ that leads to disintegration of the PLD α -G α complex [67]. Therefore, the inactive heterotrimeric G-protein is thought to suppress the membrane-associated PLD α , whereas stimulation of the Gprotein by an extracellular signal promotes PLDa activation. Hence heterotrimeric G-proteins are thought to be important regulators of PLD in plant and animal cells.

Phosphorylation as a mechanism of PLD regulation. Phosphorylation/dephosphorylation of proteins at specific amino acid residues plays an important role in mechanisms of signal transmission, regulation of enzyme activities, and formation of protein complexes in both plant and animal cells [125-127]. Mainly Ser, Thr, His, Asp, and Tyr residues are phosphorylated. The Tyr residue is most frequently studied in the works in this field [127].

The stimulation of PLD in the cells by phorbol esters (in particular, by PMA, which is an analog of diacylglycerol activating protein kinase C) and also its suppression by specific inhibitors confirm the role of PKC as a key factor of PLD regulation *in vivo* [128]. PKC α and PKC β 1 stimulate PLD [129, 130], but PKC δ and PKC ϵ can act as both positive and negative regulators of PLD1 and PLD2 *in vivo*. PKC δ can displace PLD1 from the complex with PKC α [131, 132]. Results of *in vitro* studies have shown that human and rat PLD1 are activated under the influence of PKC α , PKC β 1, and PKC β 2 independently of their kinase activity [26, 47, 130]. The activation of PLD through protein–protein interactions can also be realized by atypical PKCs: PKC1 (PLD2) [133] and PKC ζ (PLD1, PLD2) [82, 134].

Phorbol esters as PKC activators induce the PLD1 binding with PKCa that leads to activation of PLD1 [130, 135]. PLD2 can also bind with PKCa [136] and PKC8 [137]. The N- and C-terminal sequences of PLD are involved in the activation of PLD1 on binding protein kinase C α [80]. PKCα decreases the Michaelis constant and increases the catalytic constant of the PLD1 reaction. PKCa activates PLD1 in vitro synergistically with Arf1, as discriminated from Rho. This occurs only at optimal concentrations of PtdInsP₂ [80]. The binding of active PKCa with PLD2 also stimulates PLD2 in vivo, whereas the phosphorylation of PLD2 in vitro in many Ser and Thr sites by PKC α inactivates it [136, 138]. However, the phosphorylation of Thr566 under the influence of PKC8 is accompanied by activation of PLD2 [131, 137]. Phosphorylation by PKC α and PKC β of PLD2 at Ser and Thr leads to translocation of PLD2 to membranes and its activation in vivo [139]. However, PKCa and PKCB phosphorylate and as a result inactivate PLD1 in vitro [140]. The phosphorylation of PLD1 at Thr under the influence of PKCa suppresses PLD1 in vivo [141], and the

translocation of PLD1 to plasma membranes and its resulting activation are due to phosphorylation of the enzyme by protein kinase C α at Ser2, Thr147, and Ser561 [142].

Activation of growth factor receptors stimulates soluble tyrosine protein kinases of the Src family. Inhibitors of Src are known to suppress the PLD2 activation in PC12 cells caused by depolarization [143]. Members of the Src family p60Src and p56Lyn mediate PLD activation in platelets [144]. As discriminated from PLD1, PLD2 is phosphorylated on Tyr and is activated by other tyrosine kinases of the Src family – Fyn and Fgr [145]. However, tyrosine kinase v-Src phosphorylates PLD1 and PLD2 on Tyr in COS-7 cells without influencing their activity [146]. Thyroid gland carcinoma protein kinase RET/PTC also directly phosphorylates PLD2 on Tyr without its activation [147].

The PLD2 isoform expressed as a constitutively active enzyme in various cells [148] is a phosphotyrosine protein in vivo [149] and in vitro [150]. Its phospholipase activity is regulated dually by phosphorylation/dephosphorylation and also can induce cell proliferation by the abovementioned human PLD isoenzyme with involvement of Tyr179 and Tyr511 [150]. Mutations of this and other tyrosine residues - Tyr296 and Tyr415 – result in a decrease in the PLD2 activity [151], whereas the phosphorylation degree of each catalyzed by different enzymes can influence the functioning of PLD2. The phosphorylation of PLD2 at Y296 in the PH domain by the epidermal growth factor receptor provides for the low activity of the enzyme in vitro only in tumor cells. However, tyrosinases JAK3 and Src phosphorylating PLD2, respectively, at Tyr415 and Tyr511 are responsible for the high activity of this enzyme in vitro in less invasive cells and thus prevent the negative effect of the Tyr296 phosphorylation. The Tyr511 residue is a dual site relative to regulation of the PLD2 activity. Dephosphorylation at Tyr511 and Tyr296 by tyrosine phosphatases CD45 and PTP1B stimulates PLD, whereas dephosphorylation at Tyr415 decreases the activity of this enzyme in vitro [150]. Phosphorylated Tyr179 and Tyr511 in PLD2 promote its binding with the SH2 domain of the adapter protein Grb2, which ensures a high lipase activity of the enzyme in COS-7 cells [151]. Thus, it is concluded that protein kinases/phosphatases modify PLD through direct phosphorylation/dephosphorylation of this enzyme on Tyr residues.

PLD activity sharply increases in tumor cell lines in response to stress caused by removal of serum. Dephosphorylation of Tyr179 and Tyr511 in PLD2 can act as a signal directed to decrease the activity of PLD and also of the accompanying proliferative potential capable of preventing cell malignization [151, 152]. The increased expression and activity of PLD have been found in cells of many human tumors, which suggests a functional association of the PLD activity with oncological signals and tumorigenesis [153]. Results of these studies have allowed new nontoxic PLD inhibitors to be created as promising antitumor preparations [153, 154].

Ser/Thr-protein kinases also play an important role in the regulation of PLD in animal cells. The mechanism of activation of PLD by casein kinase II (PLD2) [155], cyclin-dependent protein kinase 5 (PLD2) [156], ribosomal S6-kinase 2 (PLD1) [157], and also by AMP-activated protein kinase (PLD1) [158] is largely due to phosphorylation of the specific residues Ser134 [156], Thr147 (in the PX domain) [157], and Ser505 [158].

However, it is still unclear whether the activation of PLD is caused by protein kinase Rho depending on the Rho protein [159] or by calcium/calmodulin-derived protein kinase II [144] phosphorylation of the enzyme and whether the PLD2 phosphorylation on the active Ser/Thr protein kinase AKT (Thr175 in the PX domain) [160] or by protein kinase A in the case of PLD1 [161] changes the enzyme activity. It is also unclear whether the activation of PLD [162] is associated with the enzyme phosphorylation on Ser and Thr by MAP kinases p38, ERK1, and ERK2 [163-165] or is caused only by protein–protein interactions.

Incubation of plasma membrane from cells of the plant *B. oleracea* with acidic phosphatase *in vitro* decreases the activity of PtdInsP₂dependent PLD by 80%, whereas inactivation of the phosphatase partially restores the activity of the PLD. Moreover, PLD γ of this plant is bound by antibodies to phosphoserine/threonine/tyrosine [68]. The presence of phosphorylation sites in the structure of PLD γ of *B. oleracea* [68] determines the role of this posttranslational modification in the regulation of PLD activity in plants.

Influence of cytoskeleton and light on PLD activity. The cytoskeleton proteins are PLD modifiers. PLD activity also depends on the degree of actin polymerization. In the presence of active monomeric GTPases, monomeric G-actin inactivates PLD1 in the membrane fractions or negatively influences this enzyme resulting by immunoprecipitation [166, 167]. However, G-actin stimulates a purified recombinant enzyme PLD1 expressed in cells of insects [63]. A highly purified polymerized F-actin stimulates PLD1 *in vitro* but only in the presence of activators – G-proteins ARF and Rac1 [2, 63]. The translocation of PLD1 to actin filaments is caused by phosphorylation of the Ser2 residue on the PLD *N*-terminus by protein kinase C [63].

The polymerized F-actin stimulates plant PLD activity, whereas monomeric G-actin suppresses it [2]. In tobacco cells PLD β 1 occurs to be a partner of actin, and the interaction with actin is provided for by Asn323 and Thr382 of the phospholipase [64]. Thus, the interaction of actin and PLD β 1 creates a system of positive feedback in which F-actin activates phospholipase D and lipase-produced phosphatidic acid, in turn, activates Factin in places of its interaction with cell membranes [2, 64].

The activity of animal PLD2 is suppressed in vitro under the influence of β -actin, which prevents the access of PLD2 to the substrate [166]. The protein α -actinin that links actin filaments suppresses PLD2 in vitro by affecting its binding with ARF1 [167]. The negative effect of β -actin is inhibited in the presence of ARF1, whereas the binding of β -actin with PLD2 is prevented by association of α -actinin with this enzyme [166]. The phosphorylated form of cofilin (a protein promoting actin polymerization and depolymerization) is specifically bound and stimulates the basal activity of PLD1 in vitro by promoting its translocation to the plasma membrane [168]. Gelsolin (a protein capping actin) suppresses PLD1 and PLD2 in vitro [169], but in the presence of nucleotide trisphosphate it binds with PLD and activates it [170]. The actin-binding protein fodrin [171] and also dimer and trimer of spectrin suppress PLD activity and are involved in local regulation of PLD by actin [171]. However, the effect of two latter proteins can be associated with disorders in the interaction of PLD1 with PtdInsP₂ [172].

Tubulin monomer inhibits PLD2 of animal cells due to direct and reversible binding with the enzyme [173]. In plants stabilizers and destabilizers of microtubules stimulate the *in vivo* accumulation of phosphatidic acids produced by PLD [174]. Therefore, it is concluded that cytoskeleton proteins can act as regulators of PLD activity in plant and animal cells and provide the necessary level and specific location in cells of phosphatidic acid production.

Plant PLDs are known to be so-called dark-induced proteins (dinproteins). The role of a photoregulatory receptor is played by phytochrome: both white and red lights suppress PLD activity in etiolated plantlets, whereas far red light restores it (a reversible photo-effect) [175, 176]. This indicates a possible involvement of the phytochrome receptor in the regulation of PLD activity. Moreover, the photo-dependence of PLD activity is associated with photosynthesis, because diuron stimulates and glucose suppresses, respectively, the enzyme activity in green and etiolated oat plantlets.

Involvement of PLD in hormone signaling. PLDs are involved in reception and intracellular transmission of hormonal signals in both animals and plants. In animals PLDs are activated under the influence of hormones (growth hormone, vasopressin, gonadotropin-releasing hormone, etc.) and of various neurotransmitters (histamine, bradykinin, noradrenaline, etc.) [177]. Interesting data were recently obtained in studies on transmembrane receptors of animal hormones. Phospholipase D was shown to be a key enzyme for many of them, being involved in their secretion, endocytosis, and signaling. Thus, the parathyroid hormone 1 type receptor (PTH1R) increased PLD activity on interacting with the ligand, PLD1 was involved in the internalization and intracellular traffic, and PLD2 was involved in receptor endocytosis [178]. The subclass of formyl peptide receptors (FPRL1) induced by an agonist also can activate PLD, and the phospholipase plays an important role in endocytosis, membrane recycling, and receptor signaling [179, 180]. PLD2 functioning in plasma membrane similarly simplifies endocytosis of angiotensin II receptor type 1 [40].

The involvement of PLD in the transmission of abscisic acid signal has been shown in plants [28, 181, 182]. Moreover, there are data on the involvement of PLD in the action of gibberellins [28] and in auxin transport [184, 185] (table). PLD also plays a role in the activation by cytokinins of the primary response genes [77, 186, 187], and a rapid increase in PLD activity is observed under the influence of cytokinins [69, 76]. The PLDs involved in transmission of signals of different phytohormones are also different. The abscisic acid signal is transmitted with involvement of phospholipase D isoforms α and partially β (table) [28, 181], whereas the cytokinin signal is transmitted not with involvement of the PLD α -isoform, but more likely with the involvement of PLD γ [76]. Thus, PLD is an important and specific factor in the signal transmission of various hormones in both animals and plants.

{Table} Features and role of different PLD isoenzymes in regulation of plant cell metabolism

Key: 1) PLD isoenzyme 2) Note: ABA, abscisic acid; Bs, biotical stress; G, gibberellin; Fz, freezing; Dr, drought; IAA, indolylacetic acid; Oxs, oxidative stress; Os, osmotic stress; W, wound; Ss, saline stress; P, mineral phosphate; Et, ethylene; N, mineral nitrogen; PC, phosphatidylcholine; PG, phosphatidylglycerol; PE, phosphatidylethanolamine. 3) Molecular weight, kDa 4) Substrate specificity 5) PC 5') PE 5") PG 6) Cofactors 7) calcium 8) mM 8') µM 9) PtdInsP₂ 10) present 10') absent 11) oleic acid 12) Regulation mechanisms 13) phosphorylation 14) G-proteins 15) actin 16) Activity pH-optimum 17) Location in chromosomes 18) Sensitivity to hormones and stress of mutants by PLD 19) increase 20) decrease 21) knockout/knockdown 22) superexpression 23) ABA Et Glc Ss Os Dr Fz W G Bs Oxs IAA 24) shortage of N 25) transport of IAA 26) shortage of P

PLD is a widely distributed enzyme involved in the fine regulation of metabolism of cells with different organization. This enzyme is necessary for growth and development of animals and plants, especially under conditions of stress and illumination. The primary structure of PLD is known in detail, and regulatory mechanisms of activities of these enzymes and their interaction with other signaling systems of the cell are intensively studied. It has been shown that the activity of known forms of animal PLDs is modified by serine/threonine and tyrosine protein kinases, GTP-binding proteins (ARF and Rho), the cytoskeleton, polyphosphoinositides, proteinprotein interactions, and hormones. In plants PLDs are directly regulated by Ca^{2+} , polyphosphoinositides, heterotrimeric G-proteins, cytoskeleton, some phytohormones, and possibly by protein kinases. However, mechanisms of in vivo regulation of individual PLD enzymes are studied insufficiently, especially in plants, despite the established biological role of many molecular PLD forms (table). In the majority of biological processes PLD activity is concurrently modified by a number of regulators, and their action can be additive, synergic, or opposing. New data on the role of PLD in the

regulation of proliferation and in carcinogenesis has stimulated intensive searches for new inhibitors of PLDs as promising antitumor preparations. To better understand the functional role of PLD isoforms in cells, *in vivo* studies are important, and these can be useful when associated with molecular design, analysis, and synthesis of new nontoxic substances inhibiting different PLD isoforms *in vivo*.

This work was supported by the State Foundation for Basic Research of the Ukraine (projects Nos. F40.4/081 and F41.4/042), National Academy of Sciences of Ukraine (No. 18-10), National Academy of Sciences of Ukraine and Academy of Sciences of Czech Republic (No. 5/1-2011), the State Foundation for Basic Research of Belarus (B09K-061, B07K-058 and B05K-108), the Russian Foundation for Basic Research (projects 11-04-90491-Ukr. and 11-04-00614), and the Russian Academy of Sciences Presidium program "Molecular and Cell Biology".

REFERENCES

- 1. Bargmann, B. O., and Munnik, T. (2006) *Curr. Opin. Plant Biol.*, **9**, 515-522.
- Hong, Y., Zhang, W., and Wang, X. (2010) *Plant Cell Env.*, 33, 627-635.
- 3. Rudge, S. A., and Wakelam, M. J. O. (2009) *Biochim. Biophys. Acta*, **1791**, 856-861.
- 4. Vitale, N. (2010) Curr. Chem. Biol., 4, 244-249.
- 5. Oblozinsky, M., Bezakova, L., Mansfeld, J., and Ulbrich-Hofmann, R. (2011) *Phytochemistry*, **72**, 160-165.
- 6. Wang, X., Devaiah, S. P., Zhang, W., and Welti, R. (2006) *Progr. Lipid Res.*, **45**, 250-278.
- Kravets, V. S., Kolesnikov, Y. S., Kuznetsov, V. V., and Romanov, G. A. (2008) *Fiziol. Rast.*, 55, 629-640.
- Idkowiak-Baldys, J., Baldus, A., Raymond, J. R., and Hannun, Y. A. (2009) J. Biol. Chem., 284, 22322-22331.
- 9. Arisz, S. A., Testerink, C., and Munnik, T. (2009) *Biochim. Biophys. Acta*, **1791**, 869-875.
- 10. Zhang, W., Yu, L., Zhang, Y., and Wang, X. (2005) *Biochim. Biophys. Acta*, **1736**, 1-9.
- 11. Li, M., Hong, Y., and Wang, X. (2009) *Biochim. Biophys. Acta*, **1791**, 927-935.
- Kravets, V. S., Kolesnikov, Y. S., Kretynin, S. V., Kabachevskaya, E. M., Lyakhnovich, G. V., Bondarenko, O. M., Volotovskii, I. D., and Kukhar, V. P. (2010) *Biopolim. Kletka*, 26, 175-186.
- 13. Foster, D. A. (2006) Curr. Sign. Trans. Ther., 1, 295-303.
- 14. Hamik, A., and Jain, M. K. (2010) Blood, 116, 1194-1196.
- 15. Gomez-Cambronero, J., Di Fulvio, M., and Knapek, K. (2007) *J. Leukocyte Biol.*, **82**, 272-281.
- Vorland, M., Thoursen, V. A. T., and Holmsen, H. (2008) *Platelets*, 19, 582-594.
- 17. Kanaho, Y., Funakoshi, Y., and Hasegawa, H. (2009) *Biochim. Biophys. Acta*, **1791**, 898-904.

- Tappia, P. S., Dent, M. R., and Dhalla, N. S. (2006) Free Rad. Biol. Med., 41, 349-361.
- Cummings, R., Parinandi, N., Wang, L., Usatyuk, P., and Natarajan, V. (2002) *Mol. Cell. Biochem.*, 235, 99-109.
- 20. Roth, M. G. (2008) Traffic, 9, 1233-1239.
- 21. Bader, M.-F., and Vitale, N. (2009) *Biochim. Biophys. Acta*, **1791**, 936-941.
- Lee, C. S., Kim, K. L., Jang, J. H., Choi, Y. S., Suh, P.-G., and Ryu, S. H. (2009) *Biochim. Biophys. Acta*, **1791**, 862-868.
- 23. Cazzolli, R., Shemon, A. N., Fang, M. Q., and Hughes, W. E. (2006) *IUBMB Life*, **58**, 457-461.
- 24. Becker, K. P., and Hannun, Y. A. (2005) *Cell. Mol. Life Sci.*, **62**, 1448-1461.
- Weernink, P. A. O., Han, L., Jakobs, K. H., and Schmidt, M. (2007) *Biochim. Biophys. Acta*, **1768**, 888-900.
- Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., Nozawa, Y., Prestwich, G. D., Frohman, M. A., and Morris, A. J. (1997) *J. Biol. Chem.*, **272**, 3860-3868.
- Colley, W. C., Sung, T., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., Bar-Sagi, D., Morris, A. J., and Frohman, M. A. (1997) *Curr. Biol.*, 7, 191-201.
- 28. Li, G., Lin, F., and Xue, H.-W. (2007) Cell Res., 17, 881-894.
- 29. Hong, Y., Pan, X., Welti, R., and Wang, X. (2008) *Plant Cell*, **20**, 803-816.
- Hong, Y., Devaiah, S. P., Bahn, S. C., Thamasandra, B. N., Li, M., Welti, R., and Wang, X. (2009) *Plant J.*, 58, 376-387.
- Yamaryo, Y., Dubots, E., Albrieux, C., Baldan, B., and Block, M. A. (2008) *FEBS Lett.*, **582**, 685-690.
- 32. Ponting, C. P., and Kerr, I. D. (1996) Protein Sci., 5, 914-922.
- Sung, T. C., Roper, R., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J., and Frohman, M. A. (1997) *EMBO J.*, 16, 4519-4530.
- Lerchner, A., Mansfeld, J., Kuppe, K., and Ulbrich-Hofmann, R. (2006) *Protein Eng. Des. Sel.*, 19, 443-452.
- Gottlin, E. B., Rudolph, A. E., Zhao, Y., Mathews, H. R., and Dixon, J. E. (1998) *Proc. Natl. Acad. Sci. USA*, **95**, 9202-9207.
- Orth, E. S., Brandao, T. A., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J., and Nome, F. (2010) *J. Am. Chem. Soc.*, 132, 8513-8523.
- Sciorra, V. A., Rudge, S. A., Prestwich, G. D., Frohman, M. A., Engebrecht, J., and Morris, A. J. (1999) *EMBO J.*, 18, 5911-5921.
- Sciorra, V. A., Rudge, S. A., Wang, J., McLaughlin, S., Engebrecht, J., and Morris, A. J. (2002) *J. Cell Biol.*, **159**, 1039-1049.
- Du, G., Altshuller, Y. M., Vitale, N., Huang, P., Chasserot-Golaz, S., Morris, A. J., Bader, M. F., and Frohman, M. A. (2003) *J. Cell Biol.*, 162, 305-315.
- 40. Du, G., Huang, P., Liang, B. T., and Frohman, M. A. (2004) *Mol. Biol. Cell*, **15**, 1024-1030.
- 41. Pinhero, R. G., Almquist, K. C., Novotna, Z., and Paliyath, G. (2003) *Plant Physiol. Biochem.*, **41**, 223-240.
- 42. Yuan, H., Chen, L., Paliyath, G., Sullivan, A., and Murr, D. P. (2005) *Plant Physiol. Biochem.*, **43**, 535-547.

- Pappan, K., Qin, W., Dyer, J. H., Zheng, L., and Wang, X. (1997) J. Biol. Chem., 272, 7055-7061.
- Schaffner, I., Rucknagel, K.-P., Mansfeld, J., and Ulbrich-Hofmann, R. (2002) *Eur. J. Lipid Sci. Technol.*, **104**, 79-87.
- 45. Lerchner, A., Mansfeld, J., Schaffner, I., Schops, R., Beer, H. K., and Ulbrich-Hofmann, R. (2005) *Biochim. Biophys. Acta*, **1737**, 94-101.
- Tiwari, K., and Paliyath, G. (2011) *Plant Physiol. Biochem.*, **49**, 18-32.
- Hodgkin, M. N., Masson, M. R., Powner, D., Saquib, K. M., Ponting, C. P., and Wakelam, M. J. O. (2000) *Curr. Biol.*, **10**, 43-46.
- Stahelin, R. V., Ananthanarayanan, B., Blatner, N. R., Singh, S., Bruzik, K. S., Murray, D., and Cho, W. (2004) *J. Biol. Chem.*, 279, 54918-54926.
- Lee, J. S., Kim, J. H., Jang, I. H., Kim, H. S., Han, J. M., Kazlauskas, A., Yagisawa, H., Suh, P. G., and Ryu, S. H. (2005) *J. Cell Sci.*, **118**, 4405-4413.
- 50. Lee, C. S., Kim, I. S., Park, J. B., Lee, M. N., Lee, H. Y., Suh, P.-G., and Ryu, S. H. (2006) *Nat. Cell. Biol.*, **8**, 477-484.
- Jang, I. H., Lee, S., Park, J. B., Kim, J. H., Lee, C. S., Hur, E. M., Kim, I. S., Kim, K. T., Yagisawa, H., Suh, P. G., and Ryu, S. H. (2003) *J. Biol. Chem.*, **278**, 18184-18190.
- Lee, J. H., Kim, Y. M., Kim, N. W., Kim, J. W., Her, E., Kim, B. K., Kim, J. H., Ryu, S. H., Park, J. W., Seo, D. W., Han, J. W., Beaven, M. A., and Choi, W. S. (2006) *Blood*, **108**, 956-964.
- Kim, J. H., Kim, J. H., Ohba, M., Suh, P. G., and Ryu, S. H. (2005) *Mol. Cell. Biol.*, 25, 3194-3208.
- Sung, T. C., Zhang, Y., Morris, A. J., and Frohman, M. A. (1999) J. Biol. Chem., 274, 3659-3666.
- Sugars, J. M., Cellek, S., Manifava, M., Coadwell, J., and Ktsitakis, N. T. (1999) J. Biol. Chem., 274, 30023-30027.
- Sugars, J. M., Cellek, S., Manifava, M., Coadwell, J., and Ktsitakis, N. T. (2002) J. Biol. Chem., 277, 29152-29161.
- 57. Xie, Z., Ho, W., and Exton, J. H. (2001) *J. Biol. Chem.*, **276**, 9383-9391.
- 58. Riebeling, C., Bourgoin, S., and Shields, D. (2008) *Biochim. Biophys. Acta*, **1781**, 376-382.
- 59. Simoes, I., Mueller, E.-C., Otto, A., Bur, D., Cheung, A. Y., Faro, C., and Pires, E. (2005) *FEBS J.*, **272**, 5786-5798.
- 60. Stumpe, S., Konig, S., and Ulbrich-Hofmann, R. (2007) *FEBS J.*, **274**, 2630-2640.
- 61. Pappan, K., Zheng, L., Krishnamoorthi, R., and Wang, X. (2004) *J. Biol. Chem.*, **279**, 47833-47839.
- 62. Kook, S., and Exton, J. H. (2005) Cell. Signal., 17, 1423-1432.
- 63. Farquhar, M. J., Powner, D. J., Levine, B. A., Wright, M. H., Ladds, G., and Hodgkin, M. N. (2007) *Cell. Signal.*, **19**, 349-358.
- Pleskot, R., Potocky, M., Pejchar, P., Linek, J., Bezvoda, R., Martinec, J., Valentova, O., Novotna, Z., and Zarsky, V. (2010) *Plant J.*, 62, 494-507.
- 65. Hughes, W. E., and Parker, P. (2001) *Biochem. J.*, **356**, 727-736.
- Liu, M., Gutowski, S., and Sternweis, P. C. (2001) J. Biol. Chem., 276, 5556-5562.
- 67. Zhao, J., and Wang, X. (2004) J. Biol. Chem., 279, 1794-1800.

- Novotna, Z., Linek, J., Hynek, R., Martinec, J., Potocky, M., and Valentova, O. (2003) *FEBS Lett.*, **554**, 50-54.
- Kravets, V. S., Kretynin, S. V., Kolesnikov, Y. S., Getman, A. I., and Romanov, G. A. (2009) *Dokl. Ros. Akad. Nauk*, **428**, 694-697.
- Kravets, V. S., Kolesnikov, Y. S., Kretynin, S. V., and Romanov, G. A. (2010) Ukr. Botan. Zh., 67, 189-194.
- 71. Ali, Y. B., Carriere, F., and Abousalham, A. (2007) *Protein Exper. Purif.*, **51**, 162-169.
- Moreno-Perez, A. J., Martinez-Force, E., Garces, R., and Salas, J. J. (2010) *J. Plant Physiol.*, 167, 503-511.
- Qin, C., Li, M., Qin, W., Bahn, S. C., Wang, C., and Wang, X. (2006) Biochim. Biophys. Acta, 1761, 1450-1458.
- Khatoon, H., Talat, S., and Younus, H. (2007) Int. J. Biol. Macromol., 40, 232-236.
- 75. Munnik, T., and Vermeer, J. E. (2010) *Plant Cell Environ.*, **33**, 655-669.
- Kravets, V. S., Kolesnikov, Ya. S., Kretynin, S. V., Getman, I. A., and Romanov, G. A. (2010) *Physiol. Plant.*, **138**, 249-255.
- 77. Amini, A., Glevarec, G., Andreu, F., Reverdiau, P., Rideau, M., and Creche, J. (2008) *J. Plant Growth Regul.*, **27**, 394-399.
- 78. Tarasova, O. V., and Medvedev, S. S. (2008) *Vestnik St.-Petersburg Univ.*, **3**, 85-90.
- Divecha, N., Roefs, M., Halstead, J. R., D'Andrea, S., Fernandez-Borga, M., Oomen, L., Saquib, K. M., Wakelam, M. J. O., and D'Santos, C. (2000) *EMBO J.*, **19**, 5440-5449.
- Henage, L. G., Exton, J. H., and Brown, H. A. (2006) *J. Biol. Chem.*, 281, 3408-3417.
- Brizuela, L., Rabano, M., Gangoiti, P., Narbona, N., Macarulla, J. M., Trueba, M., and Gomez-Munoz, A. (2007) *J. Lipid Res.*, 48, 2264-2274.
- Gayral, S., Deleris, P., Laulagnier, K., Laffargue, M., Salles, J.-P., Perret, B., Record, M., and Breton-Douillon, M. (2006) *Circ. Res.*, 99, 132-139.
- Qin, C., Wang, C., and Wang, X. (2002) J. Biol. Chem., 277, 49685-49690.
- Mansfield, P. J., Carey, S. S., Hinkovska-Galcheva, V., Shayman, J. A., and Boxer, L. A. (2004) *Blood*, **103**, 2363-2368.
- Singh, I. N., Stromberg, L. M., Bourgoin, S. G., Sciorra, V. A., Morris, A. J., and Brindley, D. N. (2001) *Biochemistry*, 40, 11227-11233.
- Webb, L. M., Arnholt, A. T., and Venable, M. E. (2010) *Mol. Cell Biochem.*, 337, 153-158.
- 87. Ryu, S. B., and Palta, J. P. (2000) J. Lipid Res., 41, 940-944.
- Ryu, S. B., Karlsson, B. H., Ozgen, M., and Palta, J. P. (1997) Proc. Natl. Acad. Sci. USA, 94, 12717-12721.
- Kim, J. H., Kim, Y., Lee, S. D., Lopez, I., Arnold, R. S., Lambeth, J. D., Suh, P., and Ryu, S. H. (1999) *FEBS Lett.*, **454**, 42-46.
- Massenburg, D., Han, J. S., Liyanage, M., Patton, W. A., Rhee, S. G., Moss, J., and Vaughan, M. (1994) *Proc. Natl. Acad. Sci. USA*, **91**, 11718-11722.
- 91. Austin-Brown, S. L., and Chapman, K. D. (2002) *Plant Physiol.*, **129**, 1892-1898.

- 92. Karlsson, R., Pedersen, E. D., Wang, Z., and Brakebusch, C. (2009) *Biochim. Biophys. Acta*, **1796**, 91-98.
- Min, D. S., and Exton, J. H. (1998) *Biochem. Biophys. Res. Commun.*, 248, 533-537.
- Hodgkin, M. N., Clark, J. M., Rose, S., Saquib, K., and Wakelam, M. J. O. (1999) *Biochem. J.*, **339**, 87-93.
- Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., De Medina, P., Monsarrat, B., Perret, B., Silvente-Poirot, S., Poirot, M., and Record, M. (2010) *J. Lipid Res.*, **51**, 2105-2120.
- 96. Salvador, G. A., and Giusto, N. M. (2006) *Exper. Eye Res.*, **83**, 202-211.
- Everett, P. B., and Senogles, S. E. (2010) J. Neurochem., 112, 963-971.
- Momboisse, F., Lonchamp, E., Calco, V., Ceridono, M., Vitale, N., Bader, M. F., and Gasman, S. J. (2009) *Cell. Sci.*, **122**, 798-806.
- Yoon, M. S., Cho, C. H., Lee, K. S., and Han, J. S. (2006) *Biochem. Biophys. Res. Commun.*, 347, 594-600.
- 100. Yamazaki, M., Zhang, Y., Watanabe, H., Yokozeki, T., Ohno, S., Kaibuchi, K., Shibata, H., Mukai, H., Ono, Y., Frohman, M. A., and Kanaho, Y. (1999) J. Biol. Chem., 274, 6035-6038.
- 101. Walker, S., Wu, W., Cerione, R. A., and Brown, H. A. (2000) J. Biol. Chem., 275, 15665-15668.
- 102. Cai, S., and Exton, J. (2001) Biochem. J., 355, 799-785.
- 103. Genth, H., Schmidt, M., Gerhard, R., Aktories, K., and Just, I. (2003) *Biochem. Biophys. Res. Commun.*, **302**, 127-132.
- 104. Ljubicic, S., Bezzi, P., Vitale, N., and Regazzi, R. (2009) *PLoS ONE*, 4, 1-10.
- 105. Corrotte, M., Nyguyen, A. P., Harlay, M. L., Vitale, N., Bader, M. F., and Grant, N. G. (2010) J. Immunol., 185, 2942-2950.
- 106. Xu, L., Frankel, P., Jackson, D., Rotunda, T., Boshans, R. L., D'Souza-Schorey, C., and Foster, D. A. (2003) *Mol. Cell. Biol.*, 23, 645-654.
- 107. Vitale, N., Mawet, J., Camonis, J., Regazzi, R., Bader, M. F., and Chasserot-Golaz, S. (2005) *J. Biol. Chem.*, **280**, 29921-29928.
- 108. Hiroyama, M., and Exton, J. H. (2005) J. Cell Biochem., 95, 149-164.
- 109. Begle, A., Tryoen-Toth, P., de Barry, J., Bader, M. F., and Vitale, N. (2009) J. Biol. Chem., 284, 4836-4845.
- 110. Garcia, A., Zheng, Y., Zhao, C., Toschi, A., Fan, J., Shraibman, N., Brown, H. A., Bar-Sagi, D., Foster, D. A., and Arbiser, J. L. (2008) *Clin. Cancer Res.*, **14**, 4267-4274.
- Mitchell, R., Robertson, D. N., Holland, P. J., Collins, D., Lutz, E. M., and Johnson, M. S. (2003) *J. Biol. Chem.*, **278**, 33818-33830.
- 112. Perez-Mansilla, B., Ha, V. L., Justin, N., Wilkins, A. J., Carpenter, C. L., and Thomas, G. M. H. (2006) *Biochim. Biophys. Acta*, **1761**, 1429-1442.
- 113. Ma, W.-N., Park, S.-Y., and Han, J.-S. (2010) *Exp. Mol. Medic.*, **42**, 456-464.
- Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., and D'Souza-Schorey, C. (2009) *Curr. Biol.*, **19**, 1875-1885.

- 115. El Azreq, M. A., Garceau, V., Harbour, D., Pivot-Pajot, C., and Bourgoin, S. G. (2010) *J. Immunol.*, **184**, 637-649.
- 116. Bach, A. S., Enjalbert, S., Comunale, F., Bodin, S., Vitale, N., Charrasse, S., and Gauthier-Rouviere, C. (2010) *Mol. Biol. Cell.*, 21, 2412-2424.
- 117. Zhang, G. F., Patton, W. A., Lee, F. J., Liyanage, M., Han, J. S., Rhee, S. G., Moss, J., and Vaughan, M. (1995) J. Biol. Chem., 270, 21-24.
- 118. Liang, J. O., Sung, T. C., Morris, A. J., Frohman, M. A., and Kornfeld, S. (1997) J. Biol. Chem., 272, 33001-33008.
- Du, G., Altshuller, Y. M., Kim, Y., Han, J. M., Ryu, S. H., Morris, A. J., and Frohman, M. A. (2000) *Mol. Biol. Cell*, **11**, 4359-4368.
- Xie, Z., Ho, W. T., Spellman, R., Cai, S., and Exton, J. H. (2002) J. Biol. Chem., 277, 11979-11986.
- 121. Ushio-Fukai, M., Alexander, R. W., Akers, M., Lyons, P. R., Lassegue, B., and Griendling, K. K. (1999) *Mol. Pharmacol.*, 55, 142-149.
- Le Stunff, H., Dokhac, L., Bourgoin, S., Bader, M. F., and Harbon, S. (2000) *Biochem. J.*, **352**, 491-499.
- Preininger, A. M., Henage, L. G., Oldham, W. M., Yoon, E. J., Hamm, H. E., and Brown, H. A. (2006) *Mol. Pharmacol.*, **70**, 311-318.
- 124. Lein, W., and Saalbach, G. (2001) *Biochim. Biophys. Acta*, **1530**, 172-183.
- 125. Ubersax, J. A., and Ferrell, J. E. (2007) *Nature Rev. Mol. Cell Biol.*, **8**, 530-541.
- 126. Lee, H. K., Yeo, S., Kim, J. S., Lee, J. G., Bae, Y. S., Lee, C., and Baek, S. H. (2010) *Mol. Pharmacol.*, **78**, 478-485.
- 127. Fedina, E. O., Karimova, F. G., and Tarchevsky, I. A. (2006) *Biochemistry (Moscow)*, **71**, 423-429.
- 128. Shemon, A. N., Sluyter, R., and Wiley, J. S. (2007) *Immunol. Cell Biol.*, **85**, 68-72.
- 129. Eldar, H., Ben-Av, P., Schmidt, U. S., Livneh, E., and Liscovitch, M. (1993) J. Biol. Chem., 268, 12560-12564.
- 130. Jin, J. K., Kim, N. H., Lee, Y. J., Kim, Y. S., Choi, E. K., Kozlowski, P. B., Park, M. H., Kim, H. S., and Min, D. S. (2006) *Neurosci. Lett.*, 407, 263-267.
- Meacci, E., Nuti, F., Catarzi, S., Vasta, V., Donati, C., Bourgoin, S., Bruni, P., Moss, J., and Vaughan, M. (2003) *Biochemistry*, 42, 284-292.
- 132. Gorshkova, I., He, D., Berdyshev, E., Usatuyk, P., Burns, M., Kalari, S., Zhao, Y., Pendyala, S., Garcia, J. G., Pyne, N. J., Brindley, D. N., and Natarajan, V. (2008) *J. Biol. Chem.*, **283**, 11794-11806.
- 133. Mwanjewe, J., Spitaler, M., Ebner, M., Windegger, M., Geiger, M., Kampfer, S., Hofmann, J., Uberall, F., and Grunicke, H. H. (2001) *Biochem. J.*, **359**, 211-217.
- 134. Parmentier, J.-H., Pavicevic, Z., and Malik, K. U. (2006) *Am. J. Physiol. Heart Circ. Physiol.*, **290**, 46-54.
- 135. Hu, T., and Exton, J. H. (2004) J. Biol. Chem., 279, 35702-35708.
- 136. Chen, J.-S., and Exton, J. H. (2004) J. Biol. Chem., 279, 22076-22083.
- 137. Chae, Y. C., Kim, K. L., Ha, S. H., Kim, J., Suh, P.-G., and Ryu, S.-H. (2010) *Mol. Cell. Biol.*, **30**, 5086-5098.

- Chen, J. S., and Exton, J. H. (2005) *Biochem. Biophys. Res. Commun.*, 333, 1322-1326.
- 139. Kim, S., Choi, M. S., and Choi, M.-U. (2005) *Exp. Mol. Medic.*, **37**, 418-426.
- 140. Min, D. S., Kim, E., and Exton, J. (1998) J. Biol. Chem., 273, 29986-29994.
- 141. Hu, T., and Exton, J. H. (2003) J. Biol. Chem., 278, 2348-2355.
- 142. Han, J. M., Kim, Y., Lee, J. S., Lee, C. S., Lee, B. D., Ohba, M., Kuroki, T., Suh, P.-G., and Ryu, S. H. (2002) *Mol. Biol. Cell*, 13, 3976-3988.
- 143. Banno, Y., Nemoto, S., Murakami, M., Kimura, M., Ueno, Y., Ohguchi, K., Hara, A., Okano, Y., Kitade, Y., Onozuka, M., Murate, T., and Nozawa, Y. (2008) *J. Neurochem.*, **104**, 1372-1386.
- Martinson, E. A., Scheible, S., and Presek, P. (1994) *Cell Mol. Biol.*, 40, 627-634.
- 145. Choi, W. S., Hiragun, T., Lee, J. H., Kim, Y. M., Kim, H. P., Chahdi, A., Her, E., Han, J. W., and Beaven, M. A. (2004) *Mol. Cell. Biol.*, 24, 6980-6992.
- Ho, W.-T., Xie, Z., Zhao, Z. J., and Exton, J. H. (2005) *Cell. Signal.*, 17, 691-699.
- 147. Kim, Y.-R., Byun, H. S., Won, M., Park, K. A., Kim, J. M., Choi, B. L., Lee, H., Hong, J. H., Park, J., Seok, J. H., Kim, D. W., Shong, M., Park, S.-K., and Hur, G. M. (2008) *BMC Cancer*, 8, 1-11.
- 148. Xu, L., Shen, Y., Joseph, T., Bryant, A., Luo, J. Q., Frankel, P., Rotunda, T., and Foster, D. A. (2000) *Biochem. Biophys. Res. Commun.*, **273**, 77-83.
- Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., and Foster, D. A. (2006) Oncogene, 25, 7305-7310.
- Henkels, K. M., Peng, H.-J., Frondorf, K., and Gomez-Cambronero, J. (2010) *Mol. Cell. Biol.*, **30**, 2251-2263.
- Henkels, K. M., Short, S., Peng, H.-J., Di Fulvio, M., and Gomez-Cambronero, J. (2009) *Biochem. Biophys. Res. Commun.*, 389, 224-228.
- 152. Foster, D. A. (2009) Biochim. Biophys. Acta, 1791, 949-955.
- 153. Su, W., Chen, Q., and Frohman, M. A. (2009) *Future Oncol.*, **5**, 1477-1486.
- 154. Kang, D. W., Min, G., Park, D. Y., Hong, K. W., and Min, D. S. (2010) *Exper. Mol. Med.*, **42**, 555-564.
- 155. Ahn, B.-H., Min, G., Bae, Y.-S., and Min, D. S. (2006) *Exper. Mol. Med.*, 38, 55-62.
- 156. Lee, H. Y., Jung, H., Jang, I. H., Suh, P.-G., and Ryu, S. H. (2008) *Cell. Signal.*, 20, 1787-1794.
- 157. Zeniou-Meyer, M., Liu, Y., Begle, A., Olanish, M., Hanauer, A., Becherer, U., Rettig, J., Bader, M. F., and Vitale, N. (2008) *Proc. Natl. Acad. Sci. USA*, **105**, 8434-8439.
- 158. Kim, J. H., Park, J. M., Yea, K., Kim, H. W., Suh, P. G., and Ryu, S. H. (2010) *PLoS One*, 5, 1-13.
- Schmidt, M., Vob, M., Oude Weernink, P. A., Wetzel, J., Amano, M., Kaibuchi, K., and Jakobs, K. H. (1999) *J. Biol. Chem.*, 274, 14648-14654.
- Di Fulvio, M., Frondorf, K., and Gomez-Cambronero, J. (2008) *Cell. Signal.*, 20, 176-185.

- 161. Jang, M. J., Lee, M. J., Park, H. Y., Bae, Y. S., Min, D. S., Ryu, S. H., and Kwak, J. Y. (2004) *Exper. Mol. Med.*, 36, 172-178.
- 162. Patel, S., Djerdjouri, B., Raoul-Des-Essarts, Y., Dang, P. M.-C., El-Benna, J., and Perianin, A. (2010) J. Biol. Chem., 285, 32055-32063.
- 163. Paruch, S., El-Benna, J., Djerdjouri, B., Marullo, S., and Perianin, A. (2006) FASEB J., 20, 142-144.
- Varadharaj, S., Steinhour, E., Hunter, M. G., Watkins, T., Baran, C. P., Magalang, U., Kuppusamy, P., Zweier, J. L., Marsh, C. B., Natarajan, V., and Parinandi, N. L. (2006) *Cell. Signal.*, 18, 1396-1407.
- 165. Wakelam, M. J. O., McNee, G. S., and Rudge, S. A. (2010) *Adv. Enzyme Regul.*, **50**, 57-61.
- 166. Lee, S., Park, J. B., Kim, J. H., Kim, Y., Kim, J. H., Shin, K. J., Lee, J. S., Ha, S. H., Suh, P. G., and Ryu, S. H. (2001) *J. Biol. Chem.*, 276, 28252-28260.
- 167. Park, J. B., Kim, J. H., Kim, Y., Ha, S. H., Kim, J. H., Yoo, J., Du, G., Frohman, M. A., Suh, P., and Ryu, S. H. (2000) *J. Biol. Chem.*, 275, 21295-21301.
- 168. Han, L., Stope, M. B., de Jesus, M. L., Oude Weernink, P. A., Urban, M., Wieland, T., Rosskopf, D., Mizuno, K., Jakobs, K. H., and Schmidt, M. (2007) *EMBO J.*, **26**, 4189-4202.
- 169. Banno, Y., Fujita, H., Ono, Y., Nakashima, S., Ito, Y., Kuzumaki, N., and Nozawa, Y. (1999) *J. Biol. Chem.*, **274**, 27385-27391.
- 170. Steed, P. M., Nager, S., and Wennogle, L. P. (1996) *Biochem. J.*, **35**, 5229-5237.
- 171. Lukowski, S., Lecomte, M. C., Mira, J. P., Marin, P., Gautero, H., Russomarie, F., and Geny, B. (1996) *J. Biol. Chem.*, **271**, 24164-24171.
- 172. Lukowski, S., Mira, J. P., Zachowski, A., and Geny, B. (1998) Biochem. Biophys. Res. Commun., 248, 278-284.
- 173. Chae, C., Lee, S., Lee, H. Y., Heo, K., Kim, J. H., Kim, J. H., Suh, P. G., and Ryu, S. H. (2005) *J. Biol. Chem.*, **280**, 3723-3730.
- 174. Pejchar, P., Pleskot, R., Schwarzerova, K., Martinec, J., Valentova, O., and Novotna, Z. (2008) *Cell Biol. Int.*, **32**, 554-556.
- Kabachevskaya, E. M., Liakhnovich, G. V., and Volotovski, I. D. (2004) *Fiziol. Rast.*, **51**, 855-859.
- 176. Kabachevskaya, E. M., Liakhnovich, G. V., Kisel, M. A., and Volotovski, I. D. (2008) *J. Plant Physiol.*, **164**, 108-110.
- Liscovitch, M., Czarny, M., Flucci, G., and Tang, X. (2000) *Biochem. J.*, **345**, 401-415.
- 178. Garrido, J. L., Wheeler, D., Vega, L. L., Friedman, P. A., and Romero, G. (2009) *Mol. Endocrinol.*, 23, 2048-2059.
- 179. Brandenburg, L. O., Konrad, M., Wruck, C., Koch, T., Pufe, T., and Lucius, R. (2008) *Neurosciences*, **156**, 266-276.
- Brandenburg, L. O., Seyferth, S., Wruck, C. J., Koch, T., Rosenstiel, P., Lucius, R., and Pufe, T. (2009) *Mol. Membr. Biol.*, 26, 371-383.
- 181. Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004) Proc. Natl. Acad. Sci. USA, 101, 9508-9513.
- 182. Fan, L., Zheng, S., and Wang, X. (1997) Plant Cell, 9, 2183-2196.
- Sang, Y., Zheng, S., Li, W., Huang, B., and Wang, X. (2001) *Plant J.*, 28, 135-144.
- 184. Li, G., and Xue, H.-W. (2007) Plant Cell, 19, 281-295.

- 185. Mancuso, S., Marras, A., Muguai, S., Schlicht, M., Zarsky, V., Li, G., Song, L., Xue, H. W., and Baluska, F. (2007) *Plant Signal Behav.*, 2, 240-244.
- Romanov, G. A., Getman, I. A., and Schmulling, T. (2000) *Plant Growth Regul.*, **32**, 337-344.
- Romanov, G. A., Kieber, J. J., and Schmulling, T. (2002) *FEBS Lett.*, 515, 39-43.
- 188. Pappan, K., Austin-Brown, S., Chapman, K. D., and Wang, X. (1998) Arch. Biochem. Biophys., 353, 131-140.
- 189. Liu, P. F., Chang, W. C., Wang, Y. K., Chang, H. Y., and Pan, R. L. (2008) *Biochim. Biophys. Acta*, **1779**, 164-174.
- 190. Zhang, Y., Zhu, H., Zhang, Q., Li, M., Yan, M., Wang, R., Wang, L., Welti, R., Zhang, W., and Wang, X. (2009) *Plant Cell*, **21**, 2357-2377.
- 191. Hong, Y., Pan, X., Welti, R., and Wang, X. (2008) *Plant Signal Behav.*, **3**, 1099-1100.
- 192. Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Xiao, Y., Liang, Y., and Zhang, W. (2010) *New Phytol.*, **188**, 762-773.
- 193. Bargmann, B. O. R., Laxalt, A. M., ter Riet, B., van Schooten, B., Merquiol, E., Testerink, C., Haring, M. A., Bartels, D., and Munnik, T. (2009) *Plant Cell Physiol.*, **50**, 78-89.
- 194. Mane, S. P., Vasquez-Robinet, C., Sioson, A. A., Heath, L. S., and Grene, R. (2007) J. Exper. Bot., 58, 241-252.
- Yamaguchi, T., Kuroda, M., Yamakawa, H., Ashizawa, T., Hirayae, K., Kurimoto, L., Shinya, T., and Shibuya, N. (2009) *Plant Physiol.*, 150, 308-319.
- 196. Rajashekar, C. B., Zhou, H. E., Zhang, Y., Li, W., and Wang, X. (2006) J. Plant Physiol., 163, 916-926.
- 197. Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C. B., Williams, T. D., and Wang, X. (2002) *J. Biol. Chem.*, 277, 31994-32002.
- 198. Li, W., Wang, R., Li, M., Li, L., Wang, C., Welti, R., and Wang, X. (2008) J. Biol. Chem., 283, 461-468.
- 199. Li, W., Li, M., Zhang, W., Welti, R., and Wang, X. (2004) Nat. Biotechnol., 22, 427-433.
- Bargmann, B. O., Laxalt, A. M., Riet, B., Testerink, C., Merquiol, E., Mosblech, A., Reyes, A. L., Pieterse, C. M., Haring, M. A., Heilmann, I., Bartels, D., and Munnik, T. (2009) *Plant Cell Environ.*, 32, 837-850.
- 201. Wang, C., Zien, C. A., Afitlhile, M., Welti, R., Hildebrand, D. F., and Wang, X. (2000) *Plant Cell*, **12**, 2237-2246.
- 202. Zhang, W., Wang, C., Qin, C., Wood, T., Olafsdottir, G., Welti, R., and Wang, X. (2003) *Plant Cell*, **15**, 2285-2295.
- 203. Cruz-Ramirez, A., Oropeza-Aburto, A., Razo-Hernandez, F., Ramirez-Chavez, E., and Herrera-Estrella, L. (2006) *Proc. Natl. Acad. Sci. USA*, **103**, 6765-6770.
- 204. Li, M., Qin, C., Welti, R., and Wang, X. (2006) *Plant Physiol.*, **140**, 761-770.