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Abstract

This paper discusses the advantages of knowledge-driven constructive induction (KDCI).

Development, testing, and evaluation of a KDCI (or in short CI for constructive induction) sys-

tem are explained in detail. The objectives of developing this system were to demonstrate the

usefulness of the approach and to provide knowledge-driven constructive induction support in

our data analysis research. Technical details, particularly the process of building new attributes

and changing the representation space, are discussed. Other issues concerning the design and

implementation of the CI mechanism are presented. The evaluation process and comparison

measures used for evaluation of the system are briefly explained. Experimental results, using 4

data sets from a real-world application, are given.

Keywords: induction, constructive induction, feature generation

1.0  Introduction

Today’s world is overwhelmingly dominated by generation and acquisition of large

amounts of data in all businesses and industries. Over the last ten years, there have

been many advances in data integration, data warehousing, data analysis, and genera-

tion of useful knowledge. Examples are several data analysis tools that have become

commercially available [9]. Almost all these tools assume that the data representation

space is accurate and complete. The data representation space is normally spanned

over descriptors such as attributes, variables, terms, relations, or transformations that

are used to describe an object. For example, most inductive tools use all initial

attributes (numeric and non-numeric) as provided in the data sets, assuming that useful

concepts can be generated from these attributes. However, researchers in real-world

data analysis applications have experienced that more meaningful concepts can be

generated from the data and more accurate knowledge can be discovered if the data is

properly transformed to provide a new representation space. This is through construc-

tive induction.

Constructive induction is the process of manually or automatically transforming the

data through creating new features from the existing ones and possibly removing the

less relevant ones before or during the data analysis. The goal of constructive induc-

tion is therefore to create a new representation of the domain so that the overall predic-

tion or explanation accuracy of induction based data analysis tools are improved. The

prediction accuracy can be estimated through analysing and comparing two randomly

selected subsets of a large data set when the representation space is modified on one
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and not on the other. The explanation accuracy is normally evaluated at the end of the

data analysis process by a domain expert.

Generating new features may involve different constructive induction strategies. Three

strategies introduced in the literature [16] are: (i) hypothesis-driven in which changes

to the data representation space are based on the analysis of hypotheses generated in

each data analysis iteration and the discovery of patterns, (ii) data-driven in which

data characteristics, such as interrelationships between parameters, are used to gener-

ate new data representation space, and (iii) knowledge-driven in which expert pro-

vided domain knowledge is applied to modify, construct and/or verify new data

representation space. When two or more of the above strategies are combined, it is

called multistrategy constructive induction approach.

Two of the most common applications where a knowledge-driven constructive

induction approach would be useful are:

• Data analysis applications in which initial parameters have to be corrected through

the use of domain knowledge and new features have to be created for an accurate

and meaningful data analysis. Examples are industrial operations where environ-

mental conditions affect the operation and performance of a system.

• Data analysis applications in which exploratory research is needed to incorporate

qualitative models of a process into the data analysis process and create new fea-

tures from the existing ones. Examples are applications in which dimensionless

terms (π terms) can be introduced to replace all or some of the initial attributes.

Each dimensionless term represents two or more of the original attributes. The idea

is to transform any number of dimensionally invariant variables (m) represented by

n dimensions into m-n dimensionless terms.

The research reported in this paper is focused on knowledge-driven constructive

induction. Our goal is to introduce a knowledge-driven construction induction mecha-

nism that we have developed as part of our research in data analysis and demonstrate,

using real-world data, how creation of new features could improve the overall per-

formance of this system. In Section 2, we review some of the related work. Section 3

includes description of the problem that motivated this work. In Section 4 we provide

an overview of our approach where we introduce technical details of the constructive

induction mechanism that we have built and show how new features are generated and

used. Section 5 includes testing and evaluation methodology and in Section 6 we pro-

vide the results. We conclude the paper in Section 7 and discuss our future research.

2.0  Related Work

The general form of knowledge-driven constructive induction has been advocated by

many researchers [10, 15]. Most of the related works were motivated by the fact that

inductive learning algorithms were sensitive to the original representation space. This

section briefly reviews some aspects of knowledge-driven constructive induction

research performed by other researchers.
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Pagallo [12] developed FRINGE that iteratively constructs new attributes using struc-

tural information of the decision tree. Matheus and Rendell [8] and Rendell [14] also

proposed a number of frameworks for feature construction based on four main aspects

of detection, selection, generalization, and evaluation. In these studies, the process of

building new features is at the time of building the decision tree where simple domain

knowledge is used for constructive biases. AM (Automated Mathematician), devel-

oped by Lenat [7], changes the data representation space by employing pre-defined

heuristics for: (i) defining new concepts represented as frames, (ii) creating new slots

and their values, and (iii) adapting concept frames developed in one domain to another

domain.

Callan and Utgoff [1] used the domain knowledge, in the form of first order predicate

calculus, to describe the problem solving operators. This information was then used to

generate a better vocabulary by increasing the resolution and by decomposing the

description of the goal states into a set of functions that were used to map search states

to feature values. On two domains that this method was tested, it was shown that the

features it generated, were more effective for inductive learning than the original fea-

tures. A similar concept has been incorporated into LAIR [3] which is a constructive

induction system that acquires conjunctive concepts by applying a domain theory to

introduce new features into the evolving concept description. The system works

through an iterative process in which it weakens the inductive bias with each iteration

of the learning loop.

Most systems that incorporate knowledge into constructive induction use almost com-

plete domain knowledge. Use of fragmentary knowledge in constructive induction,

due to varying degrees of completeness, may still result in generation of useful fea-

tures. Donoho and Randell [3] showed that production of new features, using fragmen-

tary knowledge increases inductive accuracy and it also results in determining

knowledge reliability. Use of domain knowledge during the process of building the

decision tree was also investigated by Nunez [11] who developed an algorithm to gen-

erate more logical and understandable decision trees than are normally generated by

learning algorithms like ID3. His algorithm executes various types of generalization

and at the same time reduces the classification costs by means of background knowl-

edge.

Constructive induction could also be treated as a preprocess to data analysis. In

GALA, developed by Hu [6], a small number of new attributes are generated from the

existing nominal or real-valued attributes. GALA was designed for use in preprocess-

ing data sets for inductive algorithms and was tested with C4.5 [13]. Reiger [15] also

views constructive induction as a data preprocessing step and proposes a framework in

the robotics domain where the numeric data is transformed to logic-based data using

domain knowledge.

3.0  The Problem

Some of the best applications of inductive techniques have been in areas where

domain knowledge has been used to generate a new representation space. In some
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cases, complex domain knowledge, such as causal qualitative models, are used to gen-

erate new attributes. The main questions are: (i) where the required knowledge comes

from, (ii) how can we appropriately use this knowledge to modify the representation

space, (iii) are the new attributes meaningful and (iv) how can we evaluate the results

when new attributes are used. This section includes a brief discussion of the above

points.

3.1  Types of Knowledge

The knowledge for creating a new representation space could vary from simple con-

cepts of domain knowledge to complex causal models. The best representation space

can be created when complete domain theories are used for constructive induction [2].

Two of the most common types of domain knowledge are:

• Process or System Knowledge that represents various aspects of domain theory.

This type of knowledge comes from domain experts, empirical results, system

design information, and system documentation.

• Data Characteristics Knowledge that is acquired during data preprocessing. Vari-

ous approaches are taken. Examples are: data visualization, principal component

analysis, dimensional analysis and data fusion. The main goal is by understanding

the nature of the data (combined with domain theory), one can generate new

attributes.

3.2  Validating New Features

The most difficult task in knowledge-driven constructive induction is validating fea-

tures when a new representation space is introduced since the new representation space

has a profound effect on the quality of generated results. One approach is to investigate

the relationship between attributes in the new representation space when new features

are included. This can be done using design of experiment techniques to evaluate the

performance of a system or process represented by the new representation space. The

other approach is to evaluate the performance of the new representation space in an

induction process and on iterations in which sets of new attributes are added in groups

of related features. This approach requires involvement of domain experts [2] who

would evaluate the results of induction each time the representation space is modified.

4.0  Overview of the Approach

Most learning systems have been concerned with learning concepts from examples

from a fixed set of attributes. In other words, the attributes relevant to describing the

examples are normally provided before the learning process starts, and the resulting

concepts are expressed in terms of these attributes. However, inconsistency and

incompleteness of data, as well as the need for incorporating the domain knowledge,

have shown the importance of learning systems to have the ability to construct new

attributes. Our goal in constructive induction is to convert domain knowledge into a set

of numeric attributes for which an evaluation function can be generated via existing

methods. We have developed a constructive induction facility that is added to our data
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analysis tool, IMAFO [Intelligent MAnufacturing FOreman]. IMAFO is a data mining

tool that is used for failure analysis and process optimization. It helps engineers to dis-

cover the reasons for unsuccessful productions or operations [4]. IMAFO has two

engines for data analysis. Engine 1 is a variation of Quinlan’s ID3 algorithm; Engine 2

uses Quinlan’s C4.5 algorithm [4,13].

4.1  Design of the CI Mechanism

The CI module was designed as one of the modules of IMAFO. The criteria for design-

ing the CI module was: once new attributes are created, they are added to the measure-

ment space for any application set-ups and data analysis. Creation of new attributes

would be based on using domain knowledge and all new attributes will have the capa-

bilities of the existing ones:

• Subspace Definition: New attributes can be used to define new classes (problem

definitions).

• Dimension Control: New attributes can be enabled or disabled for certain classes

during data analysis.

• Correlation Check: Principal components can be identified using new attributes.

• Graphics: New attributes can be used for data visualization.

Figure 1 shows the interface to the CI facility. The New Variable Names list (top

scroll list) contains the names of all the new attributes. The first set of buttons (Insert,

Rename and Delete) are used to define new attribute names. The Available Numeric

Variables list (bottom scroll list) contains all numeric (integer or real) attributes that

can be used in the definition of a new attribute. The Relations selection buttons dis-

play the selected relation which can be used to define a new attribute. The New Varia-

ble Definition field shows the definition of the new attribute that is highlighted in the

New Variable Names list. The Build button is used to build a new attribute defini-

tion.

4.2  Technical Details

The relationships between the objects in the interface are illustrated in Figure 2. A new

attribute consists of a name and its definition. A definition is a mathematical expres-

sion that is built from domain knowledge. When a new attribute name and its defini-

tion are entered, they are added to the New Variable Names list. The most important

step in defining a new attribute is the Build process. This process ensures that the

expression is syntactically and semantically valid.

The operations in the Relations section for constructing new attributes are based on

the generality of the individual relation and completeness of the overall relation set.

These relations are relatively common operators that can be used frequently in chang-

ing the representation space. It should be noted that the current set of relations in our

system can be extended to include operators for strings and logical expressions. They

can result in new attributes of type string or boolean.
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Fig. 1.  Interface for the Constructive Induction Facility

4.3  Changing the

Representation

 Space

The process of changing

the representation space

involves three opera-

tions: expansion, correc-

tion and contraction.

Expansion aggrevates the

learning process as the

representation space is

expanded. For example,

if two of the original

attributes were angular

velocity of a rotor blade

(ω) and its radius (r), and

its linear velocity (v) was

also useful for learning a

concept, then the linear

velocity can be added to

the representation space:

The original representa-

tion space can also be

corrected for inconsisten-

v r ω×=

cies in the values of the attributes to provide a better representation space for the learning

process. This can be accomplished by constructing new attributes with more consistent

values from existing attributes and eliminating the original attributes. For example, if one

of the original attributes were the angular velocity of the rotor bade of an engine (ω),

since it is influenced by several operation conditions, it would be corrected by θ:

where θ is calculated from domain knowledge. ωc represents the corrected value of ω.

Contraction decreases the complexity of the learning process as the representation space

is restricted. This is performed through abstraction and implies that the learning process

can be sped up due to narrowing the search space and decrease in generality. Use of

dimensionless terms is a good example of contraction. For example, Reynolds Number

(RN) of a moving object is space, a dimensionless term, is derived from air speed (U), air

mass density (ρ), length of the moving object (l), and coefficient of air viscosity (µ), as:

ω
c

ω θ⁄=

RN
ρ U l××

µ
---------------------=
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Fig 2.  Interaction between Objects in CI Interface

The most important effect of changing the representation space is that the overall com-

plexity of the resulting concept description may decrease when domain knowledge is

applied. An example is when irrelevant attributes are eliminated from the representation

space. Table 1 shows how the existing relations (shown in figure 1) can be used for

expansion, contraction, and correction of the original attributes to generate a new repre-

sentation space.

E: Expansion, C: Contraction, and K: Correction

TABLE 1. Summary of representation space changes

Operator Arguments Notation Interpretations E C K

+ Attributes x, y x + y Sum of x and y * * *

- Attributes x, y x - y Difference between x and y * * *

* Attributes x, y x * y Product of x and y * * *

/ Attributes x, y x / y Quotient of x and y * * *

exp Attributes x, y x ^ y x raised to the power of y * * *

sqrt Attributes x sqrt x Square root of x * *

log Attributes x log x Logarithm of x in base 10 * *

ln Attributes x ln x Natural logarithm of x * *

( - - Beginning of sub-expression

) - - End of sub-expression
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5.0  Testing and Evaluation Methodology

The overall goal of testing was to focus on the logics of the algorithm that generates

the new representation space. Evaluation was performed to investigate improvements

in predictive accuracy of the concepts (rules) generated as a result of our data analy-

sis. Predictive accuracy is a criterion that evaluates the performance, consistency, and

other behaviours of learning systems, as a measure of success. Having high predictive

accuracy means that the learning system learned the correct concept. The correct con-

cept can be represented in different forms or different organizations of a single repre-

sentation, or different combination of attributes.

The experimentation process consisted of running IMAFO, with and without the new

representation space, to evaluate the performance based on improvements on the fol-

lowing comparison measures:

• Coverage: The percentage of records with problems that the rule explains.

• Error rate: The percentage of records without problems that the rule explains.

• False-negatives rate: The percentage of records with problems that the rule does

not explain.

• Rule complexity: The number of variables acting together in a rule to characterize

a problem.

• Accuracy: The percentage of records with problems that the rule explains and

without problems that the rule does not explain.

For experimentation, 46 data sets, representing data collected from an aerospace

domain, grouped into four groups, were analyzed. The steps for starting the data analy-

sis were as follows:

1. Filtered data files for corrupt data.

2. Performed data visualization for trend monitoring and class threshold selections.

3. From graphs prepared in step 2, selected proper thresholds for problem (class) def-

initions.

4. Removed irrelevant attributes from the measurement space.

5. Analyzed all corrected data sets using both engines 1 and 2. For consistency, data

analysis was repeated three times.

coverage
# of records with the rule and the problem

# of records with the problem
-----------------------------------------------------------------------------------------------------=

error rate
# of records with only the rule

# of records with the rule and the problem
-----------------------------------------------------------------------------------------------------=

false-negatives rate
# of records with the problem but without the rule

# of all records
-----------------------------------------------------------------------------------------------------------------------=

accuracy
# of records with problem & rule # of records without problem & rule+

# of all records
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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6. Using the domain knowledge, changed the representation space.

7. Modified all problem (class) definitions to make use of the new attributes, if neces-

sary.

8. Analyzed all data sets using both engines 1 and 2. For consistency, both engines

were run three times on each data set.

The following steps were taken for summarizing the results.

1. For each run, the top rule was selected for comparison. The top rule is the rule in

which the comparison measures collectively behave better than all the other rules

generated (see explanation below).

2. Determined the coverage, error rate, and complexity from the output of all three

runs. From the contingency tables of the runs, determined the false-negatives rate

and accuracy.

3. Calculated the average of each comparison measures listed in step 2 for the three

runs.

4. Repeated steps 1, 2 and 3 for the results, using the new representation space.

5. For each data set, the values of comparison measures without new attributes were

subtracted from the values obtained when including new attributes. Thus a positive

difference indicates an increase in the comparison measure by using the CI facility,

and a negative difference indicates a decrease. Note that an increase does not imply

improvement in quality and a decrease does not imply deterioration.

6. The values of differences obtained in step 5 were further averaged for each data

group.

For engine 1, the top rule was selected for evaluation because from our experience in

the past we have noticed that the first rule had by far the best performance. The first

rule usually gives the highest coverage and the lowest error rate. As an example, when

we compared two rules generated for the same problem, rule 1 performed better than

rule 2 in coverage (64.5% vs. 9.7%), false-negatives rate (7.4% vs. 18.9%), complexity

(2 levels vs. 3 levels) and accuracy (92.6% vs. 81.1%). The performance of both

engines were the same in error rate. For engine 2, it follows from engine 1 that the top

rule is also selected for evaluation for consistency in the overall evaluation process.

6.0  Results

The data came from an aerospace domain that contained several parameters from the

operation of the aircraft main engines and the auxiliary power unit. Results of analyz-

ing four data groups are presented below. Data group 1 consisted of 34 data sets of

auxiliary power unit described by 7 attributes; they are divided into individual data

sets by aircraft identification number. Data group 2, also represented auxiliary power

unit data, consisted of four data sets for four aircraft from data group 1, but described

by 55 attributes. Data group 3 consisted of four sets of main engines cruise data for

four aircraft. This group consisted of 52 attributes. Data group 4 consisted of four sets

of main engines cruise performance data for the four aircraft in data group 3. This

group consisted of 53 attributes.
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Table 2 summarizes the results of data analysis obtained with the two data analysis

engines in IMAFO. This table reports the averages of the differences in the compari-

son measures obtained for the four data groups. A positive value indicates an overall

increase in the comparison measure between the original and the new representation

space, for the data set(s) in the data group; a negative value indicates an overall

decrease.

For engine 1, the results in Table 2 shows improvements in performance measures

with the new representation space. Each comparison measure improved in two to three

data groups. In other words, for two data groups, coverage increased (data groups 2

and 4) and error rate decreased (data groups 2 and 4). In addition, false-negatives rate

decreased for three data groups (2, 3 and 4) and complexity decreased for three data

groups (1, 2 and 3). Finally, accuracy increased in data groups 2, 3 and 4.

For engine 2, the results shows similar improvements. While coverage increased for

three data groups (2, 3 and 4), error rate decreased for the same data groups. On the

other hand, false-negatives rate decreased for two data groups (2 and 4). As for com-

plexity, it decreased for three data groups (1, 2 and 3). Accuracy increased for three

data groups (2, 3 and 4).

In the above table, Cov=Coverage, ER=Error Rate, FN=False Negatives, RC=Rule

Complexity, and A=Accuracy.

When using engine 1 of IMAFO, changing the representation space showed slightly

greater magnitude of improvement than using engine 2. The improvement in coverage

using engine 1 ranged from 2.39% to 5.86% while using engine 2, the improvement

ranged from 0.48% to 2.93%. The decrease in error rate for engine 1 ranged from

0.94% to 2.84% while for engine 2, the decrease ranged from 0.48% to 2.93%. The

change in false-negatives rate using engine 1 ranged from 0.09% to 1.79% while using

engine 2, the change ranged from 0.13% to 0.60%. The average ranges of improve-

ment in complexity were 0.19 to 0.35 rules and 0.17 to 0.44 rules using engines 1 and

TABLE 2. Averages of Results of Experimentation

Comparison

Measures

Cov(%) ER(%) FN(%) RC A(%)

Data Group 1 -3.76 1.44 1.80 -0.21 -1.61

Data Group 2 5.86 -0.94 -1.79 -0.19 2.01

Data Group 3 -1.04 5.68 -1.14 -0.26 1.04

Data Group 4 2.39 -2.84 -0.09 0.08 0.09

Data Group 1 -2.92 3.17 0.29 -0.17 -0.49

Data Group 2 0.49 -0.50 -0.60 -0.29 0.53

Data Group 3 0.48 -0.48 0.10 -0.44 0.07

Data Group 4 2.93 -2.93 -0.13 0.13 0.11

E
n
g
in

e 
1

E
n
g
in

e 
2
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2, respectively. The increase in accuracy for engine 1 ranged from 0.09% to 2.01%

while for engine 2, the increase ranged from 0.07% to 0.53%.

In general, the new representation space resulted in improvements in the data analysis.

On average, while it does not always improve analysis results in the comparison meas-

ures, no comparison measure has shown constant deterioration with the data groups

used in the experimentation.

7.0  Conclusions

The main goal of a constructive induction approach is to understand what knowledge

from the application domain can improve the representation space. One is also inter-

ested to investigate the effects of incorporating domain knowledge on the constructed

feature space and any improvements in accuracy and predictability of the learned

knowledge. Our experiments have shown that knowledge-driven constructive induc-

tion helps to incorporate domain knowledge into the measurement space and create a

new representation space. However, the procedure for incorporating domain knowl-

edge and the process of evaluating the results may require involvement of domain

experts. Although we did not investigate how using a new representation space may

speed up the knowledge discovery we found that constructive induction provides

means to generate more reliable knowledge.

We have designed and implemented a constructive induction facility into our existing

data analysis system. This data analysis tool has been successfully applied in several

domains, including semiconductor manufacturing. With the addition of the construc-

tive induction facility, we hope to obtain improvements in predictive accuracy in data

analysis. In our experimentation plan, we tested and evaluated the performance of our

constructive induction using four groups of data, containing 46 data sets. A significant

contribution of this system is that the rules generated can be easily interpreted by the

domain expert or can be incorporated into an expert system. The comparison between

the existing induction system and the one with constructive induction facility was

based on change of the representation space that resulted in improvements in coverage,

error rate, false-negatives rate, rule complexity and accuracy.

According to the results based on the five comparison measures, the performance of

our data analysis tool for learning new concepts improved with the addition of the con-

structive induction facility. The user is now able to select the type of relation (operator)

to be used to create new attributes and generate a new representation space. This gives

engineers and data analysts a way for generating data descriptions that are most suita-

ble based on the available domain knowledge.

We conclude that with knowledge-driven constructive induction and creation of a new

representation space we can obtain more accurate and more reliable results in data

analysis. There are a number of issues yet to be further investigated: (i) how can gener-

ation of new attributes be optimized before the data is analyzed, (ii) is it possible to

automate the process of creating new attributes, by taking into account the data charac-
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teristics and domain knowledge, and (iii) expansion of our work to include string and

logical expressions.
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