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AN OVERVIEW OF STUDIES TO ASSESS THE THERMAL AND 

HYGROTHERMAL PERFORMANCE OF HIGHLY INSULATED AND 

ZERO ENERGY READY WALL ASSEMBLIES

Michal BartkoX, PhD., Robert Jonkman1, P.Eng., Michael A. Lacasse 2,, PhD., P.Eng., 

Travis Moore3 BSc Eng., Anil Parekh4, MASc., Silvio Plescia5, P.Eng.

ABSTRACT

A key component of energy efficient homes in the ever challenging climate of Canada is the highly 

insulated and well-designed wall assembly. Over the years, residential walls have been constructed using 

increasingly more insulation. The increased levels of insulation have offered a major opportunity to 

reduce heat losses in homes thereby significantly improving their energy efficiency and have thus 

permitted compliance with requirements for high performance housing standards such as those for 

ENERGY STAR, R-2000, Net-Zero Energy Ready homes and homes conforming to the Passive House 

Canada concept. However given the use of higher insulation levels, homebuilders face many challenges 

with the issues that arise from changes in traditional construction practice, in the case of this paper being 

concerned with the overall moisture performance, and hence durability, of wall assemblies. Canadian 

building code authorities also require proven evidence that highly insulated wall systems will not be 

adversely affected by increases to insulation levels given the many different Canadian climates in which 

they are expected to perform over the long term. Building code authorities are also concerned with the 

possible effects of climate change on building design, and consequently, there is a growing need for 

information related to the resilience of wall assemblies for use in high performance housing and small 

buildings. Several studies have been undertaken in recent years to demonstrate the thermal and 

hygrothermal performance of highly insulated wood frame wall assemblies and to determine whether 

these walls perform as well as or better than NECB compliant walls when subjected to Canadian climate 

extremes.
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In this paper, an overview is provided of research studies focused on the performance assessment of 

highly insulated wall assemblies whose thermal performance may range, for example, from an effective 

RSI of 4.8 to RSI 7.9, and that may be useful both to homebuilders and building practitioners. The 

studies examined include both the results from field experimental work of full-scale wall assemblies as 

well as those obtained from detailed hygrothermal modelling and parametric simulation studies. Field 

work is useful in evaluating the risk of formation of condensation in walls when subjected to local climate 

conditions and benchmarking hygrothermal simulations to known conditions. The results of simulation 

studies permit assessing the risk to the formation of condensation, mold and wood rot, given the 

hygrothermal response of the walls to climate conditions as may occur in the different climate zones 

within Canada. The robustness and resilience of the respective wall assemblies is discussed in light of the 

use of various insulation product types (e.g. fibreglass, mineral wool, XPS, EPS, dense-pack cellulose, 

wood fibre) of which the different wall assemblies were comprised.

INTRODUCTION

Over the years, the energy efficiency of the North American housing stock has significantly improved due 

mainly to higher insulation levels, more efficient windows and, more importantly, adoption of various 

energy efficiency measures by building codes. For most of the Canadian climate conditions, the thermal 

resistance (R value) increase is of paramount importance, since heating and cooling of buildings in 

Canada is estimated to account for up to 17% of national GHG emissions [19]. The increased insulation 

levels of building envelopes for homes leads to a multitude of opportunities as well as challenges.  A 

major opportunity is to reduce heating and cooling losses and thereby significantly reduce space 

heating/cooling loads.  However, highly insulated wall assemblies present challenges to the wall 

assembly, including assessing the durability of products by determining the effect of higher insulation 

levels on the overall moisture performance and expected long-term performance of the building envelope.  

A barrier to the uptake of highly insulated homes is the limited amount of proven evidence of reliable 

thermal and moisture performance of highly insulated homes as might be achieved in various climates of 

Canada.

Net Zero Energy Homes

There are numerous definitions for net-zero homes, whether or not embodied energy is also considered. 

Natural Resources Canada (NRCan) defines a net-zero energy home as a home that on an annual basis 

generates as much energy as it consumes. At present the ‘task’ of generating energy is usually carried out

on site with the use of solar photovoltaic arrays that can be installed on the walls of the homes (additionally 

function as simultaneous shading devices), on roofs, or on a structure that is not attached to home

To evaluate whether homes are net-zero ready, the NECB performance path of compliance is used, 

instead of the prescriptive path. Two homes having the same location (i.e. nominally the same levels of 

solar irradiance, temperature, and shading) and both with identical wall assembly R-values can differ 

considerably in energy generation simply due to the geometry and orientation of the building. Houses

with satisfactorily large south-facing walls and roofs can accommodate a photovoltaic (PV) array of 

12kW (above 80m2 of total PV area) or larger, whereas houses with many small roof and wall areas 
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would allow for employment of, for example, only a 5kW PV array with some 35m2 of the roof area [18]. 

The energy production and comparison of energy generation vs. consumption would then be substantially 

more favourable in the case of the larger solar array and for the smaller solar array would likely not allow 

the building to meet net-zero requirements. Simple calculations for homes with walls of differing R-value 

and incorporating different sizes of PV arrays are presented in Table 1. It can be observed that in this 

example a home having R30 for wall thermal insulation in Ottawa and a PV array size of 10kW would 

not meet NRCan criteria for a net-zero home; however, the home having R40 for wall insulation would 

approach these limits (e.g. energy deficit ~1.6 MWh/year); whereas the R50 home would indeed meet the 

criteria (e.g. energy deficit: -1.4 MWh/year). Similarly for Vancouver; R40 and R50 homes would meet

net-zero requirements with a reasonably sized 10kW PV array (i.e. energy deficit -0.9 and -3.1 MWh/year

respectively for R40 and R50 homes). The information given in these tables clearly indicate the 

importance of reducing the energy use of homes through increasing the thermal resistance of the building 

envelope, even before considering installing a PV array.

Table 1 Example of simplified calculation based on energy generation from a PV array and 
energy consumption based on wall thermal insulation 

Wall thermal 
insulation

Energy consumption, 
MWh/year

Energy generation, 
MWh/year

PV 
array

Net energy deficit 
MWh/year

m2K/W Ottawa Vancouver Ottawa Vancouver kWDC Ottawa Vancouver
3.5 (R30) 18.5 13.2 6.2 5.5 5 12.3 7.7
7.0 (R40) 14.0 10.1 12.4 11.0 10 1.6 (0.9)
8.8 (R50) 11.1 7.9 24.7 21.9 20 (13.6) (14)

Additionally, irrespective of the selection of a specific combination of PV array and wall thermal 

resistance that permits attaining net zero energy thresholds for a home, there is nonetheless a functional 

requirement that the overall hygrothermal performance of the building envelope be maintained over the 

long-term, both for energy conservation over the service life of the building, as well as durability of the 

structure and safety and health of the occupants.

Assessing Hygrothermal Performance – Overview of Field Experiment and Numerical Simulation

The National Research Council of Canada (NRC) in collaboration with Natural Resources Canada 

(NRCan), the Canada Mortgage and Housing Corporation (CMHC) and the Canada Wood Council (CWC) 

undertook, over a 3 year period, a project to develop information on the moisture and thermal performance 

of progressively higher insulated wood-frame wall assemblies.  The information was to be used to: (1) 

Support the evaluation of future code proposals regarding energy efficiency improvements to building 

envelope systems; (2) Support the development of knowledge, details and practices for advanced wall 

systems for voluntary residential energy efficiency programs; (3) Help the housing industry meet the 2030 

net-zero energy ready targets, and; (4) Promote the deployment of highly energy efficient wall details for 

new and retrofitted existing wood-frame construction.  In essence, the primary outcome from this project 

was to facilitate the widespread adoption of high performance residential wood-frame wall systems (Energy 

Guide rating: EGH-83 and 86) that are practical, buildable, durable, energy efficient and affordable.

To achieve these objectives, the project focused on investigating the hygrothermal response of a series of 

thermally enhanced wood-frame walls with higher levels of insulation from that of the National Building 



Paper #114                                                                                                                                                 Page 4 of 14

Code minimum (RSI 3.3 – 4.1) to net-zero energy or net-zero energy ready performance levels (i.e. 

RSI 7.0 – 7.9).  Three consecutive years of field experiments were conducted whereby for each year a set 

of 3 wall assemblies, each of different configuration and thermal resistance, were monitored over a 9-10 

month period starting in the winter months (December). During the monitoring period, sensors within the 

respective wall assemblies permitted determining, temperature (T), relative humidity (RH) and heat flux 

at specific locations in the wall assemblies.  Moisture sensors were also used to determine the presence of 

liquid moisture as might have arisen due to condensation of moisture on the surface of wall components

within the wall assembly. The results of each experimental study period were also used to benchmark 

results from hygrothermal simulation model of the same assemblies. The benchmarked hygrothermal 

model was used to conduct a parametric study in which the risk of condensation in the wall assemblies 

was investigated for four other locations across Canada. The locations were selected as representative of 

the various climate zones as occur in Canada, and to simulate the hygrothermal response of the wall 

assemblies when subjected to conditions of the different climate zones present in Canada. As such and 

over a 3-year period, a set of nine (9) wall assemblies with different types and levels of insulation systems 

were evaluated in respect to their hygrothermal performance.

In this paper, information is provided on construction details for each of the 9 wall assemblies 

investigated, the experimental set-up to assess the hygrothermal response of the walls to local ambient 

conditions in Ottawa, and the hygrothermal simulations that were completed to benchmark the model and 

to undertake the parametric analysis.  Thereafter, selected results are provided for both the experimental 

work and the parametric analysis.  The risk to the formation of condensation in wall assemblies having 

enhanced levels of wall insulation is briefly discussed in light of requirements for achieving net zero 

energy homes across the many different climate zones of Canada.

CONFIGURATION OF HIGHLY INSULATED WALL ASSEMBLIES

A description of the configurations of the nine (9) wall assemblies studied in this project is provided in 

Table 2 that also includes the nominal thermal resistance of each of the walls.  It can be seen that values 

for thermal resistance varied from RSI (m2K/W) 4.8 (Wall 1) to a high of RSI (m2K/W) 7.9 (Wall 6).  

Common wall elements to all assemblies included the exterior cladding (vinyl siding), sheathing 

membrane (spun-bonded polyolefin), and the interior finish (½ in. painted gypsum drywall panel).  All 

other elements varied in relation to the nominal requirements for insulation and interest in evaluating the 

position of highly insulated wall assemblies having novel wood-based wall components.  

The first three walls (W1-W3) were representative of a typical 50 x 150 mm (2 x 6-in.) wood stud frame 

in which was placed RSI 4.2 (m2K/W) │R24 glass-fibre batt insulation and that would be retrofitted to 

achieve a minimum level of thermal insulation for above-grade walls and for a range of EnerGuide 80 

compliance packages.  As such, the base-wall of Wall 1 was overlaid with 25 mm (1-in.) of EPS 

insulation to yield an effective RSI of 4.8 (m2K/W); Wall 2 had 51 mm (2-in.) of XPS insulation overlay 

the base-wall to achieve RSI 6.2 (m2K/W), and; Wall 3 had 76 mm (3-in.) of semi-rigid mineral fibre 

insulation overlay the base-wall to achieve RSI 6.2 (m2K/W).

The second set of 3 walls (W4-W6) had values for thermal insulation, ranging from RSI 6.0 to 7.6 

(m2K/W).  In this instance, W4 was a typical 50 x 150 mm (2 x 6-in.) wood stud frame wall with glass 
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Table 2: Wall Assembly configurations evaluated

RSI │  4.8 [m2K/W]
R-value │27    [hr-ft2 -°F/BTU]

RSI │  6.2 [m2K/W]
R-value │35    [hr-ft2 -°F/BTU]

RSI │  6.2 [m2K/W]
R-value │35    [hr-ft2 -°F/BTU]

RSI │  6.0 [m2K/W]
R-value │34    [hr-ft2 -°F/BTU]

RSI │  7.9 [m2K/W]
R-value │45    [hr-ft2 -°F/BTU]
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fibre batt insulation in the stud cavity to which 51 mm of XPS was added to the inside of the wall (as 

opposed to W2 where the XPS was placed to the outside) to achieve a RSI of 6.0 (m2K/W); Wall W5 was 

a novel use of 50 x 254 mm (2 x 10-in.) wood stud frame in which was placed 50 mm of spray 

polyurethane foam over which was installed glass fibre batt insulation attaining a RSI of 7.9 (m2K/W);  

Wall W6, also a novel design, having a 50 x 305 mm (2 x 12-in.) wood stud frame in which was placed 

several layers of cellulose fibre insulation to obtain a RSI of 7.0 (m2K/W).

The final set of 3 walls had values for thermal insulation, ranging from 5.1 to 7.6 RSI (m2K/W); Wall W7 

and W9 were essentially the same construction, the difference being for Wall 9 in the use of an 11 mm OSB 

wood sheathing panel in lieu of a polyethylene membrane to act as a vapour barrier; in wall W8 wood fibre 

insulation imported from abroad was used and a wood fibre 24 mm “diffusion board”, also imported, was 

used as an exterior sheathing panel.   For wall W8, there was interest by the stakeholders in knowing 

whether wood fibre products of the type used in this wall assembly had merit for use in Canadian homes.

RSI │  7.0 [m2K/W]
R-value │40    [hr-ft2 -°F/BTU]

RSI │  5.1 [m2K/W]
R-value │29    [hr-ft2 -°F/BTU]

RSI │  7.6 [m2K/W]
R-value │43    [hr-ft2 -°F/BTU]

W8 WFI

RSI │  5.1 [m2K/W]
R-value │29    [hr-ft2 -°F/BTU]
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FIELD EXPERIMENTS

These wall specimens were installed in a side-by-side test bay of the NRC-Construction’s Field Exposure 

of Walls test facility (FEWF); they were instrumented with pressure, temperature, relative humidity, and 

moisture sensors in various locations throughout the assembly.

All the specimens were subjected to local climate conditions of Ottawa, Canada and conditions on the 

interior side of the test specimen were nominally maintained at 21°C and 35% RH.

At the start of the experimental evaluation, each wall assembly was subjected to conditions intended to 

increase the overall moisture content of the assembly by exfiltrating air through the wall. Increased 

moisture levels were induced to all specimens by pressurizing the building interior over a period of 3 to 4

weeks, and causing conditioned indoor air to exfiltrate through purposely created 3.5 mm deep slits in the 

interior finish and vapour barrier layers. The slits were then closed and the response of the respective 

specimens was monitored over a specified time period such that drying out of the cavities within the wall 

might be compared to moistening the assembly during the process of air exfiltration.  Based on the results 

obtained for temperature and relative humidity, mould index calculations were completed for specific 

locations in each respective wall assembly considered to be susceptible to mould growth.

Figure 1 NRC’s Field Exposure of Walls Test Facility (FEWF)

Figure 2: Example of test specimen showing instrumentation
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HYGROTHERMAL SIMULATIONS

Model Benchmarking

As it was important to ensure that the results of the research were meaningful in all regions of Canada, the 

analysis was extended through the use of simulation tools to representative cities in the Atlantic, Prairie 

regions, the lower coastal mainland of BC, and in the North of Canada; an advanced hygrothermal 

modeling tool was used to conduct the hygrothermal simulations.  The modeling tool (hygIRC-2D) was 

benchmarked against experimental data obtained from the results of the previously described field 

experiments. The numerical model was used to simulate exfiltration conditions for each wall assembly

and to assess the risk to the formation of condensation in highly insulated wall assemblies. An example 

of the configuration path selected for air movement in the wall assemblies is shown in Figure 3. It should 

be noted that the air leakage path and areas assessed for mould growth differed slightly between wall 

assemblies. However, the overall evaluation method was the same: i.e., specific locations in each wall 

assembly were selected that would be at risk to the formation of condensation.

Region of focus 

Figure 3: Example of wall assembly configuration and wall details to permit benchmarking the numerical model

Parametric Analysis

Once the benchmarking of the modeling tool was completed, it was then used to investigate, given 

specific indoor conditions, the effect of different outdoor conditions, as may be found in the different 

regions of Canada, on the moisture and thermal performance of the wall assemblies. Locations used for 

this analysis were those of: Vancouver, BC, Yellowknife, NT, Edmonton, AB, and St. John’s, NL.

As Constructed As Modeled Label

Vinyl Siding (3mm) Vinyl Siding (3mm) 1

19mm Strapping & air space Airspace (19mm) 2

XPS (25mm) XPS (25mm) 3

Sheathing membrane Spunbonded Olefin (0.15mm) 4

OSB Sheathing (11mm) OSB Sheathing (11mm) 5

Wood Studs (5.5in) Pine (140mm) 6

R24 Glass-fibre insulation 
(Stud cavity insulation)

Low Density Glass Fibre 
(140mm)

7

6 mil poly air/vapour barrier Polyethylene (0.15mm) 8

1/2in –painted drywall Primed Gypsum (12.7mm) 9
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The annual hygrothermal performance of all wall assemblies used in field experiments was evaluated by 

averaging the temperature and moisture content within the “region of focus”, selected as an area in the 

wall assembly which was considered to be at risk to the formation of condensation due to exfiltration air 

from the interior; the region of focus is marked in red in Figure 3.  Wall performance for any given 

climate location was compared by calculating the response of the wall in the region of focus based on the 

average values of temperature and %RH derived from simulation in these areas, and from which the 

performance criteria based on mould growth was calculated; this is described by Hukka and Viitanen [9] 

and Viitanen and Ojanen [10], and the values calculated were referred to as either the: (i) RHT(92) index, 

or; Mould index (M).

FIELD EXPERIMENT AND NUMERICAL SIMULATION RESULTS

Field Experiment Results

Each wall assembly was evaluated in the experiment in terms of hygrothermal performance by the 

process of increasing the moisture content of the wall assembly.  This was achieved by causing the 

exfiltration of interior and moisture laden air into the wall stud cavity through a purposefully made slit in 

the interior sheathing panel and vapour barrier. After this stage of exfiltration (ca. 3-4 weeks), the 

exfiltration process was ended and the wall sealed from the interior. Relative humidity and temperature 

were then monitored at critical areas in the wall assembly, considered to be at high risk to the formation 

of condensation and correspondingly at risk to the formation of mould or wood decay. The temperature 

and relative humidity results were monitored over time to determine the capacity of the wall to dissipate 

any moisture that had accumulated in the stud cavity over the exfiltration stage. The mould growth index 

was calculated in those regions in the wall based on the results of date acquired over this time period. 

The mould growth rate and its dissipation over time as calculated form the experiment results is shown

for walls W4 to W9. Values for mould growth for walls W1 to W3 were not available as the facility was 

unable to create condensation in the stud cavity during this initial set of experiments. However, it should 

be noted that at no time over the course of the experiment for Walls W1 to W3 was condensation 

observed to occur in the wall assemblies, thus indicating that for Ottawa, these wall assemblies performed 

adequately under the imposed the environmental conditions to which they were subjected, regardless of 

the rating for their thermal insulation.

An analysis of all assemblies tested, with smaller differences in drying out rate between assemblies, 

confirmed the following overall trend: under common in–service conditions of Ottawa all assemblies 

performed well and the condensate that had accumulated over cold periods was readily able to dissipate

during the subsequent warmer periods. Temperature runs and dew point calculations in these critical 

locations and for the entire range of R-values encompassed in these series of wall assemblies were very 

similar.  The moisture accumulated over the initial set-up period dissipated at a greater rate for specimens 

having fibre-based thermal insulation (cellulose, wood and mineral fibre) and at a more moderate rate for 

wall incorporating XPS panels.  The drying out time for the assembly with the EPS insulation was the 

longest. However, in each case the moisture dissipated over time, to which one would conclude that for 

the Ottawa conditions to which the walls were subjected, the wall assemblies were not susceptible to 

deterioration as might arise from the presence of condensation regardless of R-value of the wall assembly.
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Table 3: Mold growth index for experiment results, Walls 4 - 9

Wall 4 Wall 5 Wall 6

Wall 7 Wall 8 Wall 9
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Numerical Simulation Results

(1) Model benchmark

Data retrieved from a local NRC weather station was used to generate the climate file for benchmarking the 

numerical simulation. Given the source data, results of simulated temperatures within assemblies were 

entirely independent from field data as measured by temperatures sensors. The experimental and numerical 

model results were compared using the temperature at the location of focus in the wall assembly (e.g. below 

slit in OSB panel); an example of the temperature profile derived from the experiment and simulation is 

given in Figure 4.

Figure 4: Example of a comparison between results obtained from simulation and that acquired from the experimental 

(2) Parametric analysis

Subsequent to the comparison between experimental and numerical simulation results, the model was 

then used to determine the relative performance of wall assemblies when subjected to the climate of 

different locations across Canada, specifically: Ottawa, O.N., Vancouver B.C., Yellowknife, N.W.T., 

Edmonton, A.B., and St. John’s, N.L.  The performance of the wall assemblies was determined by using 

the average temperature and average relative humidity of the “region of focus” for each wall assembly to 

calculate the mold index value.  The results for the average mould index and the maximum mould index 

determined for each wall assembly in each climate location are presented in Figure 5 Error! Reference 
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source not found.and Figure 6.

Figure 5: Parametric study results showing values for average mold index for all wall assemblies subjected to 
selected climate locations in Canada

Overall the results for mould index indicate that there is very little correlation between the risk to 

deterioration of the wall assembly, and the thermal resistance for that wall assembly. The results indicate 

that hygrothermal performance is generally more dependent on the selection of materials in the wall 

assembly and the ability of these materials to dry out given events in which condensation occur. In 

instances where air exfiltration from the interior and through the assembly is the main contributor to 

moisture ingress into the wall cavity, those wall assemblies having materials with a higher water vapour 

Figure 6: Parametric study results showing values for maximum mold index for all wall assemblies subjected to 
selected climate locations in Canada



Paper #114                                                                                                                                                 Page 13 of 14

permeance are better at resisting the formation of mould growth than those with a comparatively lower 

water vapour permeance.

CONCLUSIONS

Increased energy efficiency code requirements result in utilizing wall assemblies with increased 

thicknesses of thermal insulation. This trend helps to achieve Canada’s net-zero energy ready buildings 

plan by 2030, but it also creates concerns regarding durability of such wall assemblies due to possible 

moisture accumulation problems leading to premature structure deterioration. High R values wall 

assemblies with foam thermal insulations (EPS, XPS) as well as fibre insulations (cellulose, wood, 

mineral, glass) were examined at the NRC; experimentally for Ottawa, ON climatic conditions and 

numerically for other Canadian climatic conditions (Ottawa, O.N., Vancouver B.C., Yellowknife, 

N.W.T., Edmonton, A.B., and St. John’s, N.L.).

Both, experimental and simulation results confirmed that highly insulated assemblies are capable of 

adequate thermal and hygrothermal performance ensuring buildings’ expected longevity.

It can be summarized that mineral fiber based thermal insulation performs better in dry climates 

(Edmonton, Yellowknife) whereas XPS foam insulation outperforms if used in walls located in humid 

climates (Vancouver, St. John’s).

It is perhaps self-evident to note that acceptable building performance is heavily dependent on the quality 

of workmanship. Even the best designed wall assembly having high quality materials will nonetheless 

fail prematurely if any given vapour or air barrier layer is not properly installed (continuous) and not 

adequately sealed. It is therefore prudent to establish a quality assurance protocol during construction to 

help prevent the occurrence of defective installation practices.

Simplified calculations of energy consumption as compared to energy generation in small homes helped 

confirmed that above ground wall assemblies having thermal insulation values ranging between R35 to 

R50 are capable of achieving a net-zero energy status for certain locations in Canada.
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