
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the International Conference on Software Engineering 2008 (ICSE
2008), May 10-18, 2008, Leipzig, Germany, 2008

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=6bda32ff-748d-4525-8195-f3a0d24354a6

https://publications-cnrc.canada.ca/fra/voir/objet/?id=6bda32ff-748d-4525-8195-f3a0d24354a6

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

TODO or To Bug: Exploring How Task Annotations Play a Role in the

Work Practices of Software Developers
Storey, M.A.; Ryall, J.; Bull, I.; Myers, D.; Singer, Janice

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

TODO or To Bug: Exploring How Task

Annotations Play a Role in the Work

Practices of Software Developers *

Storey, M.A., Ryall, J., Bull, I., Myers, D., Singer, J.
May 2008

* published in the Proceedings of the International Conference on Software
Engineering 2008 (ICSE 2008). Leipzig, Germany. May 10-18, 2008. NRC
50378.

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

TODO or To Bug: Exploring How Task Annotations Play
a Role in the Work Practices of Software Developers

Margaret-Anne Storey1 Jody Ryall1 R. Ian Bull1 Del Myers1 Janice Singer2

University of Victoria
1

Victoria, BC, Canada
National Research Council

2

Ottawa, ON, Canada

ABSTRACT

Software development is a highly collaborative activity that
requires teams of developers to continually manage and
coordinate their programming tasks. In this paper, we describe an
empirical study that explored how task annotations embedded
within the source code play a role in how software developers
manage personal and team tasks. We present findings gathered by
combining results from a survey of professional software
developers, an analysis of code from open source projects, and
interviews with software developers. Our findings help us
describe how task annotations can be used to support a variety of
activities fundamental to articulation work within software
development. We describe how task management is negotiated
between the more formal issue tracking systems and the informal
annotations that programmers write within their source code. We
report that annotations have different meanings and are dependent
on individual, team and community use. We also present a
number of issues related to managing annotations, which may
have negative implications for maintenance. We conclude with
insights into how these findings could be used to improve tool
support and software process.

Categories and Subject Descriptors

D.2.3 [Software engineering]: Coding tools and techniques.

General Terms

Documentation, Human Factors.

Keywords

Task annotations, work practices, source code comments.

1. INTRODUCTION
Software development is a highly collaborative activity that
requires teams of developers to continually manage and
coordinate their programming tasks. The management of tasks
and subtasks is an important aspect of what Computer Supported
Cooperative Work (CSCW) researchers call “Articulation Work”
[20]. As Bannon and Schmidt note: “in ‘real world’ cooperative
work settings… articulation work becomes extremely complex
and demanding” [1]. Consequently, people develop techniques
and protocols for reducing the overhead cost and complexity of
articulation work.

Developers use a variety of tools to support collaborative task
management in software projects. Popular tools include wikis,
configuration management systems, bug tracking and issue
tracking systems. Although much effort has been expended
developing these tools both by industry and the research
community, there is surprisingly little known about the work
practices these tools support (notable exceptions include [2] and
[6]).

In addition to tools that provide formal coordination mechanisms
within teams, software developers use informal devices and
develop processes to support their task management activities. In
particular, they use annotations to manage their tasks. The
prevalence of this activity has resulted in tool support within
integrated development environments (IDEs) for navigating these
customized annotations.

Through our research with software developers we have noted a
gap between the more formal task management mechanisms
supported by tools and the informal annotations that developers
place in their source code. The long term goal of our research is to
develop tool support that bridges this gap. However, we have
come to realize that there is a lack of knowledge on how task
annotations, embedded as comments in the program source code,
play a role in the work practices of software developers. Without
such an understanding, researchers designing tool support for this
kind of articulation work will not be able to interpret and
understand the effects a new tool may have on how programmers
manage tasks.

To address this lack of knowledge we conducted an empirical
study to explore the work practices of software developers
surrounding task annotations. Specifically we considered task
annotations embedded within source code comments. We did not
expect to find a common theory that describes how programmers
use task annotations, but instead were interested in the varied
ways that this commenting feature has been appropriated by
software developers to manage their personal work and coordinate
with other developers.

We followed a multi-phase mixed methods approach in our
research. In the first phase, we surveyed developers using the
popular Eclipse IDE to find out whether they author task
annotations, and if they do, what were the types and uses of these
annotations. As the foundation for understanding how task
annotations are used in industrial collaborative projects, we also
extracted task annotations from ten open source projects. The key
result from this first phase is that developers adopt very different
tools and protocols both between and within teams for managing
their tasks.

In the second phase, we narrowed our view and conducted
contextual interviews with developers on three open source
projects. We augmented the data collected from the interviews

Copyright 2008 Association for Computing Machinery. ACM acknow-
ledges that this contribution was co-authored by an affiliate of the National
Research Council of Canada (NRC). As such, the Crown in Right of
Canada retains an equal interest in the copyright. Reprint requests should
be forwarded to ACM, and reprints must include clear attribution to ACM
and NRC.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

with a deeper and targeted analysis of multiple versions of
developer comments extracted from the projects’ source code
repositories. An analysis of this qualitative and quantitative data
revealed several themes that have implications for tool design as
well as insights into task management processes followed by
developers. Before describing our empirical study and our
findings, we review related work.

2. BACKGROUND
The focus of the empirical study reported in this paper is to
explore how annotations embedded within source code are used
for managing tasks. To our knowledge, with the exception of
Ying’s work [25] mentioned below, there is no published
academic research on this topic. Instead, we review two strands of
related research: 1) empirical work that investigates how
comments are used and managed in software engineering, and 2)
recent research on tool support for task management.

2.1 The Use of Comments in Source Code
Comments are a generic type of task annotation, where
programmers insert documentation directly into source code.
Researchers from several communities have studied comments
and how to manage them.

Within the programming language community, the role of
comments has been explored. With a few exceptions, such as
Java’s @javadoc construct, languages typically treat comments as
white space. Authors have questioned this treatment, arguing for a
more cogent use of comments in programming language design
[7][9]. Almost twenty years ago, Kaebling [9] challenged
programming language designers, “surely there is a better way to
specify location-dependent information than scattering undirected
one-dimensional strings throughout a file.” This challenge has yet
to be addressed, although some researchers have looked at tool
support or ways to treat source code as a structured document
(e.g., [11][16]).

In the software engineering community, several researchers have
conducted experiments to understand how source code comments
are used. Most of these studies looked at how well student
subjects perform when programs are commented versus not-
commented [22][23][24]. In general, students performed better
when code was commented. Although in one study, students only
performed better when low-level, as opposed to high-level,
commenting was present [14]. In another experiment, Marin [12]
found that when programmers were asked to add code to an
existing program, they were more likely to comment newly
inserted code if the previous code was heavily commented,
suggesting that there are (perhaps implicit) social factors relating
to commenting. In a survey of professional programmers [4], the
authors found that comments were the second most used
documentary artifact when understanding source code, with the
code itself being the primary artifact.

A small amount of research within the mining software
repositories (MSR) community has focused on comments in
source code. Jiang and Hassan [8] studied the evolution of
comments in PostgreSQL. They found that, with the exception of
some fluctuation early in development cycles, the amount of
comments remains constant. This finding was mirrored in a study
by Fluri et al. [5]. In two of the three open source projects they
looked at, commenting was relatively constant over time.
However, there was variability in that one project increased the
ratio of commented to non-commented lines of code over time.

These authors also found great variability in the other two
attributes they looked at: what is commented, and whether
comments co-evolve with the source code, where the projects
acted in almost contradictory ways. Tan et al. [21] recently
showed that out-of-date comments may help reveal the locations
of bugs.

Little research has been done to understand how task annotations
embedded within source code play a role in software
development. Ying et al. [25] is one exception. These authors
conducted a preliminary study where they analyzed the task
annotations from an Eclipse open source project. Based on their
analysis, they developed a usage taxonomy for task comments.
Our work expands upon their research, analyzing multiple
projects and interviewing developers within open source projects
to gain insights into actual developer processes.

2.2 Modern Tool Support for Task

Management
Modern IDEs provide various approaches for managing
developers’ tasks. Tools such as Eclipse and Visual Studio
support bookmarks and navigation of task annotations embedded
in comments such as TODO, FIXME, and XXX. Eclipse also
allows programmers to define new task annotations terms and
view these in a separate Task View, facilitating navigation and
browsing.

Issue tracking systems, such as Bugzilla (www.bugzilla.org) and
Jira (www.atlassian.com), provide more structured support for
task management. Task management activities and storage take
place outside the source code, but contain links or references to
the code. Task activities are visible to anyone on the project with
access to the tracking system. When considering which issues
programmers enter in these systems, it is not always clear what
developers consider a bug or issue worthy of input, nor how bugs
are contributed by internal project developers versus community
members.

Eclipse is a popular platform for tool research and several task
management plug-ins have been developed for it. The Mylyn
(formerly Mylar) project combines a degree of interest model with
task management facilities [10]. Mylyn also allows linking of
tasks to issue tracking systems. Mylyn has received wide
adoption, although its features do not suit all work practices. Even
with Mylyn, traditional task annotations are inserted within the
code, suggesting there is still a need for these types of
annotations.

There has also been recognition of the importance of tool support
for collaborative tasks. The Jazz project (www.jazz.net) has
integrated its work item tracking system with the code repository.
Built on top of Eclipse, Jazz also supports task annotations, but
there is no integration of these annotations with work items.

Other tools such as TagSEA [19] and ConcernMapper [15], while
not explicitly designed to manage tasks, can aid in the
management and navigation of information structures.
ConcernMapper allows the developer to link software artifacts to
a concern, for future navigation, without changing the comments
themselves. TagSEA allows developers to tag related code by
adding keywords within comments (similar to, but less structured
than task annotations). Our research with TagSEA indicated that
early adopters are using it to support task management [18]. It is
this observation that prompted the research reported here.

To further develop these tools, we need to better understand how
developers use comments. The research on commenting to date
suggests that code comments influence comprehension and that
there are potentially cultural aspects to how comments are added.
It may also be possible to learn about the software development
process by examining archival data from a project’s memory
stored in a repository. We designed a study to explore these
findings, with specific consideration for how comment
annotations impact task management. The design of our study is
described next.

3. RESEARCH DESIGN
We address our research goal of revealing how software
developers use task annotations by investigating the following
research questions:

1. Which annotations do developers create to support their
programming tasks?

2. Why do developers create these annotations?
3. How do these annotations support developers’ informal and

formal work practices?
4. Are task annotations kept up-to-date or are they forgotten as

the code evolves?
5. What processes do the developers use for managing

annotations?
Our research followed a mixed methods design [3] with two
distinct phases, summarized in Table 1. The first phase was
predominantly an exploratory phase with collection of
quantitative data. We conducted a survey with professional
developers that use the Eclipse IDE. The survey was designed to
provide insights on questions 1-3. During this first phase we also
extracted task annotations embedded within code comments from
ten open source projects within the Eclipse and Apache domains.
The high level analysis of this data provided insights on questions
1 and 4.

In the second phase, we moved from an exploratory mode of
research to an explanatory one, involving the analysis of
qualitative and some quantitative data. We conducted interviews
with developers from three open source development projects to
obtain a more detailed understanding of why developers create
such annotations and how they are used in their personal and team
work practices. The interviews provided detailed narratives that
contribute to answering research questions 1-5. The interview data
was augmented by extracting and analyzing multiple versions of
archival data from the projects, providing further information on
questions 1 and 4.

Table 1. A mixed methods research design

Research Questions 1 2 3 4 5

Phase 1 (exploratory):

 Survey X X X

 Analysis of annotations
 from ten projects

X X

Phase 2 (explanatory):

 Interviews X X X X X

 Multiple version comment
 analysis from three projects

X X

4. DATA GATHERING AND RESULTS
In this section we describe the data collected and results from the
two phases of our research methodology. Sections 4.1 and 4.2

describe Phase 1, and Sections 4.3 and 4.4 describe Phase 2. We
used the popular Eclipse IDE for all data collection because it has
built-in support for task annotations. Eclipse task annotations are
associated with a specific set of keyword tags (TODO, XXX, and
FIXME) that can be customized by the developers. For clearer
presentation of results and findings, we refer to Eclipse task tag
annotation as “TODOs” in the next two sections.

4.1 Survey
We prepared an online survey that asked software developers how
they comment their code, recruiting participants from a high
traffic Eclipse community blogging site (planeteclipse.org). We
collected 81 responses between April 4 and May 13, 2007. The
goal of the survey was to provide insights on research questions 1-
3. The survey asked 15 multiple choice and open-ended questions.

The results confirmed that many developers make use of task
annotations, but in varying ways. The survey asked questions on
keyword usage within a team, the use of bookmarks, and how
developers navigate to annotations. A selection of results is
presented below (see tagsea.sourceforge.net/research.html for
further details).

Survey respondents reported working on proprietary (37%) and
open source projects (14%), with 49% of respondents saying they
worked on both. Our analysis found no noticeable difference in
results, based either on this measure or the size of the team. Table
2 shows whether teams agree on a common set of keywords (note
that only 65 respondents worked on a team).

Table 2. When collaborating on a team has your team agreed

to use the same keywords?

 # of respondents
(N=65)

I use my own keywords 11 (17%)

I use a mixture of my own keywords
and my team’s keywords

14 (22%)

My team has an informal agreement to
use the same keywords

32 (49%)

My team has a formal agreement (or
coding practice) to use same keywords

 8 (12%)

A recurring issue that developers faced was whether to store their
annotations in the code or privately in their workspace. Eclipse
provides Bookmarks as an alternative mechanism for saving code
locations. Bookmarks are not stored in the code, but instead reside
in the user’s workspace. In the survey, we were interested in
finding out if developers use this feature. The answers to this
question are shown in Table 3.

Table 3. Do you use Eclipse bookmarks in your source code?

of respondents

(N=80)

Never 43 (54%)

Rarely 24 (30%)

Sometimes 12 (15%)

Often 1 (1%)

We were also curious about the vocabulary terms the Eclipse
developers tended to use for task annotations. The results from
this question are shown in Table 4.

Table 4. Which of the following Eclipse task tags do you use?

(Select all that apply)

 # of respondents
(N=79)

TODO 77 (98%)

FIXME 34 (43%)

XXX 12 (15%)

OTHER 11 (14%)

HACK 6 (8%)

We noted from examining source code that many developers add
details to the TODOs they created, such as their name, date and
bug ID. We asked about this activity in the survey and the results
are shown in Table 5.

Table 5. Do you add any additional details to your comments?

If so, what details do you add? (Select all that apply.)

of respondents

(N=70)
Reference to another class, method,
plug-in, or module

45 (64%)

My name or initials 36 (51%)

Bug id 31 (44%)

URL 21 (30%)

Date 13 (19%)

None of the above (I do not add
additional details)

 9 (13%)

Memorable keywords 7 (10%)

4.2 Task Annotation Extraction
As a preliminary step in our exploration of how (or even whether)
task annotations are used, we extracted task annotations from ten
open source Eclipse projects. The versions of the code analyzed
were extracted from the CVS repository in July 2007 and updated
in September 2007. We recognize that the presence or absence of
tasks could be highly dependent on the time in the development
cycle of each project, and limit the use of this data to help us
understand if TODOs are used and how prevalent they are in
selected projects. Some of the results from this extraction are
presented in Table 6.

Table 6. Task tag usage in Java files of selected projects

lines of
code todo fixme xxx revisit total

JDT.UI 693,683 417 15 83 0 515

Xerces-J 246,122 30 1 25 455 511

MYLYN 200,325 440 3 43 0 486

SWT 521,603 265 48 0 0 313

BIRT.CHART 324,826 167 2 0 0 169

PDE.UI 193,945 89 3 1 0 93

EQUINOX 73,403 75 4 2 0 81

EMF 670,933 23 0 0 4 27

JFACE 93,835 11 0 6 1 18

UI.FORMS 23,996 4 0 0 0 4

Corresponding with the results from our survey, we saw that the
TODO term made up a clear majority of the task annotations
found in the code. The other keywords that are configured by

default in Eclipse (FIXME and XXX) are used significantly less.
Custom tags, such as REVISIT, INTRO, and
CONTEXTLAUNCHING were found in some of the projects.
Initials were also commonly used to mark locations in the code.
This data is interesting, as it shows that these kinds of annotations
appear in a range of software projects. In displaying this data, we
realize that there is a possible effect caused by the size of the
team, the stage in the project’s lifetime, and other processes.

Another factor that may influence the presence of tasks in the
source code is auto-generation facilities in an IDE. We analyzed
the task annotations to determine how many of these auto-
generated TODOs get committed to the source control system. In
seven of the ten projects, these annotations were partially or
completely removed. Auto-generated annotations exclusively use
the TODO keyword, which may also be a reason for their
prevalence over other keywords.

Table 7. Percent of task annotations that are auto-generated

Project Auto-generated

JDT.UI 78 of 515 (15%)

Xerces-J 1 of 511 (<1%)

MYLYN 46 of 486 (10%)

SWT 0 of 313 (0%)

BIRT.CHART 92 of 169 (54%)

PDE.UI 1 of 93 (1%)

EQUINOX 0 of 81 (0%)

EMF 0 of 27 (0%)

JFACE 0 of 18 (0%)

UI.FORMS 0 of 4 (0%)

4.3 Developer Interviews
We interviewed four software developers from three Eclipse
projects. To preserve the anonymity of the developers
interviewed, we refer to these projects using fictitious names:
MiddleWare, Backend, and UserInterface. These projects were
selected using convenience sampling [3], as they were open
source Eclipse projects and access was available to their
developers. Although the developers contributed to open source
projects, they did so as part of their professional work positions.
All three projects have been developed in the open for at least four
years and each has had at least one million downloads.

The interviewer was somewhat familiar with the three projects
and had a list of the TODOs present in the source code of each of
the projects, which were referred to during the interviews. Two
members of the MiddleWare project were interviewed together.
Interviews lasted from 30 minutes to one hour. Audio recordings
of these interviews were transcribed to facilitate later analysis.

Our analysis approach involved three investigators individually
coding each of the interviews, and then grouping and regrouping
codes to reveal themes. The investigators then agreed on a set of
themes that encompassed their shared observations. The themes
were checked with the interviewer to verify that the transcription
and interpretation we arrived at resonated with the interviewer.

In the following subsections, we present a brief overview of each
project and the key work practices of the developers related to
their use of task annotations. Additional pertinent insights
gathered from the interviews are described in Section 5.

4.3.1 Middleware Interview
The middleware project provides an open source framework and
API. Clients of the framework subclass existing features to adapt
and customize the framework to their needs. There are very few
internal packages that are not accessible by the user community.
Because of this, the code is often examined by its users. The
developers of this project make heavy use of Bugzilla to track
feature requests, bugs and other tasks. The developers have a strict
policy that each code change must be directly linked to a Bugzilla
entry and each commit comment must follow a specified syntax.
Source control is managed through CVS and all changes are
reviewed using the Eclipse compare tools. While the project is
split into several components and each developer is charged with
maintaining a specific part of the code, all three developers are
well versed in the entire project.

The two developers interviewed (referred to as Middleware Dev1
and Middleware Dev2) rarely make use of TODOs or other task
annotations, but discussed adding initials or using bookmarks as a
way of indicating tasks to be completed. On occasion, a developer
who was not interviewed by us, included their initials as a way of
“signing” a comment. Bug numbers were not put in the code
because developers saw this as “cluttering the code”.

4.3.2 Backend Interview
The Backend project is also an open source API; however, sub-
classing and extending existing functionality is not as common as
in the Middleware project. Users can simply interact with the
published interface to make use of the features provided by the
toolkit. This project also uses an issue tracking system, but it is
not a requirement that all code changes be linked to an issue
number. There is no formal syntax used in the commit comments
and most comments are high level descriptions of the changes.
No new features are currently being added to the project and code
changes are limited to bug fixes and maintenance.

One developer on this project was interviewed (Backend Dev1)
and he indicated that the developers on this project made use of
the keyword REVISIT to indicate that something may need to be
addressed in the future. Several reasons were given for marking
with this keyword including: 1) a suboptimal solution had been
implemented, 2) an incomplete solution had been implemented,
and 3) no solution had been implemented and it is uncertain if a
solution is needed. The developer indicated that the REVISIT
keyword is useful in the short term, but if the code is not reviewed
promptly it will remain indefinitely. While the usefulness of a
REVISIT tag is relatively short lived, the developer pointed out
that use of this keyword can be helpful in the future when trying
to understand why a piece of code does not work as expected.

4.3.3 UserInterface Interview
The UserInterface project provides a set of tools for developers.
Unless users are actively contributing new features to the code,
there are very few reasons to examine the source. There are seven
committers, three of whom contribute on a daily basis. The project
uses CVS for source control and Bugzilla for issue tracking. There
is a policy that each code check-in must contribute to a Bugzilla
entry, however, the developers admit to “loosely” grouping check-
ins. That is, a commit may include a fix for more than one bug.

The developer we interviewed (UserInterface Dev1) from this
project makes heavy use of task annotations for his daily work.
The developer added his initials and other metadata to the
TODOs. The metadata helped him filter TODOs in the Eclipse

Task View. In this project, TODOs are used both for subtasks -
things that he must complete for a particular issue - and future
tasks - issues that may require work in the future. The developer
felt that placing a TODO in the code made the task less of a
priority than opening a bug, but still provided some context if the
problem was to be addressed in the future. TODOs that are used
for current tasks are reviewed regularly, although no formal
review process exists. While many of the TODOs in the code are
now irrelevant, the developer stated that he has more respect for
others who indicate incomplete solutions through a TODO over
those who simply commit an incomplete solution without reason.

4.4 Comment Analysis
We extracted versions of the code at weekly intervals, and
grouped the extractions into monthly increments, over a three year
period to determine changes in the task annotations over time. To
normalize these results, we also determined the number of lines of
code (including code, comments and white space) in each of these
projects at each time interval.

For both the Middleware and UserInterface projects, where new
features were still being added, the ratio of task annotations to
lines of code increased over time. Whereas, with the Backend
project, this ratio declined, albeit very slowly. An interesting spike
in task usage occurred in the UserInterface project in August
2006, with the arrival of a new developer (UserInterface Dev1).
Previously the number of task annotations had been relatively
stable. From our examination of this small set of projects, we can
see that a single developer can have a large impact on the number
of tasks present in the code, and that developers can have
significantly different processes involving tasks.

We also analyzed all three projects looking at how long
annotations remained in the code. Figure 1 shows for the
UserInterface and Middleware projects, that the annotations that
were removed tended to be removed soon after being added. For
example, less than 15% of all annotations that we studied in the
UserInterface project had a lifespan longer than one month. Given
that the Backend project was not adding new features, insufficient
lifespan information was available during this time frame to see a
trend.

Figure 1. Life Expectancy of Annotations

5. FINDINGS
A number of salient themes emerged from our integrated analysis
of the interviews, comment extraction from multiple versions of
the three projects, the survey, and task annotation extraction from
ten projects. We discuss these themes and link them to the data
collected during the two phases of our study as well as to the

research questions. The themes are categorized within four
groups: 1) task creation process; 2) TODO or to bug; 3) awareness
- self and community; and 4) annotation management.

5.1 Task Creation Process
Our first two research questions ask if developers use task
annotations, which ones they use, and why they use them.
Seventy-nine of the 81 survey respondents indicated they wrote
annotations in their code comments. Of the developers
interviewed all but one used TODOs, and one developer used
custom source code comments for the same purpose. The
following themes relate to the task creation process.

5.1.1 TODOs Support Articulation Work
Articulation work consists of all activities that are needed to
coordinate a particular task, manage subtasks, recover from errors
and assemble resources [1]. From our analysis of the open ended
survey questions and the interviews, we identified several kinds of
articulation work that are supported by task annotations. We give
examples of these here, drawing primarily from the interviews.

Subtasks: UserInterface Dev1 reported using TODOs for
subtasks that were part of a larger task, “... I like to break it down
into tasks, and I start with the high level first. And as I’m going
through I figure out what I need to do first and then anything that
hasn’t been implemented I put a TODO, TODO, TODO.”

Short term tasks: Middleware Dev2 used TODOs for tasks that
he expected to address in “the very, very short future”.

Problem indicator: Several of the interviewed developers
mentioned leaving TODOs to communicate to team members that
something was wrong and that they were aware of the issue.

Edge case: Backend Dev1 and UserInterface Dev1 used TODOs
for edge cases. Backend Dev1 said: “I put them in there when
there’s some piece of code that I know is going to take me a while
to write. Usually like some edge case: I don’t feel like writing it
right now and maybe it doesn’t matter today…”

Multi-tasking: UserInterface Dev1, reported using TODOs to
avoid switching tasks and interrupting his current task: “You’re
so focused on the task at hand, you don’t want to... divert your
focus. So you say okay, you drop a TODO.”

Deferring low priority tasks: Developers talked about using
TODOs for possible future low priority tasks. As UserInterface
Dev1 said: “But, a lot of it is like, re-evaluate this, consider
refactoring this, should I merge it with this, things like that.
Sometimes they’re questions and they’re not exactly, obviously
‘TODO investigate’, or ‘TODO should I do this’. And a lot of the
ones I leave behind are those type of comments, so if I have time
later on I’ll come back and revisit it, but it never, you never have
time [laughs]”.

5.1.2 TODOs are Preferred Over Bookmarks
In addition to the TODO feature in Eclipse, the programmer can
bookmark a location in their code. As mentioned before,
bookmarks do not change the code, and they cannot be shared
because they reside in the user’s workspace. Because we were
interested in bookmark usage for managing work practices, we
asked about bookmark usage in both the survey and interviews.
Eighty-four percent of surveyed programmers either never or
rarely use bookmarks (see Table 3). UserInterface Dev1 reported
using TODOs rather than bookmarks because bookmarks were

lost during code refactoring, but not so with TODOs because they
moved with the code.

5.1.3 Vocabulary Meaning is Idiosyncratic
From our survey and the initial search through ten projects, we
noticed that developers used a variety of keywords. TODO had
the highest frequency of use, with HACK, XXX, FIXME and
REVISIT being significantly less common. We asked developers
in the interviews what the difference in meaning is between these
keywords. It would seem that the meaning they associate with
these words is based on informal conventions they have
individually assumed or informally agreed on within their teams.
For Backend and UserInterface, TODO and FIXME meant the
same thing. But, UserInterface Dev1 admitted that when he saw
other people’s FIXMEs he interpreted them differently,
recognizing that other members in his team attached different
meanings to the same terms. Backend Dev1 noted that a REVISIT
was a much stronger indication than a TODO that the annotated
task should be revisited.

5.1.4 Metadata is Added to TODOs
Not surprisingly, descriptive comments were added to most task
annotations that we viewed in the task and comment extractions.
In addition, developers often added their initials to a task. Three
of the four interviewed developers indicated that they added
initials to facilitate identification and navigation to their
comments. Middleware Dev1 mentioned that he removed them
before checking in his code. But another developer on the same
project left them there to indicate an issue that required further
consideration.

UserInterface Dev1 also added “an acronym that represents the
work item I’m working on at the given point in time”. For
example, he might insert FE for File Editor1. He also associated a
priority with the task annotation, e.g. LOW for low priority. Two
of the interviewed developers also mentioned occasionally adding
a bug number to their TODOs. But UserInterface mentioned that
he no longer did this because hotspots in the code tended to
accumulate many comments with bug numbers. We also saw
evidence of developers adding bug numbers to their task
annotations in the archival data, with five of the ten open source
projects containing bug numbers in the current version examined.

While our survey and interview data indicate that some
developers add date metadata to their comments, we found no
evidence that developers added this metadata to the task
annotations. Date metadata was most commonly found in the
comment at the top of each file. It is also possible that the date
information was removed before a commit because it may have
been used for a short term task.

With respect to team usage, Backend Dev1 mentioned that other
members in the team also put in their ID’s, but “some people just
put their initials and I’m not even sure whose initials they are
sometimes”.

5.2 TODO or To Bug
Programmers often manage team tasks through an issue or bug
tracking facility. Our third research question explores how task
annotations fit within the work practices surrounding the issue or

1 The actual task and acronym have been changed to preserve the

identity of the interviewee.

bug tracking systems. The following themes provide insights on
this question.

5.2.1 Project Maturity Influences Number of TODOs
From our analysis of multiple versions of the three projects (as
described in Section 4.4), we saw that the number of TODOs
stabilized as the projects mature. This finding also emerged in the
interviews. Middleware Dev1 commented on the fact that they
were more likely to open bugs now than write TODOs because
the project was more stable. Bugs are more visible than TODOs
and appear to be more appropriate when a project has been
released and is in general use.

5.2.2 Granularity of Task Affects TODO Creation
We found that a decision to create a task annotation or open a bug
depended on the size and scope of the task. For larger items, the
Backend team created bug reports in their issue tracking system,
while smaller items were created as TODOs. But one of the
developers noted “it’s... very subjective on what I choose to open
up [as an issue] compared to when I just put REVISITs in the
code or not”. Similarly, for UserInterface, smaller sub-tasks of a
bug report were created as TODOs. In Middleware, all work was
driven by bug reports, and any TODOs created were cleaned up
before the code was submitted to the repository. TODOs were
created for edge cases that were part of a larger task. Two of the
interviewed developers also discussed not wishing to interrupt the
flow of implementing the majority of the functionality before
attending to the edge case. The TODO was put there as a
reminder.

5.2.3 Cost/Benefit Analysis and TODO creation
Developers discussed the costs and benefits of creating a bug over
a “quick TODO”. For tasks that could be fulfilled quickly, the
developers stated that there was little point in opening a bug or
work item report. There were also concerns with the overhead
associated with formalizing a task (emails sent to colleagues being
one of them). One developer said that his TODOs were for very
small tasks: “But I mean small… I don’t mean a five line change.
A five line change might have huge implications in the
behaviour”. UserInterface Dev1 mentioned that because his
project was widely used in other projects, he sometimes left a
TODO alone because “if there's a problem and somebody comes
across it, they have no qualms about opening a bug”.

5.3 Awareness, Self and Community
This next theme addresses the third research question: awareness,
self and community. We found that the use of TODOs varied
according to whether they were for personal, shared, or
community use. This brought issues of ownership and privacy into
play, as well as highlighting difficulties in communicating and
interacting with the community.

5.3.1 TODOs Used for Self, Team and Community
The survey indicated that many groups shared an informal process
for shared vocabulary use (49%) and that some (12%) also had a
formal mechanism in place. The three teams we interviewed either
used no process or a very informal one. Within the Middleware
team, the interviewed developers indicated that they never altered
the annotations written by others, and also assumed that other
developers would not change their TODOs. There appears to be a
sense of ownership around TODOs, much as there is with source
code in many team projects.

5.3.2 TODOs Seldom Used for Direct

Communication
Ying et al. [25] identified in their research that source code
comments could often be attributed to communication between
developers. While we found some instances of communication,
sometimes what appeared to be communication was not. For
example, in the UserInterface project, we identified locations
where developers asked questions in their comments using the
pronoun “we”. However, in this case, the developer writing these
comments said that when he wrote the word “we”, he really meant
the “royal” we. This programmer and others we interviewed
preferred to send questions by email or to read the code
themselves if they had a question. For tasks that required
community involvement they would open a bug. Creating a bug
report builds awareness of the work to be done and acknowledges
where problems exist in the code base. Bug creation is also seen
as a facility for building community. TODOs were not seen this
way and in several cases the interviewed developers indicated that
some of the conventions used in these comments would not be
understood by other team members (e.g. feature acronyms).
However, developers did mention looking at TODOs if one was
nearby when they were fixing a bug.

5.3.3 Bounded Transparency is Important
The term bounded transparency is used in CSCW research
literature to reflect that sometimes transparency is needed in
information systems, but at other times the same information may
need to be hidden due to privacy concerns [1]. When information
should be revealed or hidden is highly dependent on a variety of
factors. We detected some tensions when we queried one
developer on the visibility of his task annotations in the code. On
the one hand he wanted to communicate that his work was in
progress to fellow team mates, but on the other hand he did not
necessarily want members in the community (as it was open
source) to know he had not finished implementing all of the
required functionality. He noted: “And the other thing, the TODO
is a little bit too prominent when you’re working on a feature.
Especially when you’re in open source and everybody’s looking
at your code. So, I actually thought about this. I’m putting in all
these TODOs for major features. Anybody can look at the code
and just say, oh my God, he didn’t do any of this stuff. And, so
like politically, it’s sensitive, especially if you attach your name to
it”. At the same time this user was concerned about the visibility
of TODOs, especially given the overhead associated with opening
a bug. The theme of bounded transparency also emerged in focus
groups we held with software developers on the use of a software
tagging tool [18].

5.4 Annotation Management
Research questions four and five address how annotations are
managed and used over time. The data collection methods we
used are not ideally suited to answer these questions. More
effective methods would involve directly observing the
programmers or indirectly observing their actions through
instrumentation of their IDEs as Murphy did in [13]. However,
through the survey and interviews, we gleaned some relevant
insights into how programmers navigate and manage annotations.
We also gained insights into how out-of-date annotations may
negatively influence code comprehension and maintenance.

5.4.1 Varied Processes for Managing TODOs
The Middleware team mentioned that TODOs were dealt with
before a commit, yet we observed some unresolved TODOs in
their code. The other teams mentioned no formal process for
revisiting and dealing with TODOs. The Backend project had
many TODOs that did not get revisited and were left in the code.
The interviewed developers acknowledged that some of the
TODOs in their projects were very old and were probably written
by previous team members. The UserInterface developer revisited
his TODOs constantly, but some old ones still remained in the
code. He mentioned that he sometimes cleaned them up as they
were discovered, if they did not interfere with his current task.
Sometimes he went back and revisited all of his TODOs to see if
any were candidates for being promoted to bugs. Low priority
TODOs were left as is. When revisiting TODOs, this developer
deleted them if he was unable to quickly reconstruct their
meaning.

5.4.2 Maintenance Issues and Out-of-date TODOs
A recurring theme throughout all the interviews was a concern
with out-of-date annotations. The developers mentioned that these
can clutter the code and obscure more meaningful information, or
can even negatively affect code comprehension. Code cleanliness
was an important consideration for some of the developers we
interviewed, as they believe that “clean” code is easier to
understand and maintain. When task annotations are stored
directly in the code, they become an artifact that needs to be
maintained. This is in contrast to comments stored in CVS or
Bugzilla, where the context is stored alongside the annotation.

Several reasons for out-of-date annotations were described in the
interviews. Sometimes the task was done, but the TODO was not
removed. In other cases, they were left for future reference.
Sometimes the tasks are simply not attended to. As Backend Dev1
reported: “we all put these comments in our code and then don’t
look back at them. None of them actually remind us...”. A further
complication arises when a programmer leaves a project and also
leaves behind TODOs that others do not understand but cannot
easily remove. Some developers seem either reluctant to or
ambivalent about changing or removing someone else’s task
annotations. As UserInterface Dev1 reported: “The ones that stay
forever are the ones that are unnamed, like the ones that are
’TODO this‘, and just the line. And you look at it, and you don't
know who it came from or what really it's about or what it was
accomplished for. Or what the TODO was relevant for.”

5.4.3 Navigating TODOs is Not a Challenge
For every task that is created, it is assumed that the developer or
someone else working on the project will return to complete the
task. This requires remembering where the task is and navigating
to it. With potentially hundreds of TODOs in the workspace, we
anticipated that returning to these locations would be challenging.
However, all four developers we interviewed indicated that this is
not a problem. Developers tend to have a specific task in mind
that they need to complete, and given their knowledge of the
software system they are working with, they have no difficulty
returning to the location that they have annotated. One developer
indicated some problems finding tasks in very large classes but
mostly when he was new to the project.

The survey revealed that developers use a number of tool features
to navigate to annotations, including hyperlinks, the Eclipse Task
View, and searching. UserInterface Dev1 mentioned that he used
the markers shown in the ruler of the editor to determine if there

were TODOs that needed to be revisited. He also filtered on his
initials in the Task View to show the TODOs that he had added.

5.4.4 Interesting Mechanisms for Forcing Revisits
An activity that several developers mentioned was the need to
pick up a task where they left off, following a break in their work.
They discussed how they appropriated tool features, unrelated to
task annotations, to help resume a previously initiated task. One of
the Middleware developers described inserting a compile time
error by putting his initials into his code, so that when he returned
he was forced to revisit the error as a reminder of the task he was
working on. On the Backend team, the developer mentioned
making use of a testing class and a method that threw an
exception when the program reached the relevant code. He
referred to this as a “very active revisit”.

6. DISCUSSION
Software development processes are often structured around the
tasks needed to design, build, and deliver a software system. Our
findings have implications for both software development
processes and the tools that facilitate them. In particular, these
findings directly relate to “lightweight” or “agile” methods, where
the developers are often required to allocate, prioritize and
manage their own units of work. Before discussing these
implications, we first present the limitations of our study to
provide context.

6.1 Limitations
The main limitation of this study stems from the fact that we
looked solely at developers using Eclipse. We may see very
different patterns of usage with different development tools and
programming languages. Despite this, we note that the task
annotation support in Eclipse is similar to that offered by most
modern IDEs (e.g. Visual Studio). We also found evidence of
annotations used for task management by searching public source
code using the Krugle search engine (www.krugle.com).

Because all our data was gathered from open source projects, our
findings may not be generalizable to proprietary projects. For
example, visibility issues outside the development team would not
be relevant. Finally, the interviewees all worked on projects with
lightweight development processes that did not have formal
agreement on their use of keywords in annotations. We would
expect very different results should we examine more structured
processes where there is agreement on task annotations. However,
only twelve percent of survey respondents indicated that they do
have a formal agreement within their team.

Despite these limitations, we have demonstrated that using data
from interviews provides rich insights into both the results from
the survey and the analysis of the archival data. The interviews
also indicated that mining archival data alone is not sufficient
because task annotations may be used but not committed to a
repository.

6.2 Implications for Software Processes
In lightweight software development processes, such as eXtreme
programming or the “Eclipse Way” (www.eclipse.org), software
developers are free to manage their own tasks. Moving from ad

hoc tasks to formal change requests is done in an informal
manner. Developers who use code comments or TODOs to track
ad hoc tasks often claim they can manage this transition, but in
practice, many TODOs are never formally migrated to change

requests and remain hidden in the code for years. We feel this
work influences software process in two ways.

Subtask creation. Since developers use task annotations to manage
subtasks, software processes could support the notion of subtasks
and allow them to be specified in a less formal manner. Software
processes could also support subtask completion, i.e., the
introduction of a step to ensure that all subtasks have been
completed before resolving the parent task.

Ad hoc task migration. Loosely related issues are often discovered
while developers are completing tasks. In some cases a formal
change request is filed. However, it is often the case that a simple
TODO is added with the intention to return to it within a few
working days. The developers we interviewed admitted that if an ad

hoc task was not addressed relatively quickly, it would likely be
forgotten. This indicates that a process for dealing with ad hoc tasks
is necessary. Such a process could also result in a “cleansing” of the
old TODOs from the code.

6.3 Implications for Tool Designers
Developers, who use development environments such as Eclipse,
spend approximately 50% of their time in the editor [13]. When
developers are not using the editor, they often use navigation views
(Package Explorer, Search, Type Hierarchy, Outline, and Call
Hierarchy), Debug Views (Debug Trace, Variables, and
Breakpoints), the Problems View, and the Console. Very few
developers regularly use the Task or Bookmarks View. Since
developers spend so much of their time within the editor, it is not
surprising that they often make notes for themselves in the source
code. Reviewing the implications for software processes and
considering how developers use IDEs, we have compiled a number
of suggestions for tool designers:

In-code task annotations should support metadata. From our
interviews and an examination of project annotations, we can see
that developers regularly enter metadata in their comments. An
automatic way for entering this information or saving it in the
project memory would be useful for both the creators and users of
the annotations. A mechanism for easily linking to bugs would also
be useful. Mylyn achieves this by adding task annotations that were
created or navigated to within the current task context. This may
work well for developers that work on one task at a time but not so
well for those that multi-task.

Filtering of tasks. One interviewee who used the Task View
remarked how it is difficult to view and change the filters.
Moreover, metadata had to be added in the same format to assist
with the filtering step. The ability to effectively control which tasks
are visible directly impacts the usefulness of the view.

Annotations should support linking by task. This is of particular
importance to developers who use task annotations as a subtask
management tool. Tools should link task annotations to their issue
tracking software and allow developers to verify and remove task
annotations once the parent task has been completed.

Task annotations should support ad hoc task clean-up wizards.

To support the migration of ad hoc tasks to formal change requests,
development tools should provide a mechanism to assist developers
with expired task annotations. Some options for dealing with such
annotations include: 1) removing the annotation, 2) migrating the
task annotation to a formal change request, 3) re-scheduling the
annotation to expire at a later date, or 4) removing the expiration.
While options three and four will likely result in out-of-date task

annotations, a project wide task annotation clean-up could also be
scheduled at periodic times throughout the release.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described an empirical study that explored how
task annotations, embedded within the source code, play a role in
how software developers manage personal and team tasks.

Our findings helped us describe how task annotations can be used to
support a variety of activities that are fundamental to articulation
work within software development. We were also able to explore
how task management is negotiated between the more formal issue
tracking systems and the informal annotations that programmers
write. What we saw was that the annotations have different
meanings that are dependent on individual, team and community
use. Finally, we revealed a number of issues with managing the
annotations which may have negative implications on maintenance.

These findings led us to suggest a number of opportunities for
improving the processes and the tools that are used for managing
these tasks. In particular we saw evidence of a gap between what
Robinson calls the “formal level of language” [17] supported by a
bug or issue tracking system and the “cultural level”, supported by
task annotations. Robinson notes that a tool that supports one
language of interaction at the expense of the other will not be
successful. Eclipse and other modern tools have support for both,
but we propose that the migration and navigation between these
levels could be improved through tool support.

Future work involves investigating how developers from proprietary
projects use annotations, as well as an examination of the more
structured processes that some teams may use. We also intend to
examine how tools with a closer coupling to issue tracking systems
(e.g., Jazz) impact how programmers perform task management.
Additionally, we intend to focus on task lifespan to better
understand how developers use annotations for long term task
management. Finally, we hope to incorporate some of the tool
suggestions that resulted from this work within TagSEA [19], a tool
we developed for managing and navigating tagged annotations in
source code comments.

8. ACKNOWLEDGMENTS
We would like to thank the developers that responded to our survey
and participated in interviews. Michael Muller and Li-Te Cheng of
IBM provided valuable input on the design of the survey. We also
appreciate the feedback received from Chris Bennett that helped
improve this paper. This research was funded by the Natural
Sciences and Engineering Research Council of Canada.

9. REFERENCES
[1] L. Bannon and K. Schmidt. “CSCW: Four Characters in

Search of a Context,” in Proceedings of the European

Conference on Computer Supported Cooperative Work, pp.
358-372, 1989.

[2] G. Button and W. Sharrock. “Project Work: The Organization
of Collaborative Design and Development in Software
Engineering,” Journal of Computer Supported Cooperative

Work, 5(4): pp. 369-386, 1996.

[3] J.W. Creswell. “Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches,” Sage Publications, 2002.

[4] S. de Souza, N. Anquetil, K.M. Oliveira. “A Study of the
Documentation Essential to Software Maintenance,” in
Proceedings of the International Conference on Design of

Communication: Documenting and Designing for Pervasive

Information, pp. 68-75, 2005.

[5] B. Fluri, M. Würsch, H. Gall. “Do code and comments co-
evolve? On the relation between source code and comment
changes,” in Proceedings of the IEEE Working Conference on

Reverse Engineering, pp. 70-79, 2007.

[6] R. Grinter. “Supporting Articulation Work Using Software
Configuration Management Systems,” Journal of Computer

Supported Cooperative Work, 5(4): pp. 447-465, 1996.

[7] P. Grogono. “Comments, assertions and pragmas,” SIGPLAN

Notices, 24(3), pp. 79-84, 1989.

[8] Z. Jiang and A. Hassan. “Examining the Evolution of Code
Comments in PostgreSQL,” in Proceedings of the

International Workshop on Mining Software Repositories, pp.
179-180, 2006.

[9] M. Kaelbling. “Programming languages should NOT have
comment statements”, SIGPLAN Notices, 23(10), pp. 59-60,
1988.

[10] M. Kersten and G. Murphy. "Mylar: A degree-of-interest
model for IDEs," in Proceedings of Aspect Oriented Software

Development, pp. 159-168, 2005.

[11] J. Maletic, M. Collard, A. Marcus. “Source Code Files as
Structured Documents,” in Proceedings of the International

Workshop on Program Comprehension, pp. 289-292, 2002.

[12] D. Marin. “What Motivates Programmers to Comment?”
Technical Report No. UCB/EECS-2005018, University of
California at Berkeley, 2005.

[13] G.C. Murphy, M. Kersten, L. Findlater. "How Are Java
Software Developers Using the Eclipse IDE?" IEEE Software,
23(4), pp. 76-83, 2006.

[14] E. Nurvitadhi, W. Leung, C. Cook. “Do Class Comments Aid
Java Program Understanding?” Frontiers in Education,

Volume 1, pp. 5-8, 2003.

[15] M.P. Robillard and G. Murphy. "Automatically Inferring
Concern Code from Program Investigation Activities," in
Proceedings of the International Conference on Automated

Software Engineering, pp. 225-234, 2003.

[16] P.-N. Robillard. “Automating Comments,” SIGPLAN Notices,
24(5), pp. 66-70, 1989.

[17] M. Robinson. “Double-level languages and co-operative
working,” AI & Society, 5(1), pp. 34-60, 1991.

[18] M.-A Storey, L.-T. Cheng, J. Singer, M. Muller, D. Myers, J.
Ryall. "How Programmers can Turn Comments into
Waypoints for Code Navigation", in Proceedings of the
International Conference on Software Maintenance, pp. 265-
274, 2007.

[19] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. “Shared
Waypoints and Social Tagging to Support Collaboration in
Software Development,” in Proceedings of Computer

Supported Cooperative Work, pp. 195-198, 2006.

[20] A. Strauss. “Work and the Division of Labor”, The

Sociological Quarterly, 26(1), pp. 1-19, 1985.

[21] L. Tan, D. Yuan, Y. Zhou. “HotComments: How to Make

Program Comments More Useful?” in Proceedings of Hot

Topics in Operating Systems, pp. 49-54, 2007.

[22] T. Tenny. “Program Readability: Procedures vs. Comments,”

Transactions of Software Engineering, 14(9), pp. 1271-1279,
1988.

[23] L. Weissman. “Psychological Complexity of Computer

Programs,” SIGPLAN Notices, 9(6), pp. 25-36. 1974.

[24] S. Woodfield, H. Dunsmore, V. Shen. “The effect of
modularization and comments on program comprehension.” in
Proceedings of the International Conference on Software

Engineering, pp. 215-223, 1981.

[25] A. Ying, J. Wright, S. Abrams. “Source code that talks: an
exploration of Eclipse task comments and their implication to
repository mining”, Workshop on Mining Software

Repositories, pp. 1-5, 2005.

