
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 2007 IEEE International Conference on Web Services (ICWS
2007), 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=6b763472-469e-4eb4-8740-6f313a2a5b1d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=6b763472-469e-4eb4-8740-6f313a2a5b1d

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Monitoring and diagnosing orchestrated web service processes
Yan, Y.; Dague, P.

Monitoring and Diagnosing Ochestrated

Web Services Processes*

Yan, Y., and Dague, P.
2007

* Proceedings of the 2007 IEEE International Conference on Web Services
2007. NRC 49325.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Modeling and Diagnosing Orchestrated Web Service Processes

Yuhong Yan1, Philippe Dague2,
1National Research Council, 46 Dineen Drive, Fredericton, NB E3B 5X9, Canada

2LRI, University of Paris Sud, CNRS, 91893 Orsay, France

Email: yuhong.yan@nrc.gc.ca

Abstract

Web service orchestration languages describe exe-

cutable business processes composed of Web services. A

business process can fail for many reasons, such as faulty

Web services or mismatching messages. It is important to

find out which Web services are responsible for a failed

business process because we could penalize these Web ser-

vices and exclude them from the business process in the fu-

ture. In this paper, we propose a model-based approach to

diagnose orchestrated Web service process. We convert the

Web service orchestration language, BPEL4WS, into syn-

chronized automata, so that we have a formal description of

the topology and variable dependency of the business pro-

cess. After an exception is thrown, the diagnoser can cal-

culate the business process execution trajectory based on

the formal model and the observed evolution of the busi-

ness process. The faulty Web services are deduced from

the variable dependency on the execution trajectory. We

demonstrate our diagnosis technique with an example.

1 Introduction

Various Web service process description languages are

designed by standard bodies and companies. Among them,

Business Process Execution Language for Web Service

(BPEL4WS, denoted as BPEL after) [1] is the de facto stan-

dard used to describe an executable Web service process. In

this paper, we study the behaviours of a business process

described in BPEL. As any other systems, a business pro-

cess can fail. For a Web service process, the symptom of a

failure is that exceptions are thrown and the process halts.

As the process is composed of multiple Web services, it is

important to find out which Web services are responsible for

the failure. If we could diagnose the faulty Web services, we

could penalize these Web services and exclude them from

the business process in the future. The current throw-and-

catch mechanism is very preliminary for diagnosing faults.

It relies on the developer associating the faults with excep-

tions at design time. When an exception is thrown, we say

certain faults occur. But this mechanism does not guarantee

the soundness and the completeness of diagnosis.

In this paper, we propose a model-based approach to

diagnose faults in Web service processes. We convert the

basic BPEL activities and constructs into synchronized au-

tomata whose states are presented by the values of the vari-

ables. The process changes from one state to another by

executing an action, e.g. assigning variables, receiving or

emitting messages in BPEL. The emitting messages can

be a triggering event for another service to take an action.

The diagnosing mechanism is triggered when exceptions

are thrown. Using the formal model and the runtime ob-

servations from the execution of the process, we can recon-

struct the unobservable trajectories of the Web service pro-

cess. Then the faulty Web services are deduced based on

the variable dependency on the trajectories. Studying the

fault diagnosis in Web service processes serves the ultimate

goal of building self-manageable and self-healing business

processes.

This paper is organized as follows: section 2 presents

Model-based Diagnosis (MBD) background and motivates

the use of those techniques for Web services monitoring and

diagnosis; section 3 formally defines the way to generate an

automata model from a BPEL description; section 4 extends

the existing MBD techniques for Web service monitoring

and diagnosis; section 5 is the related work, and section 6 is

the conclusion.

2 The Principle of Model-based Diagnosis for

Discrete Event Systems

MBD is used to monitor and diagnose both static and dy-

namic systems, such as communication systems, plant pro-

cesses and automobiles. It is an active topic in both Artifi-

cial Intelligence (AI) and Control Theory communities [4].

Let us briefly recall the terminology and notations adopted

by the model-based reasoning community.

• System: a pair (SD, COMPS), where SD is sym-

bolic system description, e.g in first order logic,

COMPS is a finite set of constants to represent the

components in the system.

• D: a mode assignment to each component in the sys-

tem. An assignment to a component is a unary predi-

cate: ab(ci) means ci ∈ COMPS is in an abnormal

mode, and ¬ab(ci) means ci working properly.

• Observables: the variables that can be ob-

served/measured.

• OBS: a set of observations. They are the values of

the Observables. They can be a finite set of first-order

sentences, or value assignments to some variables.

• Observed system: (SD, COMPS, OBS).

Diagnosis is a procedure to determine which components

are correct and which components are faulty in order to be

consistent with the observations and the system description.

Definition 1 D is a consistency-based diagnosis for the ob-

served system 〈SD, COMPS,OBS〉, if and only if it is a

mode assignment and SD ∪ D ∪ OBS 2 ⊥.

From Definition 1, diagnosis is a mode assignment D
that makes the union of SD, D and OBS logically consis-

tency. D can be partitioned into two parts:

• Dok which is a set of the components which are as-

signed to the ¬ab mode;

• Df which is a set of component which are assigned the

ab mode.

Usually we are interested in those diagnoses which in-

volve a minimal set of faults, i.e., the diagnoses for which

Df is minimal.

Definition 2 A diagnosis D is minimal if and only if there

is no other diagnosis D′ for 〈SD, COMPS,OBS〉 such

that D′

f ⊂ Df .

When the system description is in first order logic, the

computation of diagnoses is rooted in automated reason-

ing [4].

When applying MBD, a formal system description is

needed. As the interactions between Web services are

driven by message passing, and message passing can be

seen as discrete events, we consider the Discrete Event Sys-

tems (DES) suitable to model Web service processes. Many

discrete event models, such as Petri nets, process algebras

and automata, can be used for Web service process mod-

elling. These models were invented for different purposes,

but now they share many common techniques, such as sym-

bolic representation (in addition to graph representation in

some models) and similar symbolic operations. In this pa-

per, we present a method to represent Web service processes

described in BPEL as automata in Section 3. Here we intro-

duce some basic concepts and operations for automata. A

classic definition of deterministic automaton is as below:

Definition 3 An automaton Γ is a tuple Γ =
〈X, Σ, T, I, F 〉 where:

• X is a finite set of states;

• Σ is a finite set of events;

• T ⊆ X × Σ → X is a finite set of transitions;

• I ⊆ X is a finite set of initial states;

• F ⊆ X is a finite set of final states.

Definition 4, 5 and 6 are some basic concepts and opera-

tions about automata.

Definition 4 Synchronization between two automata Γ1 =
〈X1,Σ1, T1, I1, F1〉 and Γ2 = 〈X2,Σ2, T2, I2, F2〉, with

Σ1 ∩ Σ2 6= ∅, produces an automaton Γ = Γ1‖Γ2, where

Γ = 〈X1 × X2,Σ1 ∪ Σ2, T, I1 × I2, F1 × F2〉, with:

T ((x1, x2), e) = (T1(x1, e), T2(x2, e)), if e ∈ Σ1 ∩ Σ2

T ((x1, x2), e) = (T1(x1, e), x2), if e ∈ Σ1\Σ2

T ((x1, x2), e) = (x1, T2(x2, e)), if e ∈ Σ2\Σ1

Assume s = Σ1 ∩Σ2 is the joint event set of Γ1 and Γ2,

Γ can also be written as Γ = Γ1‖sΓ2.

Example 1 In Figure 1, Γ1 and Γ2 are two automata. The

third one Γ3 is produced by synchronizing Γ1 and Γ2.

0 1

2

e1

e1e2

0’ 1’ 2’

Γ1

Γ2

Γ3 = Γ1|| Γ2

e1 e4

0,0’ 1,1’
e1 e4

2,2’ 0,2’

e3

e2

2,0’

e2
e1

e3

e5
3

e4

3,1’

e5

e3

Figure 1. An example of synchronization

Definition 5 A trajectory of an automaton is a path of con-

tiguous states and transitions in the automaton that begins

at an initial state and ends at a final state of the automaton.

Example 2 The trajectories in the automaton Γ3 in Fig-

ure 1 can be represented as the two formulas below, in

which []∗ means the content in [] repeated 0 or more times:

[(0, 0′)
e2
−→(2, 0′)

e3
−→]∗[(0, 0′)

e1
−→(1, 1′)

e4
−→(2, 2′)][

e3
−→(0, 2′)

e2
−→(2, 2′)]∗,

[(0, 0′)
e2
−→(2, 0′)

e3
−→]∗[(0, 0′)

e2
−→(2, 0′)

e1
−→(1, 1′)

e4
−→(2, 2′)]

[
e3
−→(0, 2′)

e2
−→(2, 2′)]∗.

2

Definition 6 Concatenation between two automata Γ1 =
〈X1,Σ1, T1, I1, F1〉 and Γ2 = 〈X2,Σ2, T2, I2, F2〉, with

Σ1 ∩ Σ2 = ∅ and F1 ∩ I2 6= ∅, produces an automaton

Γ = Γ1◦Γ2, where Γ = 〈X1∪X2,Σ1∪Σ2, T1∪T2, I1, F2∪
(F1\I2)〉.

3 Modeling Web Service Processes with

Discrete-Event Systems

3.1 Description of the Web Service Pro-
cesses

BPEL is an XML-based orchestration language devel-

oped by IBM and recognized by OASIS [1]. BPEL is a so-

called executable language because it defines the internal

behaviour of a Web service process, as compared to chore-

ography languages that define only the interactions among

the Web services and are not executable. BPEL defines fif-

teen activity types, among those the most important are the

following:

Process ::= Process(Activity1, . . . , Activityn, V)
Activity ::= BasicActivity|StructuredActivity
BasicActivity ::= receive|invoke|reply|assign|throw|

terminate|compensate|wait|empty
StructuredActiviy ::= sequence|switch|flow|while|

pick|scope

Example 3 The loan approval process is an example de-

scribed in the BPEL Specification 1.1 [1]. It is diagrammed

in Figure 2.

<receive>

receive1

<invoke>

invokeAssessor

<invoke>

invokeApprover

<assign>

assign <reply>

reply

receive_to_approval

(request.amount>=1000)
receive_to_assess

(request.amount <1000)

approval_to_reply
assess_to_setMessage

(risk.level=low)

assess_to_approval

(risk.level!=low)

setMessage_to_reply

input : request

output : risk

output: approval.accept=yes

output: request

input : request

output : approval

input: approval

Figure 2. A loan approval process. Activities are repre-

sented in shaded boxes. The inV ar and outV ar are re-

spectively the input and output variables of an activity.

This process contains five activities (big shaded blocks).

An activity involves a set of input and output variables (dot-

ted box besides each activity). All the variables are of

composite type. The edges show the execution order of

the activities. When two edges are issued from the same

activity, only one edge that satisfies a triggering condition

(shown on the edge) will be activated. The process is trig-

gered when a 〈receive〉 activity named receive1 receives a

message of a predefined type. First, receive1 initializes a

variable request. Then, receive1 dispatches the request

to one of the two 〈invoke〉 activities, invokeAssessor and

invokeApprover, depending on the amount of the loan. In

the case where the amount is large (request.amount >=
1000), invokeApprover is called for a decision, otherwise

(request.amount < 1000), invokeAssessor is called for

risk assessment. If invokeAssessor returns with an assess-

ment that the risk level is low (risk.level = low), a reply

is prepared by an 〈assign〉 activity and later sent out by a

〈reply〉 activity, otherwise, invokeApprover is invoked for

a final decision. The result from invokeApprover is sent

to the client by the 〈reply〉 activity.

3.2 Modeling Web Services Process with
Discrete-Event Systems

A Web service process defined in BPEL is a composition

of activities. We are going to model a BPEL activity as an

automaton. A BPEL state is associated with an assignment

of the variables. A BPEL activity is triggered when its ini-

tial state satisfies a finite set of triggering conditions which

is a certain assignment of variables. After an activity is ex-

ecuted, the values of the state variables are changed. We

need to extend the classic automaton definition to include

the operations on state variables.

Assume a BPEL process has a finite set of variables V =
{v1, . . . , vn}, and the domain D = {D1, . . . , Dn} for V is

real values ℜ or arbitrary strings. C = {c1, . . . , cm} is a

finite set of constraints. A constraint cj of some arity k is

defined as a subset of the cartesian product over variables

{vji, . . . , vjk} ⊆ V , i.e. cj ⊆ Dj1 × · · · × Djk, or a first

order formula over {vji, . . . , vjk}. A constraint restricts the

possible values of the k variables.

A BPEL state s is defined as an assignment of variables.

A BPEL transition t is an operation on the state si, i.e.,

(sj , post(V2)) = t(si, e, pre(V1)), where V1 ⊆ V , V2 ⊆
V , pre(V1) ⊆ C is a set of preconditions that si has to

satisfy and post(V2) ⊆ C is a set of post-conditions that

the successor state sj will satisfy. If a state s satisfies a

constraint c, we annotate as c ∧ s. Then, the semantics of

transition t is also represented as: t : (si ∧ pre(V1))
e
−→(sj ∧

post(V2)).

Definition 7 A BPEL activity is an automaton

〈X, Σ, T, I, F, C〉, where C is the constraint set on variables

that define states X and T : X × Σ × 2C → X × 2C .

3.2.1 Modeling Basic Activities

Due to lack of space, only major activities are included in

this and the following subsection.

3

Activity 〈receive〉: 〈{so, sf}, {received}, {t}, {so}, {sf}, C〉

t : (so ∧ SoapMsg.type = MsgType)
received
−−−−−−→(sf ∧

RecMsg = SoapMsg), where

MsgType is a predefined message type. If the incoming

message SoapMsg has the predefined type, RecMsg is

initialized as SoapMsg.

Activity 〈reply〉 : 〈{so, sf}, {replied}, {t}, {so}, {sf}, C〉

t : (so ∧ exists(RepMsg))
replied
−−−−→(sf ∧ SoapMsg =

RepMsg), where

exists(RepMsg) is the predicate checking that the replay

message RepMsg is initialized. SoapMsg is the message

on the wire.

Activity 〈invoke〉
Synchronous invocation (wait for a return message):

〈{so, wait, sf}, {invoked, received}, {t1, t2}, {so}, {sf}, C〉

t1 : (so ∧ exists(InV ar))
invoked
−−−−−→(wait), and

t2 : (wait)
received
−−−−−−→(sf ∧ exists(OutV ar)) where

InV ar and OutV ar are the input and output variables.

Asynchronous invocation (not wait for a return message):

〈{so, sf}, {invoked}, {t}, {so}, {sf}, C〉

t : (so ∧ exists(InV ar))
invoked
−−−−−→(sf).

Activity 〈assign〉: 〈{so, sf}, {assigned}, {t}, {so}, {sf}, C〉

t : (so∧exists(InV ar))
assigned
−−−−−−→(sf ∧OutV ar = InV ar)

Activity 〈throw〉: 〈{so, sf}, {thrown}, {t}, {so}, {sf}, C〉

t : (so ∧ Fault.mode = Off)
thrown
−−−−−→(sf ∧ Fault.mode =

On)

Activity 〈wait〉:
〈{so, wait, sf}, {waiting, waited}, {t1, t2}, {so}, {sf}, C〉

t1 : (so ∧ Wait mode = Off)
waiting
−−−−−→(wait ∧

Wait mode = On)

t2 : (wait∧Wait mode = On)
waited
−−−−→(sf ∧Wait mode =

Off)
This model is not temporal. We do not consider time, so

the notion of delay is not considered in this activity.

Activity 〈empty〉: 〈{so, sf}, {empty}, {t}, {so}, {sf}, C〉

t : (so)
empty
−−−−→(sf)

3.2.2 Modeling Structured Activities

Sequence A 〈sequence〉 can nest n activities 〈Ai〉 in its

scope. These activities are executed in sequential order.

Assume 〈Ai〉 : 〈SAi
,ΣAi

, TAi
, {sAio

}, {sAif
}, CAi

〉, i ∈
{1, . . . , n}.

Activity 〈sequence〉: 〈{so, sf} ∪
⋃

SAi
, {end} ∪⋃

{callAi} ∪
⋃

ΣAi
, {ti} ∪

⋃
TAi

, {so}, {sf},
⋃
CAi

〉
with

t0 : (so)
callA1
−−−−→(sA1o

)

ti : (sAif
)
callAi+1
−−−−−−→(sAi+1o

)

tn : (sAnf
)
end
−−→(sf)

If assume so = sA1o
, sf = sAnf

, and sAif
= sAi+1o

, for

i = [1, . . . , n − 1], a short representation of 〈sequence〉 is

the concatenation of the nested activities A1 ◦ A2 · · · ◦ An.

Switch Assume a 〈switch〉 has n 〈case〉 branches

and one 〈otherwise〉 branch. Assume 〈Ai〉 :
〈SAi

,ΣAi
, TAi

, {sAio
}, {sAif

}, CAi
〉, i ∈ {1, . . . , n + 1}.

Activity 〈switch〉: 〈{so, sf} ∪
⋃

SAi
, {end} ∪⋃

{switchAi} ∪
⋃

ΣAi
,
⋃
{tio} ∪

⋃
{tif} ∪⋃

TAi
, {so}, {sf},

⋃
CAi

∪
⋃

pre(Vi)〉.
Assume V1, . . . , Vn are variable sets on n 〈case〉

branches. The transitions are defined as below:

tio : (so ∧ ¬pre(V1) ∧ · · · ∧ pre(Vi) · · · ∧

¬pre(Vn))
switchAi
−−−−−−→(sAio

), ∀i ∈ {1, . . . n}
t(n+1)o(so ∧ ¬pre(V1) ∧ · · · ∧ ¬pre(Vi) · · · ∧

¬pre(Vn))
swicthAn+1
−−−−−−−−−→(sA(n+1)o

)

tif : (sAif
)
end
−−→(sf), ∀i ∈ {1, . . . n + 1}

While Assume 〈while〉 nests an activity 〈A〉:
〈SA,ΣA, TA, {sAo

}, {sAf
}, C〉.

Activity 〈while〉: 〈{so, sf} ∪ SA, {while, while end} ∪
ΣA, {to, tf , t} ∪ TA, {so}, {sf}, C ∪ pre(W)〉.

Assume W is a variable set.

to : (so ∧ pre(W))
while
−−−→(sAo

)

tf : (so ∧ ¬pre(W))
while end
−−−−−−−→(sf)

t : (sAf
)

ǫ
−→(so)

Flow A 〈flow〉 can nest n activities 〈Ai〉 in its scope.

These activities are executed concurrently. Assume 〈Ai〉 :
〈SAi

,ΣAi
, TAi

, {sAio
}, {sAif

}, CAi
〉, i ∈ {1, . . . , n}.

Activity 〈flow〉: 〈{so, sf} ∪
⋃

SAi
, {start, end} ∪⋃

ΣAi
,
⋃
{tio, tif} ∪

⋃
TAi

, {so}, {sf},
⋃
CAi

〉 with

tio : (so)
start
−−−→(sAio

)

tif : (sAif
)
end
−−→(sf)

Notice that the semantic of automata cannot model con-

currency. We actually model the n-paralleled branches into

n automata and define synchronization events to build their

connections. The principle is illustrated in Figure 3. Each

branch is modeled as an individual automaton. The entry

state so and the end state sf are duplicated in each branch.

Events start and end are the synchronization events. More

complicated case in joining the paralleled branches is dis-

cussed in subsection 3.2.3. The key point in reasoning about

decentralized automata is to postpone the synchronization

until a synthesis result is needed, in order to avoid the state

explosion problem. In Web service diagnosis, it is the situ-

ation (cf. subsection 4.1).

4

Pick Assume a 〈pick〉 has n 〈onMessage〉 and one

〈onAlarm〉 branches. The correspondent branches are trig-

gered by predefined events (for 〈onMessage〉) or by a

time-out event produced by a timer (for 〈onAlarm〉). As-

sume 〈Ai〉 : 〈SAi
,ΣAi

, TAi
, {sAio

}, {sAif
}, CAi

〉, i ∈
{1, . . . , n + 1}.

Activity 〈pick〉: 〈{so, sf} ∪
⋃

SAi
,
⋃
{startAi

} ∪
{end} ∪

⋃
ΣAi

,
⋃
{tio, tif} ∪

⋃
TAi

, {so}, {sf},
⋃
CAi

∪⋃
exists(eventAi

)〉 with

tio : (so ∧ exists(eventAi
))

startAi
−−−−−→(sAio

)

tif : (sAif
)
end
−−→(sf)

SA2oSA1o

end
SA1f

SA2f

event_A1

So So

Sf

start

end

event_A2

start

Sf

Figure 3. Build concurrency as synchronized DES

pieces.

3.2.3 Synchronization Links of Activities

Each BPEL activity can optionally nest the standard ele-

ments 〈source〉 and 〈target〉:

< source linkName = “ncname”
transitionCondition = “bool − expr”?/ >
< target linkName = “ncname”/ >

A pair of 〈source〉 and 〈target〉 defines a link which con-

nects two activities. The target activity must wait until the

source activity finishes. When one 〈flow〉 contains two par-

allel activities which are connected by a link, the two activ-

ities become sequentially ordered.

〈source〉 can be modeled similarly like an 〈activity〉,
with “transitionCondition” as the triggering condition.

Activity 〈source〉: 〈{so, sf}, {ǫ}, {t}, {so}, {sf},
transitionCondition〉 with

t : (so ∧ transitionCondition)
ǫ
−→(sf),

When an activity is the 〈target〉 of multiple links, a join

condition is used to specify how these links can join. The

join condition is defined within the activity. BPEL specifi-

cation defines standard attributes for this activity:

<activityName=“ncname”, joinCondition=“bool-expr”,

suppressJoinFailure=“yes—no”>

where joinCondition is the logical OR of the liveness

status of all links that are targeted at this activity. If the

condition is not satisfied, the activity is bypassed, and a fault

is thrown if suppressJoinFailure is no.

In this case, the synchronization event end as in Figure 3

is removed. If the ending state of 〈flow〉 is the starting state

s′o of the next activity, the precondition of s′o is the join-

Condition. For example, either of the endings of the two

branches can trigger the next activity can be represented as:

s′o ∧ (exists(sA1f
) ∨ exists(sA2f

)).

3.2.4 Modeling the Loan Approval Process

Example 4 The loan approval process in Example 3

contains five activities: 〈receive1〉, 〈invokeAssessor〉,
〈invokeApprover〉, 〈assign〉, 〈reply〉. The five ac-

tivities are contained in a 〈flow〉. Six links,

〈receive to assess〉, 〈receive to approval〉, 〈assess to

setMessage〉, 〈assess to approval〉, 〈approval to reply〉,
and 〈setMessage to reply〉, connect the activities and

change the concurrent orders to sequential orders between

the activities. In this special case, there are actually no

concurrent activities. Therefore, for clarity, the event

caused by 〈flow〉 is not shown. Assume the approver may

return an error message due to an unknown error. The

formal representation of the process is shown on Figure

4(b)without highlights (the formulas are eliminated due to

lack of space.)

4 Model-based Diagnosis for Web Service

Processes

A Web service process can run down for many reasons.

For example, a composed Web service may be faulty, an in-

coming message mismatches the interface, or the Internet

is down. The symptom1 of a failed Web service process is

that exceptions are thrown and the process is halted. The

current fault handling mechanism is throw-and-catch, sim-

ilar to programming languages. The exceptions are thrown

at the places where the process cannot be executed. The

catch clauses process the exceptions, normally to recover

the failure effects by executing predefined actions.

The throw-and-catch mechanism is very preliminary for

fault diagnosis. The exception reports where it happened

and returns some fault information. The exceptions can be

regarded as associated with certain faults. When an ex-

ception is thrown, we deduce that its associated fault oc-

curred. This kind of association relations rely on the em-

pirical knowledge of the developer. It may not be a real

cause of the exceptions. In addition, there may exist mul-

tiple causes of an exception which are unknown to the de-

veloper. Therefore, the current throw-and-catch mechanism

does not provide sound and complete diagnosis. For exam-

ple, when a Web service throws an exception about a value

in a customer order, not only the one that throws the excep-

tion may be faulty, but the one that generates these data may

1In diagnosis concept, sympton is an observed abnormal behaviour,

while fault is the original cause of a sympton. For example, an alarm from

a smoke detector is a symptom. The two possible faults, a fire or a faulty

smoke detector, are the causes of the symptom.

5

also be faulty. But a Web service exception can only report

the Web service where the exception happens with no way

to know who generated these data. In addition, all the ser-

vices that modified the data should be also suspected. Not

all of this kind of reasoning is included in the current fault

handling mechanism.

The diagnosis task is to determine the Web services re-

sponsible for the exceptions. These Web services will be

diagnosed faulty. The exceptions come from the BPEL en-

gine or the infrastructure below. We classify the exceptions

into time-out exceptions and business logic exceptions.

The time-out exceptions are due to either a disrupted net-

work or unavailable Web services. If there is a lack of re-

sponse, we cannot distinguish whether the fault is in the

network or at the remote Web service. Since we cannot

diagnose which kind of faults prevent a Web service from

responding, we can do little with time-out exceptions.

The business logic exceptions occur while invoking an

external Web service and executing BPEL internal activi-

ties. For example, mismatching messages (including the

type of parameters and the number of parameters mismatch-

ing) cause the exceptions to be thrown when the parameters

are passed to the remote method. BPEL can throw excep-

tions indicating the input data is wrong. During execution,

the remote service may stop if it cannot process the request.

The most common scenarios are the invalid format of the

parameters, e.g. the data is not in a valid format, and the

data is out of the range. The causes of the exceptions are

various and cannot be enumerated. The common thread is

that a business logic exception brings back information on

the variables that cause the problem. In this paper, our ma-

jor effort is on diagnosing business logic-related exceptions.

So in our framework, COMPS is made up of all the

basic activities of the Web service process considered, and

OBS is made up of the exceptions thrown and the events of

the executed activities. These events can be obtained by the

monitoring function of a BPEL engine. A typical correct

model for an activity 〈A〉 is thus:

¬ab(A) ∧ ¬ab(A.inputs) =⇒ ¬ab(A.outputs) (1)

For facilitating diagnosis, the BPEL engine has to be ex-

tended for the following tasks: 1) record the events emit-

ted by executed activities; 2) record the input and output

SOAP messages; and 3) record the exceptions and trig-

ger the diagnosis function when the first exception is re-

ceived. Diagnosing is triggered on the first occurred ex-

ception 2. The MBD approach developed relies on the fol-

lowing three steps with the techniques we introduced in the

content above.

2When a Web service engine supports multiple instances of a process,

different instances are identified with a process ID. Therefore, diagnosis is

based on the events for one instance of the process.

1) A prior process modelling and variable depen-

dency analysis. All the variables in BPEL are global vari-

ables, i.e. they are accessible by all the activities. An ac-

tivity can be regarded as a function that takes input vari-

ables and produces output variables. An activity has three

kinds of relation to its input and output variables: initial-

ization, modification and utilization. We use Init(A, V),
Mod(A, V) and Util(A, V) to present the relation that ac-

tivity A initializes V , modifies V or utilizes variable V . An

activity is normally a utilizer of its input variables, and is ei-

ther an initializer or an modifier of its output variables. This

is similar to the view point of programming slicing, a tech-

nique in software engineering for software debugging. But

BPEL can violate this relation by applying some business

logic. For example, some variables, such as order ID and

customer address, are not changeable after they are initial-

ized in a business process. Therefore, a BPEL activity may

be an utilizer of its output variables. In BPEL, it is defined

in correlation sets. In this case, we use Util(A, (V 1, V 2))
to express that output V 2 is correlated to input V 1. In this

case, Formula 1 can be simplified as:

¬ab(A.input) =⇒ ¬ab(A.output),

if Util(A, (A.input, A.output)) (2)

In Example 5, we give a table to summarize the variable

dependency for the load approval process. This table can

be obtained automatically from BPEL. The approach is not

presented due to lack of space.

Example 5 The variable dependency analysis for the loan

approval process is in Table 1.

2) Trajectories reconstruction from observations af-

ter exceptions are detected. As mentioned earlier, the ob-

servations are the events and exceptions when a BPEL pro-

cess is executed. The events can be recovered from the log

file in a BPEL engine. The observations are formed in an

automaton. The trajectories are calculated by synchronizing

the observations with the automaton of the system descrip-

tion:

trajectories = SD||OBS (3)

As trajectories can be recovered from OBS, we do not

require to record each event during the execution. It is very

useful when some events are not observable and when there

are too many events to record. It is our future work to study

the minimal observables for diagnosing a fault.

Example 6 In the loan approval example, assume that

OBS={received, invoked assessor, received risk, in-

voked approver, received aplErr} (as in Figure 4(a)).

received aplErr is an exception showing that there is a

6

Variables Parts Initializer Modifier Utilizer

request firstname receive1 invokeAssessor, invokeApprover

lastname receive1 invokeAssessor, invokeApprover

amount receive1 invokeAssessor, invokeApprover

risk level invokeAssessor

approval accept assign, invokeApprover reply

error errorCode invokeApprover

Table 1. The variable dependency analysis for the loan approval process.

type mismatch in received parameters. We can build the

trajectory of evolution as below, also shown in Figure 4(b).

(x0)
received
−−−−−−→(x1)

ǫ
−→(x2)

invoked assessor
−−−−−−−−−−−−−→(x4)

received risk
−−−−−−−−−→(x5)

ǫ
−→(x3)

invoked approver
−−−−−−−−−−−−−→(x7)

received aplErr
−−−−−−−−−−−−→(x8)

x0

invoked_assessor

Invoked_approver

received

x2

received_risk

x1

received_aplError

x5

x3

x4

x0

x3

x6

x11

ε

invoked_assessor

x2

Invoked_approver

assigned

x9

x10

reply

received

x4

received_risk

x8

x1ε

x5
ε

ε

x7

received_approval

ε

ε

received_aplError

(a) (b)

Figure 4. (a) the observations; (b) the loan approval pro-

cess evolution trajectory up to the exception.

3) Accountability analysis for mode assignment

Not all the activities in a trajectory are responsible for the

exception. As a software system, the activities connect to

each other by exchanging variables. Only the activities

which change the attributes within a variable can be respon-

sible for the exception.

Assume that activity A generates exception ef , and t is a

trajectory ending at A. The responsibility propagation rules

are (direct consequences of the contraposition of Formula 1

and 2):

∀A.InV ar.part ∈ A.InV ar,

ef ∈ ΣA ⊢ ab(A) ∨
∨

ab(A.InV ar.part) (4)

∀Aj ∈ t, Aj 6= Ai, Aj is the only activity between

Aj and Ai such that Mod(Aj , Ai.InV ar.part) ∨
Init(Aj , Ai.InV ar.part), ∀Aj .InV ar.part ∈
Aj .InV ar,

ab(Ai.InV ar.part) ⊢ ab(Aj)∨
∨

ab(Aj .InV ar.part)

(5)

The first rule in (4) states that if an activity A generates

an exception ef , it is possible that activity A itself is faulty,

or any part in its A.InV ar is abnormal. Notice a variable

is a SOAP message which has several parts. A.InV ar.part
is a part in A.InV ar3. The second rule in (5) propagates

the responsibility backwards in the trajectory. It states that

an activity Aj ∈ t that modifies or initializes a part of

Ai.InV ar which is known as faulty could be faulty; and

its inputs could also be faulty. If there are several activi-

ties that modify or initialize a part of Ai.InV ar, only the

last one counts, because it overrides the changes made by

the other activities, i.e. Aj is the last activity “between” Aj

and A that modifies or initializes Ai.InV ar, as stated in

(5). After responsibility propagation, we obtain a responsi-

ble set of activities RS = {Ai} ⊆ t.
Then the diagnosis is that either A or any of Ai in the

responsible set is faulty:

{Df} = {{A}} ∪ {{Ai}|Ai ∈ RS} (6)

Each Df is a single fault diagnosis and the re-

sult is the disjunct of Df . The algorithm is as fol-

lowing. In the worst case, this algorithm checks

each activity in t. In the worst case, the function

getF irstModAct(t, A, next part) checks each activity in

t also. Assume k1 is the maximum number of variables

in an activity, and k2 is the maximum number of parts in

a variable. The worst case complexity of this algorithm

is O(k1k2|t|
2), but experiments on examples exhibit lower

real complexity.

3Sometimes, the exception returns the information about the part

A.InV ar.part is faulty. Then this rule is simplified.

7

Algorithm 1 Calculate Diagnosis for a Faulty Web Service

Process
INPUT: A0 - the activity generating the exception.

t - a list of activities in a reserved trajectory whose first element

is A0.

Acts - a list of candidate activities, initialized as {A0}.

OUTPUT: D - the list of faulty activities, initialized as {A0}.

Notes about the algorithm: 1) list.next() returns the first el-

ement of a list; list.add(element) adds an element at the end

of the list; list.remove(element) removes an element from the

list. 2) Activity A has a list of variables A.V ars and a vari-

able var = A.V ars.next() has a list of parts var.Parts. 3)

getF irstModAct(t, A, next part) is a function to return the

first activity from A in t that modifies or initializes next part.

while Acts! = null do

A = Acts.next()
for next var In A.InV ars do

for next part In next var.parts do

B = getF irstModAct(t, A, next part)
if B! = null then

D.add(B)
Acts.add(B)

Acts.remove(A)

return D

Example 7 For the loan approval example, we have the

trajectory as in Example 6. We do the responsibility

propagation. As invokeApprover generates the excep-

tion, according to Formula (4), invokeApprover is pos-

sibly faulty. Then its input request is possibly faulty.

Among all the activities {receive1, invokeAssessor,

invokeApprover} in the trajectory, receive1 initial-

izes request, invokeAssessor and invokeApprover use

request. Therefore, receive1 is possibly faulty, according

to Formula (5). receive1 is the first activity in the trajec-

tory. The propagation stops. The diagnosis is:

{Df} = {{receive1}, {invokeApprover}}

Example 7 has two single faults {receive1} and

{invokeApprover} for the exception received aplErr,

which means either the activity 〈receive1〉 or

〈invokeApprover〉 is faulty. In an empirical way, an

engineer may associate only one fault for an exception.

But our approach can find all possibilities. Second, if we

want to further identify which activity is indeed responsible

for the exception, we can do a further test on the data.

For example, if the problem is wrong data format, we can

verify the data format against some specification, and then

identify which activity is faulty.

4.1 Multiple Exceptions

There are two scenarios where multiple exceptions can

happen. The first scenario is the chained exceptions when

one exception causes the others to happen. Normally the

software reports this chained relation. We need to diagnose

only the first occurred exception, because the causal rela-

tions for other exceptions are obvious from the chain.

The second scenario is the case when exceptions occur

independently, e.g. two parallelled branches report excep-

tions. As the exceptions are independent, we diagnose each

exception independently, the synthesis diagnoses are the

union of all the diagnoses. Assume the diagnoses for ex-

ception 1 are {D1
i }, where i ∈ [1, . . . , n], and the diag-

noses for exception 2 are {D2
j}, where j ∈ [1, . . . ,m], the

synthesis diagnoses are any combinations of D1
i and D2

j :

{D1
i ∪ D2

j |i ∈ [1, . . . , n], j ∈ [1, . . . ,m]}.

What interests us most is the synthesis of the minimal

diagnoses. So, we remove the D1
i ∪ D2

j that are supersets

of other ones. This happens only if at least one activity is

common to {D1
i } and {D2

j}, giving rise to a single fault that

can be responsible for both exceptions. Such activities are

thus most likely to be faulty (single faults being preferred to

double faults).

5 Related Work

MBD has been used for software debugging. Wotawa,

among others, has used consistency-based diagnosis for de-

bugging java and hardware description languages [7]. He

has also discussed the relationship between MBD based de-

bugging and program slicing [7] and concluded that MBD

in his way and program slicing should draw equivalent con-

clusions for debugging.

The diagnosis method developed in this paper can be

compared to dynamic slicing introduced in [5]. Similar

to our method, dynamic slicing considers the bugs should

be within the statements that actually affect the value of a

variable at a program point for a particular execution of

the program. Their solution, following after Weiser’s static

slicing algorithm [6], solves the problem using data-flow

equations, which is also similar to the variable dependency

analysis presented in this paper, but not the same. An exter-

nal Web service can be seen as a procedure in a program,

with unknown behaviour. For a procedure, we normally

consider the outputs brought back by a procedure are gen-

erated according to the inputs. Therefore, in slicing, the

outputs are considered in the definition set (the set of the

variables modified by the statement). For Web services, we

can know some parts in SOAP response back from a Web

service should be unchanged, e.g. the name and the address

of a client. Therefore, the variable dependency analysis is

8

different from slicing. As a consequence, the diagnosis ob-

tained from MBD approach in this paper can be different

from slicing, and actually more precise.

Some other people have applied MBD on diagnosing

component-based software systems. We found that when

diagnosing such systems, the modelling is rather at the com-

ponent level than translating lines of statements into logic

representations. Grosclaude in [3] used a formalism based

on Petri nets to model the behaviours of component-based

systems. It is assumed that only some of the events are

monitored. The history of execution is reconstructed from

the monitored events by connecting pieces of activities into

possible trajectories. Console’s group is working towards

the same goal of monitoring and diagnosing Web services

like us. In their paper [2], a monitoring and diagnosing

method for choreographed Web service processes is devel-

oped. Unlike BPEL in our paper, choreographed Web ser-

vice processes have no central model and central monitor-

ing mechanism. [2] adopted grey-box models for individual

Web services, in which individual Web services expose the

dependency relationships between their input and output pa-

rameters to public. The dependency relationships are used

by the diagnosers to determine the responsibility for excep-

tions. This abstract view could be not sufficient when deal-

ing with highly interacting components. More specifically,

if most of the Web services claim too coarsely that their

outputs are dependent on their inputs, which is correct, the

method in [2] could diagnose all the Web services as faulty.

Yan et al. [8] was a preliminary work to the present one, fo-

cusing on Web service modeling using transition systems.

Our work simplifies the model and, more importantly, for-

malizes the diagnosis principle and presents the diagnosis

algorithm for Web service processes.

Other related research includes the studies on Web ser-

vice monitoring mechanism and the studies to map Web ser-

vice processes into formal models. The discussion on these

studies are eliminated due to lack of space.

6 Conclusions

To identify the Web services that are responsible for a

failed business process is important for e-business applica-

tions. Existing throw-and-catch fault handling mechanism

is an empirical mechanism that does not provide sound and

complete diagnosis. In this paper, we develop a monitor-

ing and diagnosis mechanism based on solid theories in

MBD. Automata are used to give a formal modelling of

Web service processes described in BPEL. We adapt the

existing MBD techniques for DES to diagnose Web ser-

vice processes. Web service processes have all the features

of software systems and do not function abnormally until

an exception is thrown, which makes the diagnosis princi-

ple different from diagnosing physical systems where fault

events are unobservable. The approach developed here re-

constructs execution trajectories based on the model of the

process and the observations from the execution. The vari-

able dependency relations are utilized to deduce the actual

Web services within a trajectory responsible for the thrown

exceptions. The approach is sound and complete in the con-

text of modelled behaviour. A BPEL engine can be ex-

tended for the monitoring and diagnosis approach devel-

oped in this paper.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,

and et.al. Business process execution lan-

guage for Web Services (BPEL4WS) 1.1, 2003.

ftp://www6.software.ibm.com/software/developer/library/ws-

bpel.pdf, retrieved April 10, 2005.

[2] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Pi-

cardi, and M. Segnan. Cooperative model-based diag-

nosis of web services. In Proceedings of the 16th In-

ternational Workshop on Principles of Diagnosis (DX-

2005), pages 125–132, 2005.

[3] I. Grosclaude. Model-based monitoring of software

components. In Proceedings of the 16th European

Conf. on Artificial Intelligence (ECAI’04), pages 1025–

1026, 2004.

[4] W. Hamscher, L. Console, and J. de Kleer, editors.

Readings in model-based diagnosis. Morgan Kauf-

mann, 1992.

[5] B. Korel and J. Laski. Dynamic program slicing. Infor-

mation Processing Letters, 29(3):155–163, 1988.

[6] Mark Weise. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352–357, 1984.

[7] Franz Wotawa. On the relationship between model-

based debugging and program slicing. Artificial Intelli-

gence, 135:125–143, 2002.

[8] Y. Yan, Y. Pencolé, M-O. Cordier, and A. Grastien.

Monitoring web service networks in a model-based ap-

proach. In 3rd IEEE European Conference on Web Ser-

vices (ECOWS05), Växjö, Sweden, Nov. 14-16, 2005.

IEEE Computer Society.

9

