
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

International Journal of Innovative Computing and Applications (IJICA), 3, 1, 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=69236886-9edd-49bb-aa45-c7bcb1231f5f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=69236886-9edd-49bb-aa45-c7bcb1231f5f

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A bottom-up algorithm for query decomposition
Le, T.T.T.; Doan, D.D.; Bhavsar, Virendrakumar C.; Boley, Harold

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

A Bottom-up Algorithm for Query

Decomposition *

Le, T.T.T., Doan, D.D., Virendrakumar, C., Bhavsar, C.,
Boley, H.
December 2007

* published in The International Journal of Innovative Computing and
Applications (IJICA). December 2007. NRC 50342.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Int. J. of Innovative Computing and Applications, Vol. X, Nos. XXX, 2007 43

Copyright © 2004 Inderscience Enterprises Ltd.

A Bottom-up Algorithm for Query

Decomposition

Thi Thu Thuy Le, Dai Duong Doan, and Virendrakumar C.
Bhavsar
Faculty of Computer Science,

University of New Brunswick,

Fredericton, New Brunswick, Canada

E-mail: {Thuy_Thi_Thu.Le, Duong_Dai.Doan, bhavsar} AT unb.ca

Harold Boley
Institute for Information Technology -e-Business, NRC,

Fredericton, New Brunswick, Canada

E-mail: harold.boley AT nrc.gc.ca

Abstract: In order to access data from various data repositories, in Global-As-View
approaches an input query is decomposed into several subqueries. Normally, this
decomposition is based on a set of mappings, which describe the correspondence of data
elements between a global schema and local ones. However, building mappings is a
difficult task, especially when the number of participating local schemas is large. In our
approach, an input query is automatically decomposed into subqueries without using
mappings. An algorithm is proposed to transform a global path expression (e.g., an XPath
query) into local path expressions executable in local schemas. This algorithm considers
parts of a path expression from right to left, i.e., the algorithm traverses from the bottom to
the top of a schema tree depending on the structure of local schemas. Compared to top-
down approaches, such as by Lausen and Marron, our algorithm can reduce the time for
forming subqueries for local (e.g., XML) schemas to a large extent.

Keywords: Query Decomposition, Bottom-up Strategy, Database Integration.

Reference to this paper should be made as follows: Le, T.T.T., Doan, D.D., Bhavsar, V.C.,
and Boley, H. (2007) `A Bottom-up Algorithm for Query Decomposition', Int. J. of
Innovative Computing and Applications, Vol. XXX, Nos. XXX, pp.XXX.

Biographical notes: Thi Thu Thuy Le received her bachelor degree (with honors) in
Information Technology from the Hue University of Science, Vietnam, in 1999, and her
master degree in Computer Science from the Asian Institute of Technologies, Thailand, in
2002. She is currently a Ph.D. candidate in the Faculty of Computer Science, University of
New Brunswick, Fredericton, Canada. Her research interests include database integration,
query processing for integrated databases, and spatio-temporal databases.

Dai Duong Doan received his bachelor degree (with honors) in Informatics from the
University of Hue, Vietnam, in 2000, and his master degree in Computer Science from the
Asian Institute of Technologies, Thailand, in 2002. He is currently a Ph.D. candidate in the
Faculty of Computer Science, University of New Brunswick, Fredericton, Canada. His
research interests include database integration, semantic web, and bioinformatics.

Dr. Virendrakumar C. Bhavsar received the B.Eng. (Electronics and
Telecommunications) from University of Poona, India, in 1971, and the M.Tech. (Electrical
Eng.) and Ph.D. (Electrical Eng.) degrees from the Indian Institute of Technology (I.I.T.),
Bombay, in 1973 and 1982, respectively. He holds the Information Systems Professional
(ISP) designation from CIPS, Canada. He was on the faculty of the Department of
Computer Science and Engineering, I.I.T. Bombay from 1974-83. Since 1983 he has been
at the University of New Brunswick, Fredericton, where he is currently a Professor and the
Dean of the Faculty of Computer Science. He is also the Director of the Advanced
Computational Research Laboratory. He is the President of the SAI Super and Intelligent
Computer Systems, Inc. He has authored over 130 research papers in journals and
conference proceedings and has edited three volumes. His current research interests include

44 LE, T.T.T., DOAN, D.D., BHAVSAR, V.C., AND BOLEY, H.

parallel and distributed processing, artificial intelligence applications in e-Business, e-
Learning and bioinformatics, and the semantic web.

Dr. Harold Boley is Adjunct Professor at the Faculty of Computer Science, University of
New Brunswick, Canada, and leader of the Semantic Web Laboratory at NRC IIT,
Fredericton. His current focus is Semantic Web knowledge representation combining
ontologies and rules. He received his PhD and Habilitation degrees in Computer Science
from the Universities of Hamburg and Kaiserslautern, respectively. He developed the
Relational-Functional Markup Language (RFML) before starting and co-leading the Rule
Markup Initiative (RuleML). As member of the Joint Committee he co-designed the
Semantic Web Rule Language (SWRL), which combines the W3C-recommended Web
Ontology Language OWL and RuleML. He also led the design of a First-Order Logic Web
language (FOL RuleML) and contributed to the design of the Semantic Web Services
Language (SWSL). He is co-editor of the W3C Rule Interchange Format Working Group
(RIF Basic Logic Dialect).

1 INTRODUCTION

One of the most important challenges of Web applications is

the utilization of available heterogeneous Web data sources

to automatically share or interoperate data. Systems such as

XSIS (Doan and Wuwongse (2003)), InfoSleuth (Bayardo et

al. (1997)), FLORID (Ludascher et al. (1998)), and LoPiX

(May (2005)) can help users, who want to get relevant data

from distributed and heterogeneous sources, to avoid

generating these data from scratch. However, data

integration (data interoperation and data interchange) is not

an easy task. It usually requires several steps, such as: (i)

creating a global schema and a set of mappings for data

sharing between participating sources, (ii) resolving data

conflicts, (iii) decomposing queries of users, and (iv)

optimizing these queries for efficient answering. In Global-

As-View (GAV) integration systems (Baru et al. (1999),

Doan and Wuwongse (2003); Ludascher et al. (1998), Le

and Doan (2004), Le and Doan (2005)), all participating

data sources follow their own schemas, which typically

differ from the global schema. When users pose queries

based on this global schema, these queries cannot be

directly employed to query local sources due to the different

structures of the global schema and the local ones. In order

to access data from these sources for further processing, the

input query must be decomposed into subqueries. Each

subquery conforms to the structure of the schema of its local

source; thus, it can be executed to get the relevant data.

Related work about XML-based integration systems is

given in (Baru et al. (1999), Baru et al. (1998), Bi and Lamb

(2001), Rodriguez-Gianolli and Mylopoulos (2001), Le and

Wuwongse (2003)). A common characteristic of these

systems is that a global view (i.e., a global schema) is

usually built to reconcile discrepancies among

heterogeneous data sources. Based on this global view, a set

of mappings (Le and Doan (2005), Le and Wuwongse

(2003)) is defined to describe the correspondences of

elements between local sources and those of the global

view. A mediator (Doan and Wuwongse (2003)), the main

component of such a system, handles query processing

using mappings. Thus, mappings play an important role in

the success of the systems. However, building mappings is a

difficult task, especially when the number of participating

local schemas is large. Normally, these mappings are

handcrafted with the help of database experts. Moreover, in

a dynamic environment, participating databases evolve with

time; thus, maintaining mappings between these databases

becomes a great challenge (Doan and Halevy (2005),

McCann et al. (2005)). The current paper proposes an

algorithm which alleviates the need for mappings.

An overview of our proposed approach is given in Section

2. Section 3 gives a query decomposition example. The

assumptions of our approach are stated in Section 4. Section

5 describes our algorithm for query decomposition,

including a flowchart and examples. An extension of our

algorithm to process additional cases of input queries is

given in Section 6. Section 7 focuses on our algorithm

analysis and comparisons. Finally conclusions are given in

Section 8.

2 PROPOSED APPROACH

Lausen and Marron (LM) (Lausen and Marron (2002)) have

proposed a query decomposition approach without the use

of mappings. They give a top-down algorithm for query

decomposition. In our approach, a user’s query (e.g., an

XPath query (XSLT (2007))) is decomposed into sub-

queries without mappings using a bottom-up algorithm.

Consider a global XPath query '/p1/.../pi/.../pn'. In the top-

down strategy, the leftmost part p1 is evaluated first. This

evaluation is performed from the top to the bottom of the

XML tree representing the local schema. This step is

recursively applied to all parts of the global query from left

to right (i.e., from p1 to pn). The top-down query

decomposition algorithm is not efficient because in an

XPath query the rightmost part (i.e., pn) plays the most

important role. It is the actual result, that the user wants to

extract from the integrated system. Therefore, we need to

determine whether or not this part exists in a specific local

schema. If pn does not exist in a local schema, we can

quickly conclude that there is no subquery for this schema.

Therefore, in our bottom-up strategy, we first evaluate the

rightmost part, and then sequentially proceed from the right

to the left parts of the input query, hence from the bottom to

the top of the XML tree representing the local schema. This

can significantly reduce the time for searching information

in XML trees.

A BOTTOM-UP ALGORITHM FOR QUERY DECOMPOSITION 45

Figure 1 Example of a global schema and two local schemas (from Lausen and Marron (2002))

3 QUERY DECOMPOSITION EXAMPLE

To explain our algorithm, an example from Lausen and

Marron (2002) is used. Assume that we have two local

schemas (Figure 1.b and 1.c) of two databases, namely

SESP and BIGGER, represented as trees. We also assume a

global schema (Figure 1.a), which is the result of an

integration of the two local schemas SESP and BIGGER.

This schema integration step is out of scope of this paper

(see Doan and Wuwongse (2003)). Our task, query

decomposition, is to process input queries so that they can

extract relevant data from the two above local databases

using the global schema. An example of an input XPath

query is Qglobal =

'/department/mobile/products/jammer[price<20]', finding

the content of all jammer elements having price less than

20, which follows the structure of the global schema. Since

each local schema has its own structure, the above query

must be decomposed into two queries QSESP

='/products/jammer[price<20]' for the SESP schema and

QBIGGER ='/department/mobile/jammer[price<20]' for the

BIGGER schema.

4 ASSUMPTIONS

In order to apply our algorithm, we make the following

assumptions similar to those in Lausen and Marron (2002).

There are several data sources participating in the system.

Each of them, represented in XML, has its own local

schema. Since these data sources are created by different

designers, there often exist conflicts between their

respective structures. Moreover, these schemas share a

predefined global schema. For example, in Figure 1, while

in the SESP schema, products is the father element of

jammer, in the BIGGER schema mobile is the father element

of jammer; also, in the global schema, mobile is the father

element of products. It is clear that there are conflicts

between schemas SESP and BIGGER. However, when data

between such schemas need to be interoperated, they must

all conform to the global schema as their integration view

(see Figure 1). We also assume that naming conflicts among

local schemas do not exist. This means that our algorithm

cannot be applied directly in the presence of naming

conflicts such as synonyms or homonyms among local

schemas. Further, we assume that there are two built-in

functions for finding the occurrences and the position of a

node in an XML tree.

Moreover, we assume the following about the form of

input and output queries: An input query according to the

global schema has the form of a path expression

'/p1/p2/.../pi/.../pn−1/pn'. The decomposed subqueries

according to the local subschemas have the form of path

expressions '[/][/p*
1][/p

*
2]...[/p

*
i]...[/p

*
n-1]/p

*
n', where

asterisks denote possible renamings, '[]' as in EBNF denotes

optional parts, and a single '/' as in XPath denotes an

(immediate) child part while '//' (possible because '[/]' can

denote '/') denotes an (arbitrarily remote) descendant. Since

we assume that an arbitrary number of left parts can be

omitted (cf. '//') and that the right-most part must always be

present (cf. pn), our bottom-up strategy turns out to be

superior to LM’s top-down strategy: Because of the possible

'//'-openness of a decomposed subquery down from the root,

it will be worthwhile to first search for the fixed pn on the

leaf level of a local schema and work (basically) upward

from there.

5 QUERY DECOMPOSITION ALGORITHM

In our algorithm, local schemas are processed sequentially.

For each local schema, the global query is transformed into

a local query following the structure of this local schema.

department

computing mobile ...

products personel

jammer

company name price

jammer

company name price

products
department

computing mobile ...

jammer

company name price

a. Global schema b. SESP schema c. BIGGER schema

46 LE, T.T.T., DOAN, D.D., BHAVSAR, V.C., AND BOLEY, H.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Input

 A local schema S

 A user query Qglobal based on a global schema
Output

 A decomposed query Subquery for S

Algorithm

Function BottomUpDecomposition(S, Qglobal)

Anchor:= LeftmostLeafNode;

Subquery:='';

i:=|Qglobal|;

repeat

 if Check(Pi , Anchor)

 {

 if Subquery=''

 Subquery:=Pi

 else

 {

 if Pi=Anchor

 Subquery:=Pi⊕'/'⊕Subquery
 else

 Subquery:=Pi⊕'//'⊕Subquery;
 }

 if IsRoot(Pi)

 Subquery:='/'⊕Subquery
 else

 {

 if (i>1)

 % pi is not the leftmost part of Qglobal

 Anchor:=father(Pi)

 else

 Subquery:='//'⊕Subquery
 }

 }

 else

 % Pi does not exist

 if (Subquery <> '') and (i=1)

 Subquery:='//'⊕Subquery;
i:=i-1;

until (i=0) or (Subquery='') or IsRoot(Pi+1);

return Subquery;

Figure 2 Pseudo-code of the algorithm for finding a subquery

Thus, by applying this algorithm for all local schemas,

local subqueries are obtained for these local sources. The

algorithm, given in pseudo-code below, transforms an

XPath query Qglobal ='/p1/p2/.../pi/.../pn−1/pn' following a

global schema into a subquery following the local schema.

The main idea of the algorithm is as follows. We first take

the rightmost part pn of the user query to evaluate. If pn is

not found in the local schema, we can immediately conclude

that there is no decomposed subquery for the local schema

and stop the algorithm. Otherwise, if pn is found at a node in

the tree (the local schema), we mark that node so that the

next search will only be performed on its ancestor nodes

(i.e., the nodes on the path from the marked node to the root

of the tree). We then sequentially take pi(i =(n − 1), (n −

2),..., 1) of the query to evaluate. We check whether pi exists

in the local schema, proceeding to the ancestor node(s) if it

does not. Note that, instead of searching the whole tree, we

only need to search the ancestor nodes of the previously

found node, which we have marked. This can significantly

reduce the time for searching a node in a tree. If pi is found,

it will be concatenated to the local subquery.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Input

 P: a node to be found

 Anchor: current pointer

Output

If P is found, return Anchor pointing to P.

Otherwise, return Anchor pointing to nil.

Algorithm

Function Check (P, Anchor)

% We assume root.next=nil;

% For the first time a search is performed on the tree, we begin our

% search with leaf nodes and then their ancestors.

if Anchor = LeftmostLeafNode

 {NodeName=''

 Q:= Initialize the queue

 Enqueue(Q, all leaf nodes from left to right

 starting from the lowest level)

 while (Anchor <> nil and Anchor <> P)

 {

 if (Anchor <> root) and (Anchor.father.name <> NodeName)

 {Enqueue(Q,Anchor.father);

 NodeName:=Anchor.father.name;}

 Anchor:=Dequeue(Q);

 }

 if (Anchor <> nil) return Anchor;

}

else

% Anchor is not at the leaf node

% We search for P from the ancestors of Anchor

{

 while ((Anchor <> nil) and (Anchor <> P))

 Anchor:=Anchor.father;

 if (Anchor <> nil) return Anchor

}

return nil;

Figure 3 Pseudo-code of the algorithm for checking the

existence of a node from the bottom to the top in a tree

In the algorithm (Figure 2), ⊕ denotes concatenation. The

flowchart in Figure 5 depicts the algorithm given in Figure

2. In order to explain our algorithm, we will walk though it

using the two local schema examples of Figure 1.

computing price name company

Figure 4 State of Q after execution of statements 19-20 from

Figure 3 for the BIGGER schema

Since the algorithm searches for pn in the XML tree of a

local schema from the bottom up to the root, Anchor is used

to mark a node in the tree from where the algorithm can

start to search. At the initial state of our algorithm, Anchor =

LeftmostLeafNode means that we begin to search from the

leftmost leaf node of the tree. The function Check(pi,

Anchor) in line 14 of the pseudo-code in Figure 2 checks

Enqueue Dequeue

A BOTTOM-UP ALGORITHM FOR QUERY DECOMPOSITION 47

whether pi exists from the Anchor up to the root node. The

main task of Check(P, Anchor) is to find the node P in the

local schema (i.e., a tree) from a current node Anchor up to

the root node such that the number of visited nodes in the

worst case is equal the number of nodes in the tree. In order

to achieve this goal, we construct a queue Q as follows. All

the leaf nodes in the tree of a local schema are enqueued,

beginning from the leaves at the lowest level and

proceeding to the leaves of successively higher levels,

always in a left-to-right manner. The state of Q

after

execution of statements 19-20 from Figure 3 for the

BIGGER schema (see Figure 1) is as given in Figure 4.

If it is the first time Check(P, Anchor) is called, we begin

our search with the leaf nodes enqueued in Q. Each time we

dequeue a node, if that node is not P (i.e., we still have not

found P in the tree) we check if its father node is already in

Q. If the father node is not in Q, we enqueue the father

node in Q. After processing all the leaf nodes, we only need

to process the remaining nodes in Q

(i.e., all father nodes of

leaf nodes). We apply this strategy iteratively until Q

is

empty. Note that we might visit all nodes of the tree,

bottom-up, in the worst case. With this strategy each node is

Figure 5 Flowchart of the algorithm in Figure 2 for finding a subquery

Check(Pi, Anchor)

Pi exists in the local

schema S from Anchor up

to the root node

Pi is matched with the

root of S

Subquery:='/'⊕Subquery

Subquery:=Pi⊕'/'⊕Subquery

Anchor:=father(Pi)in S

Yes

i>1

No

Yes

Anchor:=LeftmostLeafNode

Subquery:=''
i:= |Qglobal|

Subquery=''

Yes
No

Subquery:=Pi Pi=Anchor

Yes

Subquery:=Pi⊕'//'⊕Subquery

No

Return Subquery

Yes

No

No

Subquery=''

i=1

Subquery:='//'⊕Subquery

Yes

No Yes

No

i := i-1

48 LE, T.T.T., DOAN, D.D., BHAVSAR, V.C., AND BOLEY, H.

visited at most once. If the previous Check(P, Anchor) call

has found a node, for the next calls we simply search the

ancestors of that previously marked node, i.e., Anchor.

5.1 Example 1

In this example, from a global query (with n = 4) Qglobal ='

/department/mobile/products/jammer', we produce a

subquery for the local schema SESP (Figure 1.b) using the

algorithm of Figure 2. We initialize Subquery :='' and

Anchor := LeftmostLeafNode. We start the algorithm with p4

:='jammer'. Since p4 is found in schema SESP , p4 is a part

of the transformed query. Because Subquery ='', we obtain

Subquery :='jammer'. Now, we have i>1, Subquery

:='jammer', p4 not the root of SESP , and Anchor ='product'.

Therefore we continue the loop. Iteratively, we take p3

:='products' from the query Qglobal. Since p3 is found in the

SESP schema, p3 is a part of the transformed query. Because

p3 = Anchor, we obtain Subquery := p3 ⊕ '/' ⊕ 'jammer'

(i.e., Subquery :='products/jammer'). Now, p3 ='products' is

the root node of the SESP schema and the algorithm stops.

We find that the local query for the SESP schema is

Subquery :='products/jammer'.

5.2 Example 2

In this example, we produce a subquery for the schema

BIGGER (Figure 1.c). Again given Qglobal :=

'/department/mobile/products/jammer', like in Example 1,

we initiate Subquery ='' and Anchor = LeftmostLeafNode.

We take the rightmost part p4 := 'jammer' from the query

Qglobal . Now, p4 is found and Subquery =''. So, we assign

Subquery ='jammer'. Because Subquery <>'' and p4 is not

the root node, we continue our algorithm by searching from

the mobile node up to the root node (Anchor :=

father('jammer') :='mobile'). In the next step, we have p3

='products'. We find that p3 does not exist in BIGGER,

Subquery <>'' and i>1. Therefore, the next step is now

performed with p2 :='mobile'. Because p2 is found in the

schema, Subquery <>'' and p2 is not the root node, the

subquery becomes 'mobile/jammer' and we go to the next

step with p1:='department', and Anchor ='department'. p1 is

found in BIGGER. Since department is the root node of the

BIGGER schema, the algorithm stops. The subquery found

for the BIGGER schema is Subquery :='
/department/mobile/jammer'.

6 ADDITIONAL CASES OF INPUT QUERIES

6.1 Constraints in Queries

We can apply our algorithm to process XPath queries that

contain constraints (filter expressions). For example, if we

have a query Qglobal:=

'/department/mobile/products/jammer[price<20]', we have

to find the corresponding element of price for subqueries

following local schemas. Since price is a child element of

jammer, we can apply our algorithm by examining price

before jammer. This reduces considerably the time for

forming a subquery because we can avoid transforming the

whole query if price does not exist in a local schema. For

example, if we apply the Qglobal query to the schema in

Figure 6 (a subschema of Figure 1.b), we can quickly

recognize that the corresponding subquery for this schema

does not exist when we first transform price.

Figure 6 A local schema without the price leaf node (adapted

from Lausen and Marron (2002))

Moreover, if constraints of input queries are more general

(e.g., [/price < 20] or [//price < 20]), we can separately

apply our algorithm for those constraints before

transforming the whole query.

6.2 Conflicts Between Schemas

Figure 7 Naming conflicts between a global schema and a

local schema (adapted from Lausen and Marron (2002))

Our algorithm shows mismatches between the global

schema and local ones concerning their structures. Other

naming conflicts (Doan and Le (2005)), such as synonyms

and homonyms, are not considered here. However, we can

resolve those conflicts using an ontology or a dictionary.

Even though naming conflicts can be better resolved using

an ontology than a dictionary, it is beyond the scope of this

paper (see Doan and Le (2005), Doan and Wuwongse

(2003) for a combination of ontologies and rules for schema

integration, and Hakimpour and Geppert (2005) for a

products

jammer

company name

b. Local schema F

Global schema Schema F

name fullname

jammer jammerp

… …

c. Dictionary

department

computing mobile ...

products personel

jammer

company name price

a. Global schema

jammerp

company fullname price

products

A BOTTOM-UP ALGORITHM FOR QUERY DECOMPOSITION 49

utilization of similarity relations between formal ontologies

to handle semantic heterogeneity in schema integration for

federated databases). In our algorithm, we use a dictionary,

which contains names of elements in the global schema and

their corresponding ones in local schemas. Using the

dictionary, we first translate the name of each element of the

global query into its corresponding name in the local

schema, and then apply the algorithm to it. For example, in

Figure 7, there are naming conflicts between the global

schema and the local schema F such as name and fullname,

and jammer and jammerp. In this case, we can use a

dictionary (Figure 7.c) to resolve the conflicts. Thus, when

finding a subquery for the schema F , instead of using name

to search in schema F , we use fullname with the support of

the dictionary.

6.3 Leaf Nodes with the Same Label

Figure 8 Homonym conflicts in a global schema and a local

schema

In some special cases, there are leaf nodes with the same

label. For example, name is found in several leaf nodes of

both the global schema (Figure 8.a) and the local schema

(Figure 8.b). This situation is actually a homonym conflict,

a special type of the naming conflict. As stated in Section 4,

our algorithm cannot be applied directly in the presence of

naming conflicts. For example, given a query

Qglobal:='jammer1/name', we need to decompose a local

query for G. When applying our proposed algorithm,

fortunately, if Anchor first points to name, which is the child

node of jammer1 in G, we obtain that a local query for G is

Subquery :='//jammer1/name'. Otherwise, if Anchor points

to name, which is the child node of jammer2 in G, we only

obtain Subquery :='//name'. This local query '//name' will

provide more solutions than we want (extracted data are

name of both jammer1 and jammer2 in G). However, with

the top-down strategy (Lausen and Marron (2002)), the

local query produced is Subquery :='//jammer1/name',

which is a better solution. These conflicts must be resolved

during the schema integration processes. A possible solution

is to rename the homonymous terms (nodes). This is,

however, out of scope of this paper (see Doan and Le (2005)

and Doan and Wuwongse (2003) for details).

7 ALGORITHM ANALYSIS

In Lausen and Marron (2002), the authors transform a

global XPath query into local subqueries for local schemas

using three operators, namely no transformation, subquery

generalization and subquery elimination. These operators

are used to compute and select suitable elements from the

global query to form local subqueries. In their top-down

algorithm, the leftmost part (i.e., p1) of an XPath query

'/p1/.../pi/.../pn' is first evaluated using these three operators

applied to nodes in a local schema. The result from this step

is a context C1 of p1 in the local schema, which can be either

no transformation (if p1 is found at the root node), subquery

generalization (if p1 is found, but not at the root node) or

subquery elimination (if p1 is not found). This step is

recursively applied to all parts of the global query from left

to right (i.e., from p1 to pn). Thus, the result of their

algorithm is a sequence of contexts C1, ..., Ci, ..., Cn of the

query '/p1/.../pi/.../pn'. From this sequence of contexts, the

corresponding subquery of the input query will be produced.

Since each pi(i =1..n) has to be evaluated by all three

operators to select the best context, the time to search for

information in the local schema is computed as follows.

Suppose the local schema is represented in terms of a

binary tree with h as the height of the tree. Let T (1, 2, h)

and T (n, 2, h) represent the time complexity of the

evaluation of an arbitrary pi and a whole query with n parts

for a binary tree of height h, respectively. For each pi(i

=1..n) of the global query, the three operators, namely no

transformation, subquery generalization and subquery

elimination, are applied 1, 2h+1-1 and 1 times, respectively,

to evaluate pi. Therefore,

 T (1, 2, h) = 1+(2h+1-1)+1 = 2h+1+1

and

 T (n, 2, h) = n.(2h+1+1).

In general, we find that the time complexity of the

algorithm in Lausen and Marron (2002) for the whole query

given a full k-ary tree is

 T(n, k, h) = n.(kh+1-1)/(k-1)

However, as we have discussed in Section 2, this top-

down query decomposition algorithm is not always efficient

because in an XPath query the rightmost part (i.e., pn) plays

the most important role. It is the actual result (e.g., jammer),

which the user wants to get from the integrated system. This

can determine whether or not a subquery exists for a

specific local schema. If there exists no pn in a local schema,

we can quickly conclude that there is no subquery for this

schema. Thus, in our approach, we first evaluate the

rightmost part, and then sequentially proceed from the right

to the left parts of the input query and from the bottom to

the top of the XML tree representing the local schema. The

worst case of our algorithm occurs for a situation where

there exists no subquery for a local schema. In this case, the

rightmost part pn of the global query has to be compared to

a. Global schema

b. Local schema G

jammer1 jammer2 jammer3

name name name

department

computing mobile ...

products personel

jammer1 jammer2

name name

products

50 LE, T.T.T., DOAN, D.D., BHAVSAR, V.C., AND BOLEY, H.

all nodes of the local schema (i.e., 2h+1-1 nodes for a binary

tree). Recall that the Check(P, Anchor) algorithm can find

pn in a local schema from the leaf nodes up to the root node

such that the number of visited nodes in the worst case is

equal to the number of nodes in the tree. Therefore, the time

complexity of our algorithm is

 T (n, 2, h) = 2h+1-1

for a binary tree, and

 T (n, k, h) = (kh+1-1)/(k-1)

for a full k-ary tree (the total nodes in a tree). In the best

case, the rightmost part pn matches with a leaf node of the

tree at the first node, and the same happens for all pi nodes

at the upper levels of the tree. Therefore, the time

complexity of our algorithm in this case is

 T (n, 2, h) = min(n, h)

for a binary tree, and also

 T (n, k, h) = min(n, h)

for a k-ary tree. Here, the time complexity is min(n, h)

because our algorithm can stop when either all n parts of

Qglobal are processed or all nodes from the bottom to the top

of a tree (with the height h) are traversed.

8 CONCLUSION

We have proposed a bottom-up algorithm for query

decomposition without predefined mappings. The algorithm

can be applied to distributed XML-based data sources,

which may contain conflicts between their respective

structures. Having the same motivation as Lausen and

Marron (2002) but following a different strategy, we have

proposed a more efficient query decomposition algorithm.

Our contributions are as follows.

(i) A more efficient algorithm for query decomposition is

proposed. In the worst case, our algorithm is n times better

than that of Lausen and Marron (2002). In the best case, the

time complexity of our algorithm is only

 T (n, k, h) = min(n, h)

compared to

 T(n, k, h) = n.(kh+1-1)/(k-1)

of Lausen and Marron (2002).

(ii) A global query is efficiently processed based on its

constraints, because our algorithm can stop as soon as a

local schema is found not to satisfy these constraints.

(iii) Our algorithm can work with naming conflicts

between local schemas and the global one using a

dictionary. Our algorithm can also be extended to work not

only with XPath queries, but also with general path

expressions like those in Object-Oriented Databases

(Ludascher et al. (1998), May (2005)).

ACKNOWLEDGEMENT

We would like to thank the Vietnamese Government and the

Canadian NSERC for their financial support of this work.

REFERENCES

Baru, C. et al. (1999) ‘XML-Based Information Mediation with
MIX’, Proceedings of the International Conference on
Management of Data, Philadelphia, USA, ACM SIGMOD,
pp.597–599.

Baru, C. et al. (1998) ’Features and Requirements for an XML
View Definition Language: Lessons from XML Information
Mediation’, In Query Languages Workshop, Boston, USA.

Bayardo et al. (1997) ’InfoSleuth: agent-based semantic
integration of information in open and dynamic environments’,
Proceedings of the International conference on Management
of Data, Tucson, USA, ACM SIGMOD, pp.195–206.

Bi, Y. and Lamb, J. (2001) ’Facilitating Integration of Distributed
Statistical Databases Using Metadata and XML’, Proceedings
of New Techniques and Technologies in Statistics, Crete,
Greece, pp. 769–774.

Doan, A.H. and Halevy, A. (2005) ’Semantic Integration Research
in the Database Community: A Brief Survey’, AI Magazine,
Special Issue on Semantic Integration.

Doan, D.D. and Le, T.T.T. (2005) ’Classification and
Reconcilement of Conflicts between Heterogeneous XML
Schemas’, Proceeding of the 10th Conference on Artificial
Intelligence and Applications, Kaohsiung, Taiwan, pp. 1066–
1075.

Doan, D.D. and Wuwongse, V. (2003) ’XML Database Schema
Integration Using XDD’, Proceedings of Advances in Web-Age
Information Management Conference (WAIM03), Chengdu,
China, LNCS Vol. 2762, pp. 1066–1075.

Hakimpour, F. and Geppert, A. (2005) ’Resolution of Semantic
Heterogeneity in Database Schema Integration Using Formal
Ontologies’, Inf. Tech. and Management,Vol. 6, No. 1, pp.97–
122.

Lausen, G. and Marron, P.J. (2002) ’Adaptive Evaluation
Techniques for Querying XML-based E-Catalogs’,
Proceedings of the Twelfth International Workshop on Data
Engineering, San Jose, USA, pp. 19–27.

Le, T.T.T. and Duong, D.D. (2005) ’Query Decomposition Using
the XML Declarative Description Language’, Proceedings of
International Conference of Computational Science and Its
Applications, Singapore, LNCS, Vol. 3481, pp.1066–1075.

Le, T.T.T. and Duong, D.D. (2004) ’Integration of XML
Databases’, Journal of Hue University, Vol. 22, pp.45– 52.

Le, T.T.T. and Wuwongse, V. (2003) ’Query Processing of
Integrated XML Databases’, The Fifth International
Conference on Information Integrationand Web-based
Applications and Services (iiWAS2003), Jakarta, Indonesia,
Vol. 170, pp.335–344.

Ludascher et al. (1998) ’Managing Semistructured Data with
FLORID: A Deductive Object-Oriented Perspective’, Journal
of Information Systems, Vol. 23, No. 8, pp.589–613.

May, W. (2005) ’Logic-based XML data integration: a semi-
materializing approach’, Journal of Applied Logic, Vol. 3, No.
1, pp.271–307.

McCann, R. et al. (2005) ’Mapping maintenance for data
integration systems’, In VLDB, pp. 1018–1030.

Rodriguez-Gianolli, P. and Mylopoulos, J. (2001) ’A Semantic
Approach to XML-based Data Integration’, 20th International
Conference on Conceptual Modeling, Yokohama, Japan,
LNCS, Vol. 2224, pp. 117–132.

’XML Path Language (XPath). Version 1.0’,
http://www.w3.org/TR/xpath. Last accessed: Febuary 07.

