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1 INTRODUCTION 

One of the most important challenges of Web applications is 

the utilization of available heterogeneous Web data sources 

to automatically share or interoperate data. Systems such as 

XSIS (Doan and Wuwongse (2003)), InfoSleuth (Bayardo et 

al. (1997)), FLORID (Ludascher et al. (1998)), and LoPiX 

(May (2005)) can help users, who want to get relevant data 

from distributed and heterogeneous sources, to avoid 

generating these data from scratch. However, data 

integration (data interoperation and data interchange) is not 

an easy task. It usually requires several steps, such as: (i) 

creating a global schema and a set of mappings for data 

sharing between participating sources, (ii) resolving data 

conflicts, (iii) decomposing queries of users, and (iv) 

optimizing these queries for efficient answering. In Global-

As-View (GAV) integration systems (Baru et al. (1999), 

Doan and Wuwongse (2003); Ludascher et al. (1998), Le 

and Doan (2004), Le and Doan (2005)), all participating 

data sources follow their own schemas, which typically 

differ from the global schema. When users pose queries 

based on this global schema, these queries cannot be 

directly employed to query local sources due to the different 

structures of the global schema and the local ones. In order 

to access data from these sources for further processing, the 

input query must be decomposed into subqueries. Each 

subquery conforms to the structure of the schema of its local 

source; thus, it can be executed to get the relevant data. 

Related work about XML-based integration systems is 

given in (Baru et al. (1999), Baru et al. (1998), Bi and Lamb 

(2001), Rodriguez-Gianolli and Mylopoulos (2001), Le and 

Wuwongse (2003)). A common characteristic of these 

systems is that a global view (i.e., a global schema) is 

usually built to reconcile discrepancies among 

heterogeneous data sources. Based on this global view, a set 

of mappings (Le and Doan (2005), Le and Wuwongse 

(2003)) is defined to describe the correspondences of 

elements between local sources and those of the global 

view. A mediator (Doan and Wuwongse (2003)), the main 

component of such a system, handles query processing 

using mappings. Thus, mappings play an important role in 

the success of the systems. However, building mappings is a 

difficult task, especially when the number of participating 

local schemas is large. Normally, these mappings are 

handcrafted with the help of database experts. Moreover, in 

a dynamic environment, participating databases evolve with 

time; thus, maintaining mappings between these databases 

becomes a great challenge (Doan and Halevy (2005), 

McCann et al. (2005)). The current paper proposes an 

algorithm which alleviates the need for mappings.  

An overview of our proposed approach is given in Section 

2. Section 3 gives a query decomposition example. The 

assumptions of our approach are stated in Section 4. Section 

5 describes our algorithm for query decomposition, 

including a flowchart and examples. An extension of our 

algorithm to process additional cases of input queries is 

given in Section 6. Section 7 focuses on our algorithm 

analysis and comparisons. Finally conclusions are given in 

Section 8. 

2 PROPOSED APPROACH 

Lausen and Marron (LM) (Lausen and Marron (2002)) have 

proposed a query decomposition approach without the use 

of mappings. They give a top-down algorithm for query 

decomposition. In our approach, a user’s query (e.g., an 

XPath query (XSLT (2007))) is decomposed into sub-

queries without mappings using a bottom-up algorithm.  

Consider a global XPath query '/p1/.../pi/.../pn'. In the top-

down strategy, the leftmost part p1 is evaluated first. This 

evaluation is performed from the top to the bottom of the 

XML tree representing the local schema. This step is 

recursively applied to all parts of the global query from left 

to right (i.e., from p1 to pn). The top-down query 

decomposition algorithm is not efficient because in an 

XPath query the rightmost part (i.e., pn) plays the most 

important role. It is the actual result, that the user wants to 

extract from the integrated system. Therefore, we need to 

determine whether or not this part exists in a specific local 

schema. If pn does not exist in a local schema, we can 

quickly conclude that there is no subquery for this schema. 

Therefore, in our bottom-up strategy, we first evaluate the 

rightmost part, and then sequentially proceed from the right 

to the left parts of the input query, hence from the bottom to 

the top of the XML tree representing the local schema. This 

can significantly reduce the time for searching information 

in XML trees.  
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Figure 1    Example of a global schema and two local schemas (from Lausen and Marron (2002)) 

 

3 QUERY DECOMPOSITION EXAMPLE 

To explain our algorithm, an example from Lausen and 

Marron (2002) is used. Assume that we have two local 

schemas (Figure 1.b and 1.c) of two databases, namely 

SESP and BIGGER, represented as trees. We also assume a 

global schema (Figure 1.a), which is the result of an 

integration of the two local schemas SESP and BIGGER. 

This schema integration step is out of scope of this paper 

(see Doan and Wuwongse (2003)). Our task, query 

decomposition, is to process input queries so that they can 

extract relevant data from the two above local databases 

using the global schema. An example of an input XPath 

query is Qglobal = 

'/department/mobile/products/jammer[price<20]', finding 

the content of all jammer elements having price less than 

20, which follows the structure of the global schema. Since 

each local schema has its own structure, the above query 

must be decomposed into two queries QSESP 

='/products/jammer[price<20]' for the SESP schema and 

QBIGGER ='/department/mobile/jammer[price<20]' for the 

BIGGER schema.  

4 ASSUMPTIONS 

In order to apply our algorithm, we make the following 

assumptions similar to those in Lausen and Marron (2002). 

There are several data sources participating in the system. 

Each of them, represented in XML, has its own local 

schema. Since these data sources are created by different 

designers, there often exist conflicts between their 

respective structures. Moreover, these schemas share a 

predefined global schema. For example, in Figure 1, while 

in the SESP schema, products is the father element of 

jammer, in the BIGGER schema mobile is the father element 

of jammer; also, in the global schema, mobile is the father 

element of products. It is clear that there are conflicts 

between schemas SESP and BIGGER. However, when data 

between such schemas need to be interoperated, they must 

all conform to the global schema as their integration view 

(see Figure 1). We also assume that naming conflicts among 

local schemas do not exist. This means that our algorithm 

cannot be applied directly in the presence of naming 

conflicts such as synonyms or homonyms among local 

schemas. Further, we assume that there are two built-in 

functions for finding the occurrences and the position of a 

node in an XML tree.  

Moreover, we assume the following about the form of 

input and output queries: An input query according to the 

global schema has the form of a path expression 

'/p1/p2/.../pi/.../pn−1/pn'. The decomposed subqueries 

according to the local subschemas have the form of path 

expressions '[/][/p*
1][/p

*
2]...[/p

*
i]...[/p

*
n-1]/p

*
n', where 

asterisks denote possible renamings, '[]' as in EBNF denotes 

optional parts, and a single '/' as in XPath denotes an 

(immediate) child part while '//' (possible because '[/]' can 

denote '/') denotes an (arbitrarily remote) descendant. Since 

we assume that an arbitrary number of left parts can be 

omitted (cf. '//') and that the right-most part must always be 

present (cf. pn), our bottom-up strategy turns out to be 

superior to LM’s top-down strategy: Because of the possible 

'//'-openness of a decomposed subquery down from the root, 

it will be worthwhile to first search for the fixed pn on the 

leaf level of a local schema and work (basically) upward 

from there. 

5 QUERY DECOMPOSITION ALGORITHM 

In our algorithm, local schemas are processed sequentially. 

For each local schema, the global query is transformed into 

a local query following the structure of this local schema.  

department 

computing mobile ... 

products personel 

jammer 

company name price 

jammer 

company name price 

products 
department 

computing mobile ... 

jammer 

company name price 

a. Global schema b. SESP schema c. BIGGER schema 
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Input 

 A local schema S  

 A user query Qglobal based on a global schema  
Output 

 A decomposed query Subquery for S 

 

Algorithm 

 

Function BottomUpDecomposition(S, Qglobal) 

Anchor:= LeftmostLeafNode; 

Subquery:=''; 

i:=|Qglobal|; 

repeat 

  if Check(Pi ,  Anchor)  

  { 

    if Subquery=''  

 Subquery:=Pi 

    else 

    { 

       if Pi=Anchor  

   Subquery:=Pi⊕'/'⊕Subquery 
       else  

   Subquery:=Pi⊕'//'⊕Subquery; 
    } 

    if IsRoot(Pi) 

 Subquery:='/'⊕Subquery   
    else 

    { 

  if (i>1)  

  % pi is not the leftmost part of Qglobal 

 Anchor:=father(Pi) 

  else  

 Subquery:='//'⊕Subquery  
    }  

  } 

  else  

  % Pi does not exist 

    if (Subquery <> '') and (i=1)  

 Subquery:='//'⊕Subquery; 
i:=i-1; 

until (i=0) or (Subquery='') or IsRoot(Pi+1); 

return Subquery; 

Figure 2    Pseudo-code of the algorithm for finding a subquery 

 

Thus, by applying this algorithm for all local schemas, 

local subqueries are obtained for these local sources. The 

algorithm, given in pseudo-code below, transforms an 

XPath query Qglobal ='/p1/p2/.../pi/.../pn−1/pn' following a 

global schema into a subquery following the local schema. 

The main idea of the algorithm is as follows. We first take 

the rightmost part pn of the user query to evaluate. If pn is 

not found in the local schema, we can immediately conclude 

that there is no decomposed subquery for the local schema 

and stop the algorithm. Otherwise, if pn is found at a node in 

the tree (the local schema), we mark that node so that the 

next search will only be performed on its ancestor nodes 

(i.e., the nodes on the path from the marked node to the root 

of the tree). We then sequentially take pi(i =(n − 1), (n − 

2),..., 1) of the query to evaluate. We check whether pi exists 

in the local schema, proceeding to the ancestor node(s) if it 

does not. Note that, instead of searching the whole tree, we 

only need to search the ancestor nodes of the previously 

found node, which we have marked. This can significantly 

reduce the time for searching a node in a tree. If pi is found, 

it will be concatenated to the local subquery.  
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28

29
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Input 

 P: a node to be found  

 Anchor: current pointer   

Output 

 

If P is found, return Anchor pointing to P. 

Otherwise, return Anchor pointing to nil. 

 

Algorithm 

 

Function Check (P, Anchor)  

 

% We assume root.next=nil; 

% For the first time a search is performed on the tree, we begin our  

% search with leaf nodes and then their ancestors. 

if Anchor = LeftmostLeafNode 

 {NodeName='' 

 Q:= Initialize the queue 

 Enqueue(Q, all leaf nodes from left to right  

 starting from the lowest level) 

 while (Anchor <> nil and Anchor <> P)  

 {     

  if (Anchor <> root) and (Anchor.father.name <> NodeName) 

     {Enqueue(Q,Anchor.father); 

      NodeName:=Anchor.father.name;} 

  Anchor:=Dequeue(Q); 

 } 

 if (Anchor <> nil)  return Anchor; 

} 

else  

% Anchor is not at the leaf node 

% We search for P from the ancestors of Anchor 

 

{ 

  while ((Anchor <> nil) and (Anchor <> P))  

 Anchor:=Anchor.father; 

  if (Anchor <> nil) return Anchor 

} 

return nil; 

Figure 3    Pseudo-code of the algorithm for checking the 

existence of a node from the bottom to the top in a tree 

 

In the algorithm (Figure 2), ⊕ denotes concatenation. The 

flowchart in Figure 5 depicts the algorithm given in Figure 

2. In order to explain our algorithm, we will walk though it 

using the two local schema examples of Figure 1. 

 

 

 

 
computing price name company 

 

Figure 4       State of Q after execution of statements 19-20 from 

Figure 3 for the BIGGER schema  

 

Since the algorithm searches for pn in the XML tree of a 

local schema from the bottom up to the root, Anchor is used 

to mark a node in the tree from where the algorithm can 

start to search. At the initial state of our algorithm, Anchor = 

LeftmostLeafNode means that we begin to search from the 

leftmost leaf node of the tree. The function Check(pi, 

Anchor) in line 14 of the pseudo-code in Figure 2 checks 

Enqueue Dequeue 
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whether pi exists from the Anchor up to the root node. The 

main task of Check(P, Anchor) is to find the node P in the 

local schema (i.e., a tree) from a current node Anchor up to 

the root node such that the number of visited nodes in the 

worst case is equal the number of nodes in the tree. In order 

to achieve this goal, we construct a queue Q as follows. All 

the leaf nodes in the tree of a local schema are enqueued, 

beginning from the leaves at the lowest level and 

proceeding to the leaves of successively higher levels, 

always in a left-to-right manner. The state of Q
 

after 

execution of statements 19-20 from Figure 3 for the 

BIGGER schema (see Figure 1) is as given in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If it is the first time Check(P, Anchor) is called, we begin 

our search with the leaf nodes enqueued in Q. Each time we 

dequeue a node, if that node is not P (i.e., we still have not 

found P in the tree) we check if its father node is already in 

Q. If the father node is not in Q, we enqueue the father 

node in Q. After processing all the leaf nodes, we only need 

to process the remaining nodes in Q
 

(i.e., all father nodes of 

leaf nodes). We apply this strategy iteratively until Q
 

is 

empty. Note that we might visit all nodes of the tree, 

bottom-up, in the worst case. With this strategy each node is 

Figure 5       Flowchart of the algorithm in Figure 2 for finding a subquery     

Check(Pi, Anchor) 

Pi exists in the local 

schema S from Anchor up 

to the root node 

Pi is matched with the 

root of S 

Subquery:='/'⊕Subquery 

Subquery:=Pi⊕'/'⊕Subquery  

Anchor:=father(Pi)in S 

Yes  

i>1

No  

Yes  

Anchor:=LeftmostLeafNode 

Subquery:='' 
i:= |Qglobal| 

Subquery=''

Yes  
No  

Subquery:=Pi Pi=Anchor

Yes  

Subquery:=Pi⊕'//'⊕Subquery  

No  

Return Subquery

Yes  

No  

No  

Subquery=''

i=1 

Subquery:='//'⊕Subquery 

Yes  

No  Yes  

No  

 

i := i-1 
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visited at most once. If the previous Check(P, Anchor) call 

has found a node, for the next calls we simply search the 

ancestors of that previously marked node, i.e., Anchor. 

5.1 Example 1 

In this example, from a global query (with n = 4) Qglobal =' 

/department/mobile/products/jammer', we produce a 

subquery for the local schema SESP (Figure 1.b) using the 

algorithm of Figure 2. We initialize Subquery :='' and 

Anchor := LeftmostLeafNode. We start the algorithm with p4 

:='jammer'. Since p4 is found in schema SESP , p4 is a part 

of the transformed query. Because Subquery ='', we obtain 

Subquery :='jammer'. Now, we have i>1, Subquery 

:='jammer', p4 not the root of SESP , and Anchor ='product'. 

Therefore we continue the loop. Iteratively, we take p3 

:='products' from the query Qglobal. Since p3 is found in the 

SESP schema, p3 is a part of the transformed query. Because 

p3 = Anchor, we obtain Subquery := p3 ⊕ '/'  ⊕ 'jammer' 

(i.e., Subquery :='products/jammer'). Now, p3 ='products' is 

the root node of the SESP schema and the algorithm stops. 

We find that the local query for the SESP schema is 

Subquery :='products/jammer'.   

5.2 Example 2 

In this example, we produce a subquery for the schema 

BIGGER (Figure 1.c). Again given Qglobal := 

'/department/mobile/products/jammer', like in Example 1, 

we initiate Subquery ='' and Anchor = LeftmostLeafNode. 

We take the rightmost part p4 := 'jammer' from the query 

Qglobal . Now, p4 is found and Subquery =''. So, we assign 

Subquery ='jammer'. Because Subquery <>'' and p4 is not 

the root node, we continue our algorithm by searching from 

the mobile node up to the root node (Anchor := 

father('jammer') :='mobile'). In the next step, we have p3 

='products'. We find that p3 does not exist in BIGGER, 

Subquery <>'' and i>1. Therefore, the next step is now 

performed with p2 :='mobile'. Because p2 is found in the 

schema, Subquery <>'' and p2 is not the root node, the 

subquery becomes 'mobile/jammer' and we go to the next 

step with p1:='department', and Anchor ='department'. p1 is 

found in BIGGER. Since department is the root node of the 

BIGGER schema, the algorithm stops. The subquery found 

for the BIGGER schema is Subquery :=' 
/department/mobile/jammer'.  

6 ADDITIONAL CASES OF INPUT QUERIES  

6.1 Constraints in Queries 

We can apply our algorithm to process XPath queries that 

contain constraints (filter expressions). For example, if we 

have a query Qglobal:= 

'/department/mobile/products/jammer[price<20]', we have 

to find the corresponding element of price for subqueries 

following local schemas. Since price is a child element of 

jammer, we can apply our algorithm by examining price 

before jammer. This reduces considerably the time for 

forming a subquery because we can avoid transforming the 

whole query if price does not exist in a local schema. For 

example, if we apply the Qglobal query to the schema in 

Figure 6 (a subschema of Figure 1.b), we can quickly 

recognize that the corresponding subquery for this schema 

does not exist when we first transform price. 

 

 

 

 

 

 

 
 

Figure 6        A local schema without the price leaf node (adapted 

from Lausen and Marron (2002)) 

 

Moreover, if constraints of input queries are more general 

(e.g., [/price < 20] or [//price < 20]), we can separately 

apply our algorithm for those constraints before 

transforming the whole query. 

6.2 Conflicts Between Schemas 

 

 

 

 

 

 

 

 

 

 
Figure 7        Naming conflicts between a global schema and a 

local schema (adapted from Lausen and Marron (2002)) 

 

Our algorithm shows mismatches between the global 

schema and local ones concerning their structures. Other 

naming conflicts (Doan and Le (2005)), such as synonyms 

and homonyms, are not considered here. However, we can 

resolve those conflicts using an ontology or a dictionary. 

Even though naming conflicts can be better resolved using 

an ontology than a dictionary, it is beyond the scope of this 

paper (see Doan and Le (2005), Doan and Wuwongse 

(2003) for a combination of ontologies and rules for schema 

integration, and Hakimpour and Geppert (2005) for a 

products 

jammer 

company name 

b. Local schema F 

Global schema Schema F 

name fullname 

jammer jammerp 

… … 

c. Dictionary 

department

computing mobile ... 

products personel 

jammer 

company name price 

a. Global schema 

jammerp 

company fullname price 

products 
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utilization of similarity relations between formal ontologies 

to handle semantic heterogeneity in schema integration for 

federated databases). In our algorithm, we use a dictionary, 

which contains names of elements in the global schema and 

their corresponding ones in local schemas. Using the 

dictionary, we first translate the name of each element of the 

global query into its corresponding name in the local 

schema, and then apply the algorithm to it. For example, in 

Figure 7, there are naming conflicts between the global 

schema and the local schema F such as name and fullname, 

and jammer and jammerp. In this case, we can use a 

dictionary (Figure 7.c) to resolve the conflicts. Thus, when 

finding a subquery for the schema F , instead of using name 

to search in schema F , we use fullname with the support of 

the dictionary.  

6.3 Leaf Nodes with the Same Label 

 

 

 

 

 

 

 

 

 

 
Figure 8   Homonym conflicts in a global schema and a local 

schema 

 

In some special cases, there are leaf nodes with the same 

label. For example, name is found in several leaf nodes of 

both the global schema (Figure 8.a) and the local schema 

(Figure 8.b). This situation is actually a homonym conflict, 

a special type of the naming conflict. As stated in Section 4, 

our algorithm cannot be applied directly in the presence of 

naming conflicts. For example, given a query 

Qglobal:='jammer1/name', we need to decompose a local 

query for G. When applying our proposed algorithm, 

fortunately, if Anchor first points to name, which is the child 

node of jammer1 in G, we obtain that a local query for G is 

Subquery :='//jammer1/name'. Otherwise, if Anchor points 

to name, which is the child node of jammer2 in G, we only 

obtain Subquery :='//name'. This local query '//name' will 

provide more solutions than we want (extracted data are 

name of both jammer1 and jammer2 in G). However, with 

the top-down strategy (Lausen and Marron (2002)), the 

local query produced is Subquery :='//jammer1/name', 

which is a better solution. These conflicts must be resolved 

during the schema integration processes. A possible solution 

is to rename the homonymous terms (nodes). This is, 

however, out of scope of this paper (see Doan and Le (2005) 

and Doan and Wuwongse (2003) for details).  

7 ALGORITHM ANALYSIS 

In Lausen and Marron (2002), the authors transform a 

global XPath query into local subqueries for local schemas 

using three operators, namely no transformation, subquery 

generalization and subquery elimination. These operators 

are used to compute and select suitable elements from the 

global query to form local subqueries. In their top-down 

algorithm, the leftmost part (i.e., p1) of an XPath query 

'/p1/.../pi/.../pn' is first evaluated using these three operators 

applied to nodes in a local schema. The result from this step 

is a context C1 of p1 in the local schema, which can be either 

no transformation (if p1 is found at the root node), subquery 

generalization (if p1 is found, but not at the root node) or 

subquery elimination (if p1 is not found). This step is 

recursively applied to all parts of the global query from left 

to right (i.e., from p1 to pn). Thus, the result of their 

algorithm is a sequence of contexts C1, ..., Ci, ..., Cn of the 

query '/p1/.../pi/.../pn'. From this sequence of contexts, the 

corresponding subquery of the input query will be produced. 

Since each pi(i =1..n) has to be evaluated by all three 

operators to select the best context, the time to search for 

information in the local schema is computed as follows.  

Suppose the local schema is represented in terms of a 

binary tree with h as the height of the tree. Let T (1, 2, h) 

and T (n, 2, h) represent the time complexity of the 

evaluation of an arbitrary pi and a whole query with n parts 

for a binary tree of height h, respectively. For each pi(i 

=1..n) of the global query, the three operators, namely no 

transformation, subquery generalization and subquery 

elimination, are applied 1, 2h+1-1 and 1 times, respectively, 

to evaluate pi. Therefore,  

   T (1, 2, h) = 1+(2h+1-1)+1 = 2h+1+1 

and  

  T (n, 2, h) = n.(2h+1+1). 

 

In general, we find that the time complexity of the 

algorithm in Lausen and Marron (2002) for the whole query 

given a full k-ary tree is  

  T(n, k, h) = n.(kh+1-1)/(k-1) 

 

However, as we have discussed in Section 2, this top-

down query decomposition algorithm is not always efficient 

because in an XPath query the rightmost part (i.e., pn) plays 

the most important role. It is the actual result (e.g., jammer), 

which the user wants to get from the integrated system. This 

can determine whether or not a subquery exists for a 

specific local schema. If there exists no pn in a local schema, 

we can quickly conclude that there is no subquery for this 

schema. Thus, in our approach, we first evaluate the 

rightmost part, and then sequentially proceed from the right 

to the left parts of the input query and from the bottom to 

the top of the XML tree representing the local schema. The 

worst case of our algorithm occurs for a situation where 

there exists no subquery for a local schema. In this case, the 

rightmost part pn of the global query has to be compared to 

a. Global schema 

b. Local schema G 

jammer1 jammer2 jammer3 

name name name 

department 

computing mobile ... 

products personel 

jammer1 jammer2

name name 

products 
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all nodes of the local schema (i.e., 2h+1-1 nodes for a binary 

tree). Recall that the Check(P, Anchor) algorithm can find 

pn in a local schema from the leaf nodes up to the root node 

such that the number of visited nodes in the worst case is 

equal to the number of nodes in the tree. Therefore, the time 

complexity of our algorithm is  

  T (n, 2, h) = 2h+1-1 

for a binary tree, and  

         T (n, k, h) = (kh+1-1)/(k-1)  

 

for a full k-ary tree (the total nodes in a tree). In the best 

case, the rightmost part pn matches with a leaf node of the 

tree at the first node, and the same happens for all pi nodes 

at the upper levels of the tree. Therefore, the time 

complexity of our algorithm in this case is  

  T (n, 2, h) = min(n, h)  

 

for a binary tree, and also  

  T (n, k, h) = min(n, h)  

for a k-ary tree. Here, the time complexity is min(n, h) 

because our algorithm can stop when either all n parts of 

Qglobal are processed or all nodes from the bottom to the top 

of a tree (with the height h) are traversed.  

8 CONCLUSION 

We have proposed a bottom-up algorithm for query 

decomposition without predefined mappings. The algorithm 

can be applied to distributed XML-based data sources, 

which may contain conflicts between their respective 

structures. Having the same motivation as Lausen and 

Marron (2002) but following a different strategy, we have 

proposed a more efficient query decomposition algorithm. 

Our contributions are as follows.  

(i) A more efficient algorithm for query decomposition is 

proposed. In the worst case, our algorithm is n times better 

than that of Lausen and Marron (2002). In the best case, the 

time complexity of our algorithm is only 

  

  T (n, k, h) = min(n, h)  

 

compared to 

 

          T(n, k, h) = n.(kh+1-1)/(k-1) 

 

of Lausen and Marron (2002). 

(ii) A global query is efficiently processed based on its 

constraints, because our algorithm can stop as soon as a 

local schema is found not to satisfy these constraints.  

(iii) Our algorithm can work with naming conflicts 

between local schemas and the global one using a 

dictionary. Our algorithm can also be extended to work not 

only with XPath queries, but also with general path 

expressions like those in Object-Oriented Databases 

(Ludascher et al. (1998), May (2005)). 
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