
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the AAAI Fall Symposium on Rational Agency: Concepts, 
Theories, Models, and Applications, 1995

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=677bdc20-016d-4501-b91a-5ca5e182b01a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=677bdc20-016d-4501-b91a-5ca5e182b01a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

On Supporting Rational Behaviour in Real-Time Multi-agent Domains
Ferguson, Innes



On supporting rational behavior in real-time
multi-agent domains

Innes A. Ferguson
Interactive Information Group

Institute for Information Technology
National Research Council

Ottawa, ON, Canada K1A 0R6
innes@ai.iit.nrc.ca

Abstract

This paper presents a number of behavioral and archi-

tectural design components suitable for controlling

rational, autonomous, resource-bounded agents in a

class of real-time multi-agent domains. A number of

these components have been integrated into the Tour-

ingMachine architecture which is described in some

detail. An account is also given of a TouringMachine

agent’s model of practical rationality which is cen-

tered around its capability for reasoning abductively

about other agents’ mental states.

Introduction
This paper is concerned with aspects of the design and
implementation of an integrated agent control architecture,
the TouringMachine architecture (Ferguson 1992; Ferguson
1995), suitable for controlling and coordinating the actions
of an autonomous rational agent embedded in a partially-
structured, dynamic, multi-agent world.

Implemented as a number of concurrently-operating,
latency-bounded, task-achieving control layers, the Tour-
ingMachine architecture is able to produce a number of
reactive, goal-directed, reflective, and predictive behaviors
— as and when dictated by the agent’s internal state and
environmental context. In particular, TouringMachines (see
Figure 1) comprise three such independently motivated lay-
ers: a reactive layer R for providing the agent with fast,
reactive capabilities for coping with events its higher layers
have not previously planned for or modelled (a typical event
in a multi-agent road navigation domain, for example,
would be the sudden appearance of some hitherto unseen
agent or obstacle); a planning layer P for generating, execut-
ing, and dynamically repairing hierarchical partial plans
(which are used by the agent, for example, when construct-
ing navigational routes to some target destination); and a
reflective-predictive or modelling layer M for constructing
Belief-Desire-Intention (BDI) models of world entities,
including the agent itself, which can be used as a platform
for abductively explaining observed behaviors and making
predictions about possible future behaviors (Ferguson
1995).

Each control layer is designed to model the agent’s
world at a different level of abstraction and each is
endowed with different task-oriented capabilities. Also,
because each layer directly connects world perception to
action and can independently decide if it should or should
not act in a given state, frequently one layer’s proposed
actions will conflict with those of another; in other words,
each layer is an approximate machine and thus its
abstracted world model is necessarily incomplete. As a
result, layers are mediated by an enveloping control frame-
work so that the agent, as a single whole, may behave
appropriately in each different world situation. Imple-
mented as a combination of inter-layer message passing
and context-activated, domain-specific control rules (see
Figure 1), the control framework’s mediation enables each
layer to examine data from other layers, inject new data
into them, or even remove data from the layers. This has
the effect of altering, when required, the normal flow of
data in the affected layer(s). So, in the road driving domain
of the TouringWorld (Ferguson 1992) for example, the
reactive rule in layer R to prevent an agent from straying
over lane markings can, with the appropriate control rule
present, be overridden should the agent embark on a plan
to overtake the agent in front of it.

Inputs to and outputs from layers are generated in a
synchronous fashion, with the context-activated control
rules being applied to these inputs and outputs at each syn-
chronization point. The rules, thus, act as filters between
the agent’s sensors and its internal layers (suppressors),
and between its layers and its action effectors (censors) —
in a manner very similar to Minsky’s suppressor- and cen-
sor-agents (Minsky 1986). Both types of rules are of the if-
then condition-action type. In the case of censor rules, the
conditional parts are conjunctions of statements that test
for the presence of particular sensory objects recently
stored in the agent’s Perception Subsystem. Censor rules’
action parts consist of operations to prevent particular sen-
sory objects from being fed as input to selected control
layers. In the case of suppressor control rules, conditional
parts are conjunctions of statements which, besides testing
for the presence of particular outgoing action commands in
the agent’s Action Subsystem, can also test the truth values
of various items of the agent’s current internal state — in



Figure 1. A TouringMachine’s mediating control framework.

Sensory Action

Output

Context-activated

Control Rules

Modelling Layer (M)

Planning Layer (P)

Reactive Layer (R)

Input

Perception

Subsystem

Action
Subsystem

Clock

particular, its current beliefs, desires, and intentions. Sup-
pressor rules’ action parts consist of operations to prevent
particular action commands from being fed through to the
agent’s effectors.

Mediation remains active at all times and is largely
“transparent” to the layers: each layer acts as if it alone were
controlling the agent, remaining largely unaware of any
“interference” — either by other layers or by the rules of the
control framework — with its own inputs and outputs. The
overall control framework thus embodies a real-time oppor-
tunistic scheduling regime which, while striving to service
the agent’s high-level tasks (e.g. planning, causal modelling,
counterfactual reasoning) is sensitive also to its low-level,
high-priority behaviors such as avoiding collisions with
other agents or obstacles.

Modelling Rational Agent Behavior
Like most real-world domains, a TouringMachine’s world is
populated by multiple autonomous entities and so will often
involve dynamic processes which are beyond the control of
any one particular agent. For a planner — and, more
generally, for a rational agent — to be useful in such
domains, a number of special skills are likely to be required.
Among these are the ability to monitor the execution of
one’s own actions, the ability to reason about actions that are
outside one’s own sphere of control, the ability to deal with
actions which might (negatively) “interfere” with one
another or with one’s own goals, and the ability to form
contingency plans to overcome such interference. Georgeff
(Georgeff, 1990) argues further that one will require an

agent to be capable of coordinating plans of action and of
reasoning about the mental state — the beliefs, desires, and
intentions — of other entities in the world; where
knowledge of other entities’ motivations is limited or
where communication among entities is in some way
restricted, an agent will often have to be able to infer such
mental state from its observations of entity behavior.

The potential gain from incorporating knowledge
level mental modelling capabilities in an autonomous
rational agent is that by making successful predictions
about entities’ activities the agent should be able to detect
potential goal conflicts earlier on — thus enhancing the
agent’s ability to coordinate its actions with other agents
(Chandrasekaran, 1994). This would then enable it to make
changes to its own plans in a more effective manner than if
it were to wait for these conflicts to materialize. Goal
conflicts can occur within the agent itself (for example, the
agent’s projected time of arrival at its destination exceeds
its original deadline or the agent’s layer R effects an action
which alters the agent’s trajectory) or in relation to another
agent (for example, the agent’s trajectory intersects that of
another agent). Associated with the different goal conflicts
that are known to the agent are a set of conflict resolution
strategies which, once adopted, typically result in the agent
taking some action or adopting some new intention.

The structures used by an agent to model an entity’s
behavior are time indexed 4-tuples of the form 〈C, B, D, I〉 ,
where C is the entity’s Configuration, namely (x,y)-
location, speed, acceleration, orientation, and signalled
communications; B is the set of Beliefs ascribed to the



entity; D is its ascribed list of prioritized goals or Desires;
and I is its ascribed plan or Intention structure. Plan
ascription or recognition has been realized in
TouringMachines as a process of scientific theory formation
which employs an abductive reasoning methodology similar
to that of the Theorist default/diagnostic reasoning system
(Poole et al., 1986) — more on this shortly.

These Belief-Desire-Intention (BDI) models used by an
agent are, in fact, filled-in templates which the agent obtains
from an internal model library. While all templates have the
same basic 4-way structure, they can be made to differ in
such aspects as the depth of information that can be
represented or reasoned about (for example, a particular
template’s B component might dictate that modelled beliefs
are to be treated as defeasible), initial default values
provided, and computational resource cost. The last of these
will subsequently be taken into account each time the agent
makes an inference from the chosen model.

Reasoning from a model of an entity essentially
involves looking for the interaction of observation and
prediction; that is, for any discrepancies between the agent’s
actual behavior and that predicted by its model or, in the
case of a self-model, between the agent’s actual behavior
and that desired by the agent. Model-based reasoning in
TouringMachines specifically comprises two phases:
explanation and prediction. During the explanation phase,
the agent attempts to generate plausible or inferred
explanations about any entity (object/agent) behaviors
which have recently been observed. Explanations (models)
are then used in detecting discrepancies between these
entities’ current behaviors and those which had been
anticipated from previous encounters. If any such
behavioral discrepancies are detected, the agent will then
strive to infer, via intention ascription, plausible
explanations for their occurrence.

Theory Formation and Selection using
Theorist

Theorist (Poole et al., 1986) is a logic programming system
for constructing scientific theories — that is, for
constructing explanations of observations in terms of
various facts and hypotheses. Theorist is a system for both
representation and reasoning. A Theorist knowledge base
consists of a collection of first order clausal form logic
formulae which can be classified as: (i) a closed set of
consistent formulae or facts, F, which are known to be true
in the world; (ii) the possible hypotheses, ∆, which can be
accepted as part of an explanation; and (iii) the set of
observations, G, which have to be explained. Given these,
the Theorist reasoning strategy attempts to accumulate
consistent sets of facts and instances of hypotheses as
explanations for which the observations are logical
consequences. An explanation or theory is then a subset of
the possible hypotheses which are consistent and which
imply the observations. More formally, G is said to be
explainable if there is some subset D of ∆ such that

F ∪ D  | G and

F ∪ D is consistent.

D is said to be a theory that explains G. D should then be
seen as a “scientific theory” (Poole et al., 1986, page 4).

Theorist has been described as both a theory and an
implementation for default and abductive reasoning
(Poole, 1988). One of the several ways in which Theorist
can been used, then, is for performing abductive diagnosis;
namely, finding a set of causes (for example, diseases)
which can imply the observed effects (for example,
patients' symptoms). Now, by taking the system or artifact
that is being diagnosed as the entity that our
TouringMachine agent is modelling, and by re-interpreting
“symptoms” as the entity's observed actions, then the
causes behind this entity's actions can be regarded as the
entity's intentions.1 Note, then, that in the context of
TouringMachines, the process of finding the intentions
which are the cause of some other entity's actions is
effectively one of performing plan inference or recognition
(Carberry, 1990).

Theorist is invoked once for every one of the agent's entity
models that displays a model-entity (or expectation-
observation) discrepancy. In particular, Theorist is called
by supplying it with the name of the agent that is doing the
modelling, the name of the entity that is being modelled,
the agent's observations of that entity (that is, all relevant
details of the entity's current configuration as modelled by
the agent), and the current value of the agent's internal
clock. Theorist's reasoning strategy then tries to
accumulate consistent sets of facts and instances of
hypotheses, or defaults, as explanations for which the
observations are logical consequences. The facts and
defaults reside in the Theorist KBase, a knowledge base
containing a domain model of the TouringWorld
expressed in terms of the various “faults” that can be used
to explain entities' “errant” behaviors. In the present
context, faults can be viewed as the causes for — or the
intentions behind — why certain events — or certain
observed actions of some entity — might have occurred in
the world. Details on agents’ domain models can be found
elsewhere (Ferguson, 1992).

Generating Expectations and Closing the
Loop

 Once all BDI model discrepancies have been
identified and their causes inferred, predictions are formed
by temporally projecting those parameters that make up
the modelled entity’s configuration vector C in the context
of the current world situation and the entity’s ascribed
intention. The space-time projections (in effect,

1It should be noted that, for the purpose of simplifying the

implementation of TouringMachines, agents’ beliefs and desires

are assumed to be common and so can be ignored during the the-

ory formation process.

=



knowledge-level simulations) thus created are used by the
agent to detect any potential interference or goal conflicts
among the modelled entities’ anticipated/desired actions.
Should any conflicts — intra- or inter-agent — be identified,
the agent will then have to determine how such conflicts
might best be resolved, and also which entities will be
responsible for carrying out these resolutions. Determining
such resolutions, particularly where multiple goal conflicts
are involved, will require consideration of a number of
issues, including the priorities of the different goals
affected, the space-time urgency of each conflict, rights-of-
way protocols in operation, as well as any environmental
and physical situational constraints (for example, the
presence of other entities) or motivational forces (for
example, an agent’s own internal goals) that may constrain
the possible actions that the agent can take (Ferguson, 1992;
Ferguson, 1995).

Resource-boundedness and
rationality in dynamic worlds

Successful operation in a dynamic domain such as the Tour-
ingWorld will require real-time responses to a range of
unanticipated events and planning exceptions. Real-time
responses might be required, for example, if an agent is to
avoid missing an important task deadline or, more impor-
tantly, if it is to prevent the catastrophic consequences of
colliding with another agent or obstacle. In such environ-
ments, a perfectly rational agent would always bring all of
the information in its memory and in the environment to
bear on its various perception, decision-making, and execu-
tion tasks.

Ideally one would wish for an agent control architecture
which, on the one hand, was capable of generating rational,
minimal, and provably correct action sequences, and on the
other, was capable of flexibly and robustly dealing with the
real-time pressures that are characteristic of dynamic multi-
agent domains. In toy domains like the blocks worlds of
classical AI planning fame (Fikes & Nilsson 1990), it may
well be possible for a single agent to guarantee the genera-
tion and execution of optimal action sequences. In realistic
domains, however, the requirements to behave at once cor-
rectly, flexibly, and robustly conflict with each other, agents
often having to rely on heuristic or satisficing methods of
decision-making to ensure the successful completion of
their tasks. As Simon puts it: the agent will have a choice
between “optimal decisions for an imaginary simplified
world or decisions that are “good enough,” that satisfice, for
a world approximating the complex real one more closely.”
(Simon 1981, page 35).

The TouringMachine architecture is aimed at supporting
the development of real-time embedded agents. In such
agents, there is not always enough time — nor indeed com-
putational power — to make use of all available knowledge
for each and every task-related activity. To cope with such
constraints, TouringMachines are designed to make use of
latency-bounded heuristic functions to simplify some of

their decision-making processes. For example, Touring-
Machines satisfice with respect to planning by employing
a limited search that is directed by stored heuristic knowl-
edge. Also, TouringMachines’ layers P (planning) and M

(modelling) are designed so as not to process all of the sen-
sory input collected by their Perception Subsystems;
instead they make use of a selective attention mechanism
which helps them to focus only on those environmental
features which are deemed relevant to the agent’s situa-
tional and task-related needs. A consequence of this,
however, is that, at times (for instance, in sufficiently time-
constrained situations), TouringMachines may well gener-
ate plans which are less than optimal, some even failing to
achieve their initially intended tasks unless appropriately
repaired. (Increasingly, it should be noted, researchers are
accepting — and so explicitly dealing with the issue —
that realistic physical systems will inevitably make some
such “mistakes” (Brooks 1986; Russell & Wefald 1991).)

Another complication which arises vis-à-vis guarantee-
ing rational behavior is the fact that TouringMachines have
multiple goals, some of which, on occasion, will conflict
with one another. For example, the act of slowing down to
avoid colliding with another agent will likely conflict with
the agent’s main time-constrained navigational task, espe-
cially if this task’s deadline was reasonably tight to begin
with. Similarly, if an agent waiting at a red light deter-
mines that it is about to be hit from behind by another
entity, a TouringMachine will, by design, reactively move
to avoid the collision — even if this results in driving
through the red light.2 So, because a TouringMachine will
not be able to attend to all of its goals simultaneously,
some of its actions may occasionally be inconsistent with
one or more of these goals. Note, however, that such
actions typically serve a protective purpose for the agent
and so should not be regarded as undesirable. On the con-
trary, since in dynamic domains agent robustness and
survival are usually considered more important than cor-
rectness, protective actions — perfectly rational or
otherwise — must surely be considered indispensable.

According to Bratman et al. (Bratman, Israel & Pollack
1988), a rational agent is one which is committed to doing
what it plans; and as such, only under exceptional circum-
stances — for example, when an explicit impediment is
detected or when some task delay can be foreseen —
should the agent undertake to alter its plans. Knowing
when to reconsider committed plans is not simple: as Min-
sky (Minsky 1986, page 163) points out, “Too much
commitment leads to doing only one single thing; too little
concern produces aimless wandering.” What this suggests,

2As explained elsewhere (Ferguson 1992), a

TouringMachine builds and executes run-time plans to stop at

red lights in order to satisfy obey-regulations — one of

several layer M goals. In this example, then, the action of going

through a red light will conflict with the agent’s goal obey-

regulations.



in fact, is the existence of a “tension” between the stability
that an agent’s plans must have in order to provide a focus
for the agent’s deliberative reasoning processes, and the
revocability that the same plans must also exhibit, given that
they will only ever have been conceived with partial infor-
mation about the agent’s past, present, and future states.

Long-term rational behavior, then, would appear to result
from continually balancing the tension between plan stabil-
ity (goal-orientedness, future-directedness) on the one hand,
and plan revocability (reactivity, flexibility) on the other. As
Maes (Maes 1990) suggests, obtaining the right balance of
such behavioral characteristics will depend on particular
aspects of the agent’s task and environment: for example,
the precision with which the task must be carried out, the
time available for making control decisions, or the degree of
predictability in the agent’s surrounding environment. In
fact, as shown in a number of different experiments (Fergu-
son 1992; Ferguson 1994) — and confirmed by several other
investigations into resource-bounded agency (Bratman,
Israel & Pollack 1988, Cohen et al. 1989; Pollack &
Ringuette 1990) — the production of rational behavior can
also be seen to depend on characteristics of the agent’s own
internal design or configuration — for example, the agent’s
degree of sensitivity to unanticipated environmental change.

Because TouringMachines will almost constantly be in a
state of perceptual, cognitive, and action overload, they will
generally not be able to perform all potential operations in a
timely manner. This, it should be noted, has less to do with
precisely how fast TouringMachines can operate than with
the fact that they are inherently rationally bounded. Follow-
ing Hayes-Roth’s philosophy, the aim in designing
TouringMachines, therefore, is not to create agents which
are optimized for the performance of a single pre-deter-
mined task; rather, it is to design a control architecture
which is capable of satisficing performance over a range of
tasks, each potentially differing in terms of their required
functionality, knowledge sources, and associated time con-
straints (Hayes-Roth 1990). In the TouringMachine
framework, then, achieving rational behavior should really
be viewed as one of many of the agent’s objectives (guaran-
teed real-time performance would be another, for example),
which it will be able to achieve to a greater or lesser extent
depending on prevailing environmental conditions and the
availability of necessary resources.

References
Bratman, M.E.; Israel, D.J.; and Pollack, M.E. 1988. Plans

and resource-bounded practical reasoning. Computational

Intelligence, 4(4):349—355.

Brooks, R.A. 1986. A robust layered control system for a

mobile robot. IEEE Journal of Robotics and Automation,

RA-2(1):14-23.

Carberry, S. 1990. Plan Recognition in Natural Language

Dialogue, MIT Press: Cambridge, MA.

Chandrasekaran, B. 1994. Understanding control at the

knowledge level. In Working Notes AAAI Fall Symposium

on Control of the Physical World by Intelligent Agents,

New Orleans, LA, pp. 19-26.

Cohen, P.R.; Greenberg, M.L.; Hart, D.M.; and Howe,

A.E. 1989. Trial by fire: Understanding the design require-

ments for agents in complex environments. AI Magazine,

10(3):32-48.

Ferguson, I.A. 1992. TouringMachines: An architecture

for dynamic, rational, mobile agents. Ph.D. thesis, Com-

puter Laboratory, University of Cambridge, Cambridge,

UK.

Ferguson, I.A. 1995. On the role of BDI modeling for inte-

grated control and coordinated behavior in autonomous

agents. Applied Artificial Intelligence, 9(4). In press.

Fikes, R.E., and Nilsson, N.J. 1990. STRIPS: A new

approach to the application of theorem proving to problem

solving. In J. Allen, J. Hendler, and A. Tate, eds., Readings

in Planning, pages 88-97. Morgan Kaufmann: San Mateo,

CA.

Georgeff, M.P. 1990. Planning. In J. Allen, J. Hendler, and

A. Tate, eds., Readings in Planning, pages 5-25. Morgan

Kaufmann: San Mateo, CA.

Hayes-Roth, B. 1990. Architectural foundations for real-

time performance in intelligent agents. The Journal of

Real-Time Systems, 2:99-125.

Maes, P. 1990. Situated agents can have goals. Robotics

and Autonomous Systems, 6(1&2):49-70.

Minsky, M.L. 1986. The Society of Mind. Simon and

Schuster: New York, NY.

Pollack, M.E., and Ringuette, M. 1990. Introducing the

Tileworld: Experimentally evaluating agent architectures.

In Proceedings Conference of the American Association

for Artificial Intelligence, pages 183-189.

Poole, D.L., Goebel, R.G., and Aleliunas, R. 1986.

Theorist: A logical reasoning system for defaults and

diagnosis. Research Report CS-86-06, University of

Waterloo, Waterloo, ON, February.

Poole, D. 1988. Representing knowledge for logic-based

diagnosis. In Proceedings International Conference on

Fifth Generation Computer Systems, pages 1282—1289.

Russell, S., and Wefald, E. 1991. Do the Right Thing —

Studies in Limited Rationality. MIT Press: Cambridge,

MA.

Simon, H.A. 1981. The Sciences of the Artificial. MIT

Press: Cambridge, MA, 2nd edition.


