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Introduction

The use of biodiesel is promoted worldwide as it can contribute to a reduction of
fossil fuel dependency and greenhouse gas emissions (Adler et al. 2007; Huo et al. 2009).
Biodiesels are generally less toxic than fossil fuels (Poon et al. 2007; Poon et al. 2009),
but potential human health hazards arising from their increasing use also need to be
properly assessed, especially for biodiesels manufactured from non-edible or toxic

feedstock (Poon et al. 2013).

Biodiesel production from Jatropha curcas seed oil may avoid competition with
food crop and reduce pressure on arable land, as this shrub can withstand harsh
conditions and poor soils otherwise unsuitable for agriculture (Brittaine and Lutaladio
2010; Makkar and Becker 2009). Numerous toxins including curcin, lectins, trypsin
inhibitors, phytates and saponins are found in Jatropha seeds, but most of Jatropha oil’s
toxicity is attributed to the inflammatory and co-carcinogenic properties of phorbol esters
(Devappa et al. 2010b; Furstenberger et al. 1981; Hirota et al. 1988; Makkar et al. 1998).
So far, six different phorbol esters (named C1, C2, C3, C4, C5 and C6) have been
characterized in Jatropha oil and their bioactivity assessed (Haas et al. 2002; Roach et al.

2012).

Total phorbol ester concentration in Jatropha oil generally varies from 2 to 4
mg/g. Although Jatropha oil refining and esterification in a small-scale laboratory setting

appears to remove or degrade phorbol esters (Haas and Mittelbach 2000; Ichihashi et al.
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Jatropha oil triggered the same characteristic alterations of MDCK cellular morphology
observed following exposure to TPA (Fey and Penman 1984). We then confirmed that
similarly to TPA, Jatropha phorbol esters’ effects were mediated (at least in part) through
activation of Protein Kinase C (Griner and Kazanietz 2007). Finally, we selected
cyclooxygenase-2 (COX-2), a well-known, highly inducible gene involved in
inflammation (Langenbach et al. 1999) to assess MDCK transcriptional response to
Jatropha phorbol esters. This transcriptional response was then compared to a TPA dose-
response curve and phorbol ester biological activity in Jatropha oil was expressed as TPA
toxic equivalent (TEQ), a well-known approach (Van den Berg et al. 2006) that
represents a convenient way to quantitatively report the pro-inflammatory potential of

Jatropha oil.

Material and Methods

Material and reagents

MDCK (NBL-2, Catalog No. CCL-34) cell line was purchased from American
Type Culture Collection (Manassas, VA, USA) in 2002, grown for a few passages and
then cryopreserved in liquid nitrogen. Thawed cell aliquots used in this study were
cultured for a maximum of 15 passages. Jatropha oil was obtained from Agroils (Firenza,
Italy, 50129) whereas corn oil (Mazola brand, ACH Food Companies, Oakville, ON,

Canada) was purchased from a local grocery store. Fatty acid profiles for these two oils
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penicillin-streptomycin solution (Catalog No. 15140-122, Life Technologies, Burlington,
ON, Canada) in a humidified incubator at 37EC and 5% CO,. MDCK cells seeded at
70,000 cells/cm® were allowed to attach to the bottom of a petri dish and to grow for 24
hours. The cell culture media was then removed and the test substance added in fresh
culture media. TPA was dissolved in dimethyl sulfoxide (DMSO) and added to culture
media at 0, 0.003, 0.015, 0.075, 0.375, 1.875 and 9.375 nM, keeping final DMSO
concentration constant at 0.1% (v/v). Jatropha and corn oils were emulsified directly in
cell culture media by 5 ultrasonic bursts of 5 seconds, using an Ultrasonic Processor
equipped with a microtip (Cole Parmer, Vernon Hills, IL, USA). Although lactate
dehydrogenase assay (Roche Diagnostics, Laval, QC, Canada) suggested that MDCK
cells can easily withstand up to 6 pl/ml oil exposures (data not shown), oil emulsions
above 1.5 pl/ml proved unstable as an oily phase quickly reformed. In order to avoid such
dispersion issue, oil exposure was limited to 1.5 pl/ml. At this exposure level, corn oil did
not affect transcriptional response of MDCK cells to TPA (data not shown). MDCK cells
were therefore exposed to 0, 0.0015, 0.015, 0.15 and 1.5 pl/ml Jatropha oil, keeping oil
volume constant at 1.5 pl/ml cell culture media across control and treatment groups using
corn oil. Cells were exposed to TPA or Jatropha oil for 24 hours. For the assessment of
PKC activity, MDCK cells were harvested after two hours of exposure. For the
qualitative assessment of cellular morphology, cells were seeded at a lower density
(approximately 30,000 cells/cm?), stained with Sigma-Aldrich’s modified Giemsa stain

according to the manufacturer’s protocol and observed under light microscopy.

Immunoblot analysis



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

sample from all four treatment groups loaded in duplicate and each gel was also run in
duplicate. The intensity of each sample was normalized against the reference sample
present on the same gel and the four normalized values generated from each individual

sample were averaged.

Gene expression analysis

Total RNA was isolated and purified using RNeasy Kit (Qiagen, Toronto, ON,
Canada) according to the manufacturer’s instructions. RNA quality and quantity were
determined using a 2100 Bioanalyzer (Agilent Technologies) and a Nanodrop 1000
spectrometer (Thermo Scientific, Waltham, MA, USA). Five micrograms of total RNA
were used for first strand cDNA synthesis, using Superscript III reverse transcriptase
(Life Technologies) according to the manufacturer’s protocol. The resulting first-strand
cDNA was diluted 10 times to 200 pl to be used as templates for gPCR analyses. Given
the fact that exposure to phorbol esters alters cellular morphology (Fey and Penman
1984) and  Dbeta-actin expression (Gerstenfeld et al. 1985), hypoxanthine
phosphoribosyltransferase 1 (HPRT1) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were selected as housekeeping genes to monitor the relative expression of
COX-2. Information on the primers used for the amplification of those genes is provided
in Table 1. Quantitative PCR was performed with an iCycler iQ5 Real-Time Detection
System (Bio-Rad) using SYBR-Green I dye (Qiagen) in a reaction volume of 25 pul
containing 5 pl of the diluted cDNA synthesis reaction and a primer concentration of 0.4

uM. The RT-gPCR reaction mix was denatured at 95EC for 3 min. and then submitted to
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Owing to their acute sensitivity, MDCK cells have often been used to study the
effects of TPA on cellular functions (Daniel et al. 1999). Figure 1 clearly shows that
direct exposure to Jatropha oil triggered the typical deformation of MDCK epithelial
polygonal geometry and the appearance of extensive neurite-like processes observed

following exposure to TPA (Fey and Penman 1984).

Based on the molecular mechanisms underlying the biological effects of TPA
(Fig. 2), we then assessed the phosphorylation state of Myristoylated Alanine-Rich C-
Kinase Substrate (MARCKS), a substrate and surrogate biomarker of Protein Kinase C
activity. MDCK cell exposure to 9.375 nM TPA resulted in a 3.5-fold increase of
phosphorylated MARCKS signal. A very similar increase was observed following
exposure to 1.5 pl Jatropha oil/ml, while exposure to 1.5 ul canola oil/ml had essentially

no effect (Fig. 3).

COX-2 is among the first genes induced following exposure to TPA (Coyne et al.
1990; Sciorra and Daniel 1996). Significant induction of COX-2 gene expression which
was observed following exposure to 0.375 nM TPA appeared to reach a plateau around
1.875 nM TPA (Fig. 4). Light microscopy observation of MDCK cells also confirmed
that the thresholds for COX-2 gene induction and alteration of MDCK cellular

morphology were approximately similar.

Although MDCK cells can tolerate up to 6 pl/ml of vegetable oil (data not

shown), exposure to Jatropha oil was limited to 1.5 ul/ml in the concentration-response

11
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(Devappa et al. 2010b). Consequently, we first confirmed that the acute sensitivity of
MDCK cells to TPA (Blumberg 1980; Ohuchi and Levine 1978) is also observed

following exposure to Jatropha oil phorbol esters.

Direct exposure of MDCK cells to Jatropha oil unequivocally triggered the typical
alteration of cellular morphology observed following exposure to TPA (Fig. 1). This
observation confirmed that MDCK cells can respond to the presence of Jatropha phorbol
esters presenting only a small fraction of TPA’s activity (Beutler et al. 1989).
Incidentally, this experiment also demonstrated that direct exposure to vegetable oil did
not mute MDCK cellular response to phorbol esters. Although it is possible to directly
measure and quantify the alteration of cellular morphology resulting from exposure to
phorbol esters (Penman and Fey 1986), this approach is time-consuming, labour-

intensive, prone to artefacts and not easily amenable to high throughput applications.

The exceptionél sensitivity of MDCK cells to TPA was described well before the
elucidation of the molecular mechanisms involved (Blumberg 1980; Nishizuka 1984;
Ohuchi and Levine 1978). As indicated in Figure 2, TPA directly binds and activates
Protein Kinase C (Griner and Kazanietz 2007). As a first step toward the development or
an in vitro bioassay, we confirmed that the effects of Jatropha oil are mediated at least in
part through PKC activation (Fig. 3). The very similar 3.5-fold increase in the phospho-
MARCKS signal observed following exposure to 9.375 nM TPA and to the much less
potent 1.5 pl/ml Jatropha oil (see Figures 4 and 5) suggests that activation of PKC had

already plateaued.

13
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report claiming that the absorption at 280 nm of the most abundant phorbol ester in
Jatropha oil is about 40 times greater than TPA on a mass basis (Roach et al., 2012), our

results may underestimate the potency of Jatropha oil phorbol esters.

In spite of the relatively weak potency of phorbol esters present in Jatropha oil,
we were able to detect a significant induction of COX-2 gene expression following direct
exposure of MDCK cells to 0.15 pl/ml Jatropha oil. Hence, in addition to routine testing,
the described bioassay may prove useful for many other applications such as selection of
Jatropha curcas strains presenting lower toxicity, assessment of phorbol ester extraction
or deactivation procedures, detection of Jatropha oil blended in other feedstock or
detection of pro-inflammatory phorbol esters from other sources. Although the ability to
quantify the biological activity of phorbol esters directly in vegetable oil without pre-
concentration significantly improves the convenience and throughput of this assay, pre-
fractionation and purification steps may also be added in order to measure more dilute
samples or assess phorbol ester biological activity in other matrices. Of course, the
development of a stable MDCK reporter cell line would further improve the convenience
and throughput of this bioassay, providing that the exceptional sensitivity of the parental

cell line can be retained.

Conclusions

With the increasing production and use of Jatropha oil and the development of

economically viable methods to detoxify the remaining protein-rich seed cake for animal

15
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Table 1: Primer sequences used for qRT-PCR amplification of the COX-2, GAPDH and
HPRTI genes.

Gene Accession Primer sequence Location girelp(%%(;n
Coxs | NMLOOI00354 I R AGGCGCAGTITATG Fron7 ] 1%
mrart_| o coms | ETACKCIGSOAMANIGRGACT | nt |
T e

Figure legends:

Figure 1: Illustration of the effects of Jatropha oil on MDCK cellular morphology at 0.15

and 1.5 pl/ml and comparison with exposure to 9.375 nM TPA.

Figure 2: Simplified representation of the molecular pathways involved in the production
of inflammatory prostaglandins following exposure to TPA. Dark gray arrows indicate
mRNA and protein synthesis independent events, while the light gray arrow is dependent

on COX-2 gene transcription and protein synthesis.

Figure 3: Exposure to Jatropha oil activates Protein Kinase C in vitro. The relative
phospho-MARCKS immunoblot signal of unexposed (control) MDCK cells is presented
along with the signal from cells exposed to Canola oil, Jatropha oil (1.5 pl/ml) and TPA
(9.375 nM). Errors bars represent standard deviation and * indicates statistically
significant difference from control group values (n = 6, p<0.05). Inset: illustration of a

typical immunoblot where the 87 kDa phospho-MARCKS signal (indicated by an arrow)
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