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Abstract: The evaluation of the risk of water quality failures in a distribution network is a 

challenging task given that much of the available data are highly uncertain and vague, and many of 

the mechanisms are not fully understood. Consequently, a systematic approach is required to handle 

quantitative-qualitative data as well as means to update existing information when new knowledge 

and data become available.  

Five general pathways (mechanisms) through which a water quality failure can occur in the 

distribution network are identified in this paper. These include contaminant intrusion, leaching and 

corrosion, biofilm formation and microbial regrowth, permeation, and water treatment breakthrough 

(including disinfection byproducts formation). The proposed methodology is demonstrated using a 

simplified example for water quality failures in a distribution network. This paper builds upon the 

previous developments of aggregative risk analysis approach. 

Each basic risk item in a hierarchical framework is expressed by a triangular fuzzy number, which 

is derived from the composition of the likelihood of a failure event and the associated failure 

consequence. An analytic hierarchy process is used to estimate weights required for grouping non-

commensurate risk sources. The evidential reasoning is proposed to incorporate newly arrived data 

for the updating of existing risk estimates. The exponential ordered weighted averaging operators 

are used for defuzzification to incorporate attitudinal dimension for risk management. It is 

envisaged that the proposed approach could serve as a basis to benchmark acceptable risks in water 

distribution networks. 

Keywords: Fuzzy logic, evidential reasoning, water quality, distribution networks, exponential 

ordered weighted average operators, and analytic hierarchy process. 
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INTRODUCTION 

Safety of drinking water is a high priority of water purveyors and stakeholders (owners and 

customers). A typical modern water supply system comprises the water source (groundwater or 

surface water including the catchment basin), transmission mains, treatment plants and a 

distribution network, which includes pipes and distribution tanks. While water quality can be 

compromised at any component, failure at the distribution level can be extremely critical because it 

is closest to the point of delivery and, with the exception of a rare filtering device at the consumer 

level, there are virtually no safety barriers before consumption.  

Water quality failures  

Water quality is generally defined by a collection of upper and lower limits on selected 

indicators (contaminants) in the water (Maier, 1999), which can be classified into three broad 

categories: physical, chemical and biological contaminants. The upper and lower limits are often 

governed by regulations (Swamee and Tyagi, 2000). A water distribution network acts as a complex 

reactor in which various processes occur simultaneously. The water quality in the distribution 

network, which is an outcome of these processes, continuously changes both temporally and 

spatially. A water quality failure event is often defined as an exceedance of one or more water 

quality indicators from specific regulations, or in the absence of regulations, exceedance of 

guidelines or self-imposed, customer-driven limits. Water quality failures in distribution networks 

can generally be classified into the following major categories or pathways (Kleiner, 1998), also 

described in Figure 1: 

• Contaminant intrusion into the distribution network through system components, 

• Biofilm formation and regrowth of microorganisms in a distribution network, 

• Water treatment breakthrough of bacteria and/ or chemicals, formation of disinfection 

byproducts (DBPs), 

• Leaching of chemicals, release of corrosion byproducts, and 

• Permeation of organic compounds from the soil through system components. 
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An intrusion of contaminants into the water distribution network can occur through storage 

tanks (animals, dust-carrying bacteria, infiltration) and pipes. Intrusion through water mains may 

occur during or after maintenance and repair events, through broken or corroded (pinholes or 

cracks) pipes and joints/ gaskets, and through cross-connections (Kirmeyer et al., 2001). Whenever 

the water pressure in a pipe is very low or negative, the risk of contamination through backflow or 

through leaky pipes increases. This can happen when the pipe is de-pressurized for repair or during 

transient pressures (e.g., when the hydrant is used for fire extinguishing or water hammer events).  

Biofilm is a deposit consisting of microorganisms, microbial products and detritus at the 

surface of pipes or tanks. Biological regrowth may occur when injured bacteria enter from the 

treatment plant into the distribution network. Under favorable conditions, such as nutrient supply 

(e.g., organic carbon) in the water and long residence time, these bacteria can attach themselves to 

surfaces, rejuvenate and grow in storage tanks and on rough inner surfaces of water mains. The 

regrowth of microorganisms in the distribution network results in an increased chlorine demand, 

which has two adverse effects: (a) a reduction in the level of free available chlorine may hinder the 

network’s ability to contend with local occurrences of contamination (US EPA, 1999), and (b) an 

increased level of disinfection to satisfy the chlorine demand of biofilm may result in higher 

concentrations of disinfection byproducts (DBPs).  

Internal corrosion of metallic pipes and plumbing devices may increase the concentration of 

metal compounds in the water. Different metals go through different corrosion processes, but in 

general low pH water, high dissolved oxygen, high temperature, and high levels of dissolved solids 

increase corrosion rates. Metals such as lead and cadmium may leach into the water from pipes, 

causing significant health effects. Secondary metals such as copper (from home plumbing), iron 

(distribution pipes) and zinc (galvanized pipes) may leach into water causing taste, odor and color 

(red or rusty water) problems in addition to some minor health-related risks (Kleiner, 1998). 

Leaching of chemicals into the water supply can often come from the internal lining and coating of 

pipes (e.g., volatile organic compounds), causing physico-chemical water quality failure with 

adverse health and aesthetic consequences. 

Permeation is a phenomenon in which contaminants (notably hydrocarbons) from polluted 

site migrate through the walls of plastic pipes. Three stages are observed in permeation: (a) organic 

chemicals present in the soil partition between the soil and the plastic wall, (b) the chemicals defuse 
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through the pipe wall, and (c) the chemicals partition between the pipe wall and the water inside the 

pipe (Kleiner, 1998). In general, the risk of contamination through permeation is relatively small as 

compared to other mechanisms.  

Risk analysis techniques  

Commonly, “risk” refers to the joint probabilities of an occurrence of an event and its 

consequences and “risk analysis” refers to a process of an estimation of the frequency and physical 

consequences of undesirable events (Ricci et al., 1981). Risk analysis may include a range of 

techniques from a simple qualitative analysis (e.g., preliminary hazard analysis) to very complex 

quantitative techniques (e.g., Bayesian networks) for dynamic systems. A brief discussion on some 

of the risk analysis techniques is provided in this section. 

Preliminary hazard analysis (PHA) is a qualitative technique for conducting hazard 

assessment in chemical process industries. The PHA can identify systems/ processes, which require 

further examination to control major hazards (Fullwood and Hall, 1988). Hazard and operability 

study (HAZOP) is a technique also commonly employed in chemical process industries for 

estimating safety risk and operability improvements (Sutton, 1992). Failure mode and effects 

analysis (FMEA) is commonly used in reliability engineering to analyze potential failure modes in a 

system and rank them according to their severity. When the FMEA is extended to criticality 

analysis, the technique is called failure mode and effects criticality analysis (FMECA) (Chakib et 

al., 1992). 

Tree-based (hierarchical) techniques are also widely used to perform risk analysis. A fault 

tree is a logical diagram, which shows the relation between system failure, i.e. a specific undesirable 

event in the system, and failures of the components of the system (Vincoli, 1994). Event tree 

analysis (ETA) is a technique to illustrate the sequence of outcomes, which may arise after the 

occurrence of a selected initial event (Suokas and Rouhiainen, 1993). Cause-consequence analysis 

(CCA) combines cause analysis (described by fault trees) and consequence analysis (described by 

event trees).  

Techniques for the analysis of dynamic systems can involve methods such as digraph/ fault 

graph, dynamic ETA, Bayesian networks, or fuzzy cognitive maps. The digraph/ fault graph 

technique uses the mathematics and language of graph theory, which constructs the risk model by 

 
4



replacing system elements with AND and OR gates. Bayesian networks (BN) are directed acyclic 

graphs, in which nodes represent variables and directed arcs describe the conditional dependence 

relations embedded in the model. Though the conditional probabilities are often difficult to obtain, 

BNs are considered as one of the most popular dynamic modeling tools (Pearl, 1988). A fuzzy 

cognitive map (FCM) is an illustrative representation of the complex system uses cause-effect 

relationships to perform risk analysis  (Kosko, 1986). Recently, MacGillivray et al. (2006) provided 

an excellent review of some of these risk analysis and decision making strategies. This review 

critically analyzes and reports a wide range of research studies, which use above risk analysis 

techniques primarily focusing on drinking water supply systems.  

The quantification of the risk of contamination in water distribution networks is a difficult 

task. Water distribution networks comprise many (sometimes thousands of) kilometers of pipes of 

different ages and various materials, which are subjected to varying operational and environmental 

conditions. In addition, limited performance and deterioration data are available since pipes are 

buried structures. Finally, some of the failure processes are not well understood and the diagnosis of 

contamination is very difficult because there is generally a time lag between the occurrence of 

failure and the time at which the consequences (e.g., outbreaks) are observed. 

Both set theory and probability theory are the classical mathematical frameworks for 

characterizing uncertainties. Since the 1960s, a number of generalizations of these frameworks have 

been developed to formalize different types of uncertainties. Klir (1999) reported that well-justified 

measures of uncertainties are available not only in the classical set theory and probability theory, 

but also in the fuzzy set theory (Zadeh, 1965), possibility theory (Dubois and Parade, 1988), and the 

Dempster–Shafer (D–S) theory (Dempster, 1968; Shafer, 1976). Klir (1995) proposed a 

comprehensive general information theory (GIT) to encapsulate these concepts into a single 

framework and established links among them. 

Sadiq et al. (2004) developed a hierarchical (or tree-based) structure that broke down the 

overall risk of water quality failures in a distribution network into basic risk items. Risk was 

characterized qualitatively (or linguistically) based on fuzzy techniques combined with an analytic 

hierarchy process (AHP). This paper builds upon the previous developments and addresses four 

important aspects of the aggregative risk analysis in distribution networks. These aspects are: (a) 

Risk fuzzification – mapping of triangular fuzzy numbers of basic risk items to 5-tuple fuzzy risk 
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set, (b) Risk aggregation – aggregating fuzzy risk for hierarchical structure (c) Risk updating  - 

using evidential reasoning to fuse newly arrived data (or belief) with existing knowledge, and 

updating risk estimates at any level in the hierarchical structure, and (d) using exponential ordered 

weighted average (E–OWA) operators for defuzzification to consider the decision-maker’s attitude 

towards risk (level of optimism) when deriving the final expressions for aggregative risk. 

THE PROPOSED FRAMEWORK 

In many engineering problems, information about the probabilities of various risk items is 

vaguely known or assessed. Fuzzy logic provides a language with syntax and semantics to translate 

qualitative knowledge into numerical reasoning. When conducting risk analysis for complex 

systems, decision-makers, engineers, managers, regulators and other stakeholders often articulate 

the risk in terms of linguistic variables like very high, high, very low, low etc. The fuzzy-based 

techniques are able to deal effectively with such vague and imprecise probabilities for approximate 

reasoning, which subsequently help the decision-making process.  

Triangular fuzzy numbers (TFNs) are often used for representing linguistic variables (Lee, 

1996). A more comprehensive description of fuzzy-based techniques is not provided in this paper 

because of space limitations. Interested readers are encouraged to consult excellent texts on this 

topic written by Klir and Yuan (1995) and Ross (2004). 

(a) Risk fuzzification 

Let the likelihood (probability) r of failure be defined by the triangular fuzzy number TFNr 

and the consequence (or peril) l of failure be defined by TFNl. Table 1 describes an 11-grade scale 

for both r and l. Let failure risk be defined by the 5-grade TFNL, described in Table 2. The 

definitions of TFNs can be changed or modified based on expert opinion or on Delphi based 

surveys. 

The risk of failure in the probabilistic realm is the joint probability of occurrence and 

consequences of failure. When the probabilities of occurrence and failure are assumed to be 

independent of each other, their joint probability is equal to the product of the respective 

probabilities. Under the same assumption of independence, the fuzzy risk of failure will be 

calculated as the product of the two fuzzy numbers denoted by r and l. By definition, the product of 
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two TFNs is itself a TFN. Let TFNr be defined by the members (ar, br, cr), and TFNl by (al, bl, cl). 

The risk TFNrl for these r and l is calculated by, 

x = TFNrl = TFNr × TFNl = (ar * al, br * bl, cr * cl)      (1) 

For example, if an event has a likelihood r as high [0.6, 0.7, 0.8] and the peril l is 

unimportant [0.2, 0.3, 0.4], the corresponding risk x will be a TFNrl [0.12, 0.21, 0.32]. There are 5 

steps to convert fuzzy number TFNrl into fuzzy risk X - a normalized 5-tuple fuzzy set. These steps 

are also illustrated in Figure 2. 

• Map TFNrl over TFNL (p = 5-grades defined over the universe of discourse of risk); 

• determine the points where TFNrl intersects each TFNL (Table 2); 

• use a maximum (or-type, t-conorm) operator if TFNrl intersects any TFNL at more than one point 

(Figure 2); 

• establish a set of intersecting points (or the maximum thereof if more than one) that defines a 

non-normalized 5-tuple fuzzy set, XL, (e.g. in Figure 2, XL is [0.38, 0.88, 0.2, 0, 0], which are the 

memberships of XL to the grades very low, low, medium, high and very high risk, respectively); 

and 

• normalize XL to obtain fuzzy set X, where membership μp of XL is transformed to μp
N
 of X by 

dividing each μp by the cardinality C (sum of all memberships in a fuzzy set).  

C

p

n

p
p

pN

p

μ

μ

μ
μ =

∑
=

=1

          (2) 

In the example of Figure 2, the fuzzy set X is [0.26, 0. 6, 0.14, 0, 0], and can also be 

expressed as, ⎥⎦
⎤

⎢⎣
⎡=

VHHMLVL
X

0
,

0
,

14.0
,

6.0
,

26.0
.  

(b) Risk aggregation 

Figure 3 illustrates the basic building blocks of the proposed hierarchical structural model 

for the risk aggregation. Each risk item is partitioned into its contributory factors, which are also 

risk items, and each of those can be further partitioned into lower level contributory factors. A unit 

that consists of a risk factor (“parent”) and its contributory factors (“children”) is called a “family”. 
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A risk unit with no children is called “basic risk item”, while the term risk item is used for all 

elements with offspring. The notation used for a risk item is Xi,j
k
, where i is the ordinal number of 

risk item X in the current generation; j is the ordinal number of the parent (in the previous 

generation); and k is the generation order of X. The indices i, j, k are used for risk item attributes as 

well, e.g., in the table of Figure 3, the factors ri,j
k
 and li,j

k
 denote likelihood and peril (respectively) 

for the risk item Xi,j
k
.  

Various “inferencing” methods can be used to aggregate fuzzy sets, however in this study, 

“inferencing” through weighted average is proposed to determine the aggregative risk. The 

weighted average inferencing refers to sum-prod fuzzy compositional operator. There are different 

types of fuzzy composition operators available like max-min (reflects low uncertainty range), sum-

prod (reflects high uncertainty range) and mix of both max-min and sum-prod.  These compositional 

operators express the various degrees of and-ness and or-ness in the application of fuzzy sets. 

Logical operators like max-min are more restrictive than, say, sum-prod and max-prod. For 

simplicity the weighted average (sum-prod) is used in this study (Sadiq et al., 2003). 

A weighting scheme is required when the respective contributions of sibling risk items 

towards their parent have non-commensurate units. Figure 3 shows a general case where weights 

are assigned to each risk item. The notation used is wi,j
k
, which denotes the weight of Xi,j

k
 relative to 

its siblings. When the respective contributions of sibling risk items towards their parent have 

commensurate units, then all the siblings have equal weights, wi,j
k
 , which means that they can be 

ignored altogether. Saaty (2001) described in detail the analytic hierarchy process to derive weights. 

These weights are normalized to a sum of unity, such that in any generation (k), for n siblings with 

parent j, a set of weights can be written as, 

[ ]k

j,n

k

j,

k

j,

k

j,i w...,,w,ww 21=  where       (3) ∑ =
=

n

i

k

j,iw
1

1

The process of evaluating aggregative risk in a “family” with an aggregative structure is 

described using the family (Figure 3) of X2,1
2
 (parent) and X3,2

3
, X4,2

3
, X5,2

3
 (children) as an example. 

For each of the sibling risk items, the likelihood r and peril l are assigned from the 11-grade scaling 

system (Table 1). TFNrl(x) is the product of two fuzzy numbers TFNr and TFNl (Equation 1), which 

is then mapped over TFNL to obtain the 5-tuple fuzzy set XL (a non-normalized fuzzy set for risk). 

XL is then normalized to obtain the 5-tuple fuzzy sets X3,2
3
, X4,2

3
, X5,2

3
, representing the risk 
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contribution of each of the siblings towards their parent. For ease of manipulation these 5-tuple sets 

can be arranged in a fuzzy assessment matrix, which is a 3 × 5 matrix F(Xi,2
3
). The AHP is then 

applied, weights w3,2
3
, w4,2

3
, and w5,2

3
 are evaluated and arranged into a 3-member vector. The 

aggregative risk (or parent) of the three siblings is the cross product of weights vector and the 

assessment matrix, yielding a 5-tuple fuzzy set X2,1
2
,  

[ ] [ ]NNN
,i,,,, ,,,)X(Fw,w,wX 521

3

2

3

25

3

24

3

23

2

12 μμμ K=×=      (4) 

where μp
N
 (p = 1, 2,…, 5) are the membership values of the aggregated risk with respect to the 

5-grade risk scale.  

It should be noted that the process of evaluating r and l and mapping the product risk onto 

the 5-grade risk scale is necessary only for basic risk items, i.e. those risk items, which do not have 

children. All subsequent risk aggregations from one generation to the next are determined by only 

applying equation (4) using the appropriate relative weights. Consequently it is useful to use 

notation that distinguishes between basic and non-basic risk items. In the remainder of this paper, 

the notation for a basic risk item will include an apostrophe at the generation index, i.e., if item X4,2
3
 

is a basic risk item, it will be denoted by X4,2
3’

.  

(c) Risk updating using evidential reasoning (D–S rule of combination) 

In classical Bayesian inference, the sum of probabilities of any set A and its complement, 

p(A) + p(¬A) = 1. This implies that knowledge about A can be used to derive a belief about its 

complement. For example, let Θ = {A, B, C}, be a frame of discernment (also called a universe of 

discourse meaning all possible outcomes), and let the evidence p(A) = a. According to equal 

noninformative priors (Laplace Principle of Insufficient Reason), then p(B) = p(C) = 0.5(1 - a), i.e., 

the probability of the complement of A will be equally distributed in subsets B or C.  

In contrast to the above, Dempster–Shafer (D–S) theory is based on the premise that missing 

evidence (or lack of knowledge, or ignorance) about ¬A does not justify an assumption about 

probabilities of B and C (Alim, 1988). The D–S theory can be interpreted as a generalization of 

probability theory, where probabilities are assigned to subsets as opposed to mutually exclusive 

singletons. For example, let the universal set {L, M, H} contain three basic elements. The frame of 

discernment Θ comprise all combinations of the basic elements in the universal set, in our example, 
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the 8 subsets of Θ are φ, {L}, {M}, {H}, {L, M}, {L, H}, {M, H}, and {L, M, H}. The subset {L, M} 

means {L} or {M}. Consequently, the subset {L, M, H} represents a complete ignorant situation 

(i.e., we do not know which will be the outcome, it can be any of L, M or H). It can be shown that Θ 

comprises 2
n
 subsets where n is number of basic elements.  

The D–S theory defines a basic probability assignment (bpa is denoted by m). Let evidence 

A be a subset of Θ. The bpa m(A) is defined over the interval [0, 1]. The bpa of a null set m(φ) = 0. 

The complement of A is always attributed to the complete ignorance, i.e., subset Θ. For example, let 

evidence A = {{L}, {L, M}} so that m(A)L = 0.6 and m(A)L,M = 0.2, then m(A) = 0.8 and m(A)Θ =
 
1 -

 0.8. For a given basic probability assignment m, every non-ignorant subset A (i.e., m(A) ≠ 0) is 

called focal element, e.g., in the example above, m(A)L and m(A)L,M are focal elements. 

The D–S rule of combination defines how to combine evidence obtained from two or more 

sources. It strictly emphasizes agreements between multiple sources and ignores all conflicting 

evidence through normalization. A strict conjunctive operation (and-type or intersection type 

operator) using a “product” is used to combine the evidences. For example, if B and C are two 

sources of information, the D–S rule of combination establishes the joint bpa m1-2(A) from the 

aggregation of bpas m1(B) and m2(C), 

φ≠
−

∑
= =∩

− Awhen
K

)C(m)B(m

)A(m ACB

1

21

21 ;  m1-2 (φ) = 0;   (5) 

where           )C(m)B(mK
CB

21∑=
=∩ φ

K is the degree of conflict between two bodies of evidence. It can be shown that the denominator (1-

K) in equation (5) is a normalization factor, which always brings the sum of all m1-2(A) values to 

unity. The above equations can be rewritten as, 

∑

∑
=

≠∩

=∩
−

φCB

ACB

)C(m)B(m

)C(m)B(m

)A(m
21

21

21         (6) 

Zadeh (1984) identified a serious shortcoming in the D–S rule of combination due to the use 

of strict conjunctive operator (product). Sentz and Ferson (2002) have provided an excellent review 

of various techniques to overcome this discrepancy. Recently, Yager (2004) proposed the use of 
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disjunctive operators (or-type operator, denoted by ⊕), according to which, equation (6) can be 

modified as, 

( ) ( )[ ]
[ ]∑ ⊕

∑ ⊕
=

≠∩

=∩
−

φCB

ACB

)C(m),B(m

Cm,Bm

)A(m
21

21

21         (7) 

A disjunctive logic using “max” operator can be used in equation (7). The approach 

described above implicitly assumes that all sources of information are equally credible. Yager 

(2004) suggested a credibility transformation function, which discounts evidence with a credibility 

factor (α) and distributes the remaining evidence (1-α) equally among n elements.  

n
)A(m)A(m

ααα
−

+⋅=
1

         (8) 

For example, assume that the evidence obtained from two different sources for risk item 

X1,1
2
 are represented by fuzzy sets m1(X1,1

2
) = [0.5, 0.5, 0, 0, 0] and m2(X1,1

2
) =  [0, 0.6, 0.4, 0, 0]. 

Assume further that the corresponding credibility factors are α1 = 1 and α2 = 0.5, respectively. The 

bodies of evidence are adjusted and the D–S rule of combination is used to obtain the fuzzy set 

m1-2(X1,1
2
) = [0.33, 0.33, 0.2, 0.07, 0.07]. In the hierarchical structure described earlier, D–S 

updating can be done at any level of the hierarchy when new evidence is available, however, it is 

expected that D–S updating will be done mainly at the level of basic risk items. This process is thus 

used to combine the new information with prior information.  

(d) Risk management (using defuzzification) 

In the first generation of the aggregative structure (i.e., the head of the pyramid), the final 

aggregative risk is a fuzzy set that can be defuzzified to provide a single (crisp) measure of the risk, 

using one of the several defuzzification techniques described in Chen and Hwang (1992). Lee 

(1996) proposed a simple defuzzification technique as follows, 

Defuzzified risk =          (9) 
1

01,P XL ⋅

which means that the defuzzified risk is calculated as a dot product of vector LP and the fuzzy 

number X1,0
1
, where LP (given in Table 2) is the 5-tuple vector representing centroid values of p 

linguistic risk constants. The crisp value of risk can be misleading because of associated 
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uncertainties and subjectivity in the use of any defuzzification technique. An attitudinal dimension 

can be introduced in the defuzzification of risk to alleviate (or at least have control over) this issue.  

In the proposed framework the ordered weighted operators (OWA) as described by Yager 

(1988) is selected as the method to consider the attitude of the decision-maker in defuzzifying the 

final risk value. The OWA method was used for applications in decision-making (Engemann et al., 

1996), expert systems (Kacprzyk, 1990), and fuzzy systems (Yager and Filev, 1994). A number of 

approaches have been suggested to obtain OWA weights (Yager, 1993). O’ Hagan (1988), for 

example, calculated the vector of the OWA weights for a predefined orness (level of optimism) by 

maximizing the entropy of the OWA weights using linear programming. Another (simpler) way of 

obtaining OWA weights involves the using of exponential OWA (E–OWA) operators, which 

represent a simple relationship between the orness and a parameter β (Filev and Yager, 1998). The 

E–OWA weights are defined as follows: 

w1 = β; w2 = β (1 - β); … wn-1 = β (1 - β) 
n - 2

  and  wn =  (1 - β) 
n – 1

  ; 0 ≤  β ≤ 1 (10) 

where n is the granularity of fuzzy risk. Once the weights wp (p = 1, 2, …, n) are determined, the 

crisp value of the fuzzy risk can be calculated by 

Defuzzified risk =          (11) N
p

n

p
pw μ∑

=1

where μp
N
 are the normalized membership values of the fuzzy risk to the risk levels, which are 

arranged in a decreasing order of importance (i.e., VH, H, M, L, VL). Parameter β is determined 

based on the decision-maker’s chosen optimism level or orness. The orness of an E-OWA operator 

takes on a value between zero (pessimistic) and unity (optimistic) and is related to parameter β as 

follows  

( ) p

n

p

wpn
n

Orness ∑ −
−

=
=11

1
         (12) 

Figure 4 illustrates some characteristic curves of orness versus β for selected levels of 

granularity, as calculated using equations (10) and (12). In summary, the steps to estimate risk for a 

given level of optimism are: 

• Assume a level of optimism (orness); 
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• calculate β using equations (10) and (12) or read the value of β from the characteristic curve 

(Figure 4) with the appropriate number of granulars; 

• determine weights using equation (10); and 

• determine crisp risk estimates using equation (11). 

The risk estimates of alternative strategies at a desired level of optimism can be associated to 

cost-benefit analysis. The more optimistic the attitude, the higher the willingness to take risks and 

the lower the cost of risk mitigation. Conversely, lower optimism results in a conservative approach, 

which involves higher costs. Figure 5 provides a block diagram that illustrates the proposed 

framework.  

WATER QUALITY FAILURE IN DISTRIBUTION NETWORKS 

Figure 6 shows a simplified hierarchical structure for water quality failure. A detailed 

discussion on each type of water quality failure can be found in Sadiq et al. (2004). This structure is 

used to demonstrate the aggregative risk framework introduced in the previous section. Table 3 lists 

17 basic risk items for the proposed structure. These basic risk items are positioned in the fourth and 

the third generations of the hierarchical structure, and are grouped into the third and the second 

generations (respectively) risk attributes, which in turn are grouped further up the hierarchy. The 

weight matrices wi,j
k
 for each set of siblings were developed using the AHP technique as discussed 

earlier. 

The process of basic risk evaluation and subsequent risk aggregation through all the 

generations were performed as described in the previous section. The final aggregated risk (first 

generation) was obtained
⎭
⎬
⎫

⎩
⎨
⎧=

VHHMLVL
X

0
,

01.0
,

19.0
,

43.0
,

38.01

0,1  and is plotted in Figure 7. The final 

defuzzified aggregative risk was determined for two levels of orness (optimism) 0.6 and 0.8 (Figure 

4). The crisp (defuzzified) risk estimates varied between 0.14 and 0.06 for low and high optimistic 

attitudes, respectively. 

In the context discussed here, the D-S updating is demonstrated by reassessing risk based on 

available new evidence on microbial contamination. This evidence could consist of information 

such as an increase in off-the-shelf sales of gastrointestinal medication or additional cases reported 
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at local clinics/pharmacies. The new evidence m2(X6,3
3’

) was expressed as [0, 0, 0.2, 0.8, 0], with a 

credibility (α2) of 1. The old evidence m1(X6,3
3’

) was a 5-tuple fuzzy set [0.58, 0.42, 0, 0, 0] which 

was assigned a credibility (α1) of 0.8 with respect to the new evidence. The D–S rule of 

combination was used to update this risk item and the value of m1-2(X6,3
3’

) changed to [0.26, 0.21, 

0.05, 0.1, 0.37]. The aggregative risk analysis was repeated to obtain a final aggregative risk X1,0
1
 = 

[0.33, 0.4, 0.19, 0.02, 0.05]. After defuzzification, the crisp risk estimate changed from 0.14 to 0.15 

for the low optimistic attitude level and from 0.06 to 0.09 for the high optimistic attitude level. The 

results of pre- and post-update possibility mass functions are compared in Figure 7. 

SUMMARY AND CONCLUSIONS 

Water quality in the distribution network is a complex issue, for which available data are 

scarce and often highly uncertain, imprecise and vague. In addition, there is a high spatial and 

temporal variability in water quality may occur, and many of the controlling processes are not 

currently well understood. A comprehensive framework of risk analysis was proposed for water 

quality failures in the distribution network. The advantages of the framework are: 

• It enables the synthesis of both quantitative and qualitative information into a single framework; 

• it can explicitly consider and propagate uncertainties, for which probability distributions are not 

known; 

• it is modular and scalable; and new knowledge and information can be accommodated at any 

stage and in any form. For example, vulnerability to terrorist acts (safety related risk), hydraulic 

failure, financial risk etc. can be part of this framework; 

• it has ability update information based on newly arrived evidence; 

• more data results in less uncertainty, which when propagated through the hierarchical structure, 

can result in reduced aggregative risk. The proposed approach can help pinpoint (identify) those 

areas where more data would yield the highest benefits;  

• it can be used for cost-benefit analysis to facilitate efficient budget allocation and prioritize 

attention to those areas which have the most adverse impact on total water distribution network 

risk; and  
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• it is easily programmable for a computer application and can become a risk analysis tool for a 

water distribution network.  

The limitations of the proposed method are: 

• It may be sensitive to the selection of aggregation operators. Different mathematical operators 

can be used for different segments of the model and trial and error approach can be used to 

avoid exaggeration and/or eclipsing. Exaggeration occurs when all basic risk items are of 

relatively low risk, yet the final aggregative risk comes out unacceptably high. Eclipsing occurs 

when one or more of the basic risk items are of relatively high risk, yet the estimated 

aggregative risk comes out as unacceptably low. 

• This framework supports both qualitative and quantitative data. Some data may be supported by 

rigorous observations, while other data may be based on beliefs that are loosely supported by 

anecdotal-information. These two types of data should have different weights in the aggregation 

process. The hierarchical structure in its current form does not address this need to distinguish 

between data obtained from sources with different reliabilities.  

The structure presented in this paper is but a simplified demonstration of the approach. A 

comprehensive structure would require a major effort, including the collaboration of several experts 

with knowledge in several disciplines.  

In the model development stages, the final aggregative risk value is expected to have limited 

meaning for the acceptability level of the risk to the general public. It is envisaged that as the 

proposed hierarchical structure is developed, risk items are populated and subsequently improved 

upon (using newly obtained data/evidence), the developers and the guardians of the water 

distribution networks will gain insight into acceptable risk levels as they are manifested in the final 

fuzzy and/ or defuzzified risk values. In the longer term, this approach could serve as a basis to 

benchmark acceptable risks in water distribution networks. A collaborative research project titled 

“Effect of aging water mains on water quality in the distribution systems” by American Water 

Works Association Research Foundation (AwwaRF) and National Research Council Canada (NRC) 

is dealing with this issue. The result of this research project will be disseminated in coming years. 
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 Figure 1. Pathways for water quality failures in water distribution networks 
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Figure 2. Estimating 5-tuple fuzzy set of risk 
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Figure 3. A hierarchical structure for the estimation of aggregative risk 
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Figure 6. Hierarchical structure for aggregative risk of water quality failure (Sadiq et al., 2004) 
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Figure 7. Possibility mass functions for final aggregative risk of water quality failure 
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Table 1. Linguistic definitions of grades (granulars) using TFNs for likelihood and peril* 

Granular (q) 
Qualitative scale for 

likelihood of risk (r) 

Qualitative scale for 

peril of risk (l) 

Triangular fuzzy number 

(TFNr or TFNl) 

1  Absolutely low Absolutely unimportant [0, 0, 0.1] 

2 Extremely low Extremely unimportant [0, 0.1, 0.2] 

3 Quite low Quite unimportant [0.1, 0.2, 0.3] 

4 Low Unimportant [0.2, 0.3, 0.4] 

5 Mildly low Mildly unimportant [0.3, 0.4, 0.5] 

6 Medium Neutral [0.4, 0.5, 0.6] 

7 Mildly high Mildly important [0.5, 0.6, 0.7] 

8 High Important [0.6, 0.7, 0.8] 

9 Quite high Quite important [0.7, 0.8, 0.9] 

10 Extremely high Extremely important [0.8, 0.9, 1] 

11 Absolutely high Absolutely important [0.9, 1, 1] 

* For absolute zero and one,  “none” and “certain” qualitative scale can be used, respectively. The TFNs for 

these qualitative scale are (0, 0, 0) and (1, 1, 1), respectively for both likelihood and peril. 
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Table 2. Linguistic definitions of grades (granulars) using TFNs for risk 

Granulars 

(p) 

Qualitative scale for risk level 

(L)* 

Triangular fuzzy number 

(TFNL) 

Centroid (LP)

1 Very low [0, 0, 0.25] 0.08 

2 Low [0, 0.25, 0.5] 0.25 

3 Medium [0.25, 0.5, 0.75] 0.5 

4 High [0.5, 0.75, 1] 0.75 

5 Very high [0.75, 1, 1] 0.92 

* For absolute zero and one,  “none” and “certain” qualitative scale can be used, respectively. The 

TFNs for these qualitative scale are (0, 0, 0) and (1, 1, 1), respectively for both likelihood and peril. 
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Table 3. Complete data set for basic risk items for the evaluation of final aggregative risk 

Basic risk items Definition ri,j
k

li,j
k

x = TFNL

X1,1
4’

External source of contamination in storage tank 5 9 [0.21, 0.32, 0.45] 

XL2,1

4’
Internal source of contamination in storage tank 1 3 [0, 0, 0.3] 

X3,2
4’

Contamination caused by broken pipes and gaskets 5 9 [0.21, 0.32, 0.45] 

X4,2
4’

Contamination during maintenance events 2 8 [0, 0.07, 0.16] 

X5,2
4’

Contamination caused by cross connection 6 7 [0.2, 0.32, 0.42] 

X3,2
3’

Regrowth of biofilm in tanks and resuspension 3 8 [0.06, 0.14, 0.24] 

X4,2
3’

Regrowth of biofilm in pipes and sloughing 2 7 [0, 0.06, 0.14] 

X6,5
4’

Disinfection byproducts coming through treated 

water 
5 10 [0.24, 0.36, 0.5] 

X7,5
4’

Residual concentration of disinfectants 7 4 [0.1, 0.18, 0.28] 

X8,5
4’

Residues of other treatment chemicals 5 2 [0, 0.04, 0.1] 

X9,5
4’

Trace chemicals of source water 3 7 [0.05, 0.12, 0.21] 

X6,3
3’

Injured and escaped organisms in water treatment 2 10 [0, 0.09, 0.2] 

X7,4
3’

Elastomers 0 8 [0, 0, 0] 

X8,4
3’

Organic pollutants 0 5 [0, 0, 0] 

X10,9
4’

Leaching of pipe material 4 7 [0.1, 0.18, 0.28] 

X11,9
4’

Release of corrosion byproducts 8 9 [0.42, 0.56, 0.72] 

X10,5
3’

Leaching from liners and sealers in storage tank 3 5 [0.03, 0.08, 0.15] 

 

 
27


