
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 2006 IEEE International Conference on Web Services, 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=59d31d38-501f-437d-841b-d4fec2188d14

https://publications-cnrc.canada.ca/fra/voir/objet/?id=59d31d38-501f-437d-841b-d4fec2188d14

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Composing Business Processes with Partial Observable Problem

Space in Web Services Environment
Yan, Y.; Liang, Y.; Liang, H.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Composing Business Processes with Partial

Observable Problem Space in Web Services

Environment *

Yan, Y., Liang, Y., Liang, H.
September 2006

* published in the Proceedings of the 2006 IEEE International Conference

on Web Services. September 12-17, 2006. Chicago, Illinois, USA.

NRC 48742.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 1

Composing Business Processes with Partial Observable
Problem Space in Web Services Environments

Yuhong Yan1, Yong Liang2, Han Liang2

1
 NRC-IIT, Fredericton, NB, Canada,

Yuhong.yan@nrc.gc.ca

2
 Faculty of Computer Science, UNB, Canada

{Yong.liang, Han.liang}@unb.ca

Abstract
Composing business processes from individual services

can be viewed as a planning problem in which a planner

determines the execution orders of services in a process.

Most existing Web Service composition research

considers connecting Web Services into a business

process. We argue that most existing Web Services are

informative Web Services that are not the actual business

services, but give the parameters of their correspondent

business services. The planning problem is not only to

select the proper business services, but also to determine

the parameters of the business services which affect the

ordering of the business services. Furthermore, it is not

possible to extract all information from informative Web

Services through queries. The planner has to work with

the problem space that is not fully enumerable. This paper

presents a method to optimize planning results with

incompletely observed problem space. Genetic Algorithms

(GA) help to navigate the incompletely observed problem

space. At each loop of GA, Web Service data are queried

and a new sub problem space is built. The planner works

with the sub problem space and calculates all feasible

plans. The plans are evaluated by GA in fitness function

and the best plans are kept for the next loop of GA. The

fitness function of GA reflects domain-dependent user

preferences. The selected final plan is an optimized

feasible plan though global optimization is not

guaranteed.

1. Introduction

Web Services are emerging as a powerful technique for

organizations to implement business processes through
selecting and combining Web Services according to the
business tasks. Both industrial and academic communities
have presented the languages and standards to embrace

the utilization of Web Services composition, such as
BPEL4WS [1], OWL-S [2] and WSCI [3].

Web Services composition can be seen as a planning
problem that a sequence of services is composed into a
business process to reach business goals. For some
reason, Artificial Intelligence (AI) planning researchers
are especially interested in this application. Classic AI
planners model the states, the actions and the goals. An
action is applicable in a state if its preconditions are
satisfied, and it can transfer the system to another state.
The planner is to determine the sequential orders of the
actions in order to reach the goals. Several techniques,
such as search and logic inference, can be used to build
the planners [6]. For Web Service composition, Web
Services are modeled as actions and the business
processes as plans to connect the Web Services. Existing
approaches [10][11][12] work when all relevant service
descriptions are initially loaded into the reasoning engine,
they can not perform the services discovery at runtime.

We argue that, in the real world, most Web Services are
informative Web Services that only provide information
about the actual business services. For example, we can
get flight information from a Web Service for a travel
plan. But this flight information Web Services is an
informative Web Service that does not provide the
business service itself. Therefore, this information Web
Service is not part of the travel plan. In this paper, we
study a wider Web Service composition problem where
informative Web Services are queried to get the
parameters of their correspondent services. The resulting
business process can be any kind of service or activity
without being limiting to Web Services. We consider this
as a more realistic Web Service composition problem.

The challenge of the wider Web Service composition
problem is that the problem space is not fully enumerable.
It is impossible to get all the information stored in the
databases of different Web Services through queries.
Therefore we can’t model the whole problem space and
feed it into a planner. In this paper, we present a solution

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 2

to combine GA with planning so that GA helps to
navigate in the large search space and build sub space by
querying Web Services. At each GA loop, the planner is
called to construct plans at the sub problem space. The
resulting plan is considered to be optimal.

The rest of the paper is organized as follows: section 2
gives the basic knowledge on GA and AI planning;
section 3 presents the wide Web Service composition
problem; section 4 presents our solution to the wide Web
Service composition problem; section 5 describes the
implementation details and experimental results; section 6
compares our work with related work; and, section 7
draws the conclusion.

2. Background

The method of Web Service composition developed in
this paper is based on AI planning and Genetic
Algorithms. Some background knowledge is introduced
here.

 2.1 AI Planning for Web Service Composition

Many research efforts tackling Web Service
composition problems via AI planning have been reported
[10][11][12][13]. Classic AI planning representation has
three parts: the planning domains, problems and solutions
[6]. The planning domain is a state transition system Σ =
(S, A, γ), where S is the set of all possible states of the
world, A is the set of actions the planner can perform in
attempting to change one state to another in the world,
and the translation relation γ ⊂ S×A×S defines the
precondition and effects for the execution of each action.
We use γ(s, a) to represent an action a applied to state s.
The planning problem is a triple P = (Σ, S0, G) [6], where
S0 ⊂ S denotes the initial state of the world, G ⊂ S
denotes the goal state of the world the planning system
attempts to reach. A plan π is any sequence of actions π =

<a1,a2, …, ak> is a solution to P if G ⊆ γ(S0, π).
[6] introduces several techniques to build AI planners,

namely, search, planning-graph, propositional
satisfiability, constraint satisfaction and logic inference.
Checking the planners used for Web Service composition,
In [11], the planner is based on model checking
techniques. In [12] the planner is based on situation
calculus, a first order language for states and actions in
dynamic domain. In this paper, we use SHOP2 [8],
Simple Hierarchical Ordered Planner, as the planner,
similar as [10]. Developed by the University of Maryland,
SHOP2 is a domain-independent planning system based
on HTN planning. Compared with classical planning,
HTN is designed to perform some set of tasks rather than
achieve a set of goals. To create plans, HTN planning
recursively decomposes a task into smaller and smaller
subtasks by a set of Methods until primitive tasks are
reached and can be performed directly.

PDDL [7] (Planning Domain Definition Language) is
the language originally proposed by the AIPS-98
Competition Committee for use in defining problem
domains. It is the standard language for the representation
of planning domains and problems. Planning tasks
defined by PDDL are separated into two parts: one is
domain, which includes predicates and actions; the other
is problem, which includes objects, initial states, and
goals. PDDL is used to describe problem and domain in
this paper.

Existing work in [10][11][12] about using AI planning
for Web Services focuses on how to convert Web Service
composition problem into planning problem and how to
represent the user constraints and goals from knowledge
representation point of view. These methods work when
all relevant service descriptions are initially loaded into
the reasoning engine, they do not perform the services
discovery at runtime. This paper presents another point of
view on Web Service composition problem.

2.2 Genetic Algorithms

Genetic Algorithms (GA) introduced in the 1970s by
John Holland [5]. The concept comes from the principle
of Survival of the Fittest by Charles Darwin. GA is
proposed as a search algorithm and has proven to be
powerful in rapidly discovering good solutions for some
difficult problems, especially when the search space is
large, complex and poorly understood. In GA, each
possible solution is represented by a chromosome and the
goal solution is to be optimized corresponds to the fitness
function. GA creates a population of solutions, and then
generation by generation, the population is manipulated
by genetic operators such as mutation and crossover. The
propagation stops when some termination criteria are
satisfied and the optimized solutions are found.

GA is intrinsically parallel and inclined to determine
the global optimum. Since GA can generate many
offspring in a complete loop, it can explore the search
space in a multi-direction way. GA has been proven to be
effective at escaping local optima and discovering the
global optimum through genetic operations in some
problems. With crossover, there is a transfer of
information between successful solutions, which means
offspring can benefit from what parents have learned, and
parental schemata can be mixed and combined so as to
reproduce next generations with strengths of both their
parents. Therefore, GA has a higher probability of finding
the global optimal solution in a relatively short time
compared with other classical heuristic search algorithms.

3. Distinguishing Web Services Composition

from Business Process Composition

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 3

The existence of BPEL4WS and other business process
modelling languages from the Web Service community
make people equate Web Service composition to business
process composition. We need to point out that business
process is a much broader concept than a process
composed by Web Services. According to [9]:

Business Process is a collection of related, structured
activities – a chain of events – that produces a specific
service or product for a particular customer or customers.

The activities in business processes can be of many
kinds, including activities fulfilled by humans. Only those
activities that use data flow can be wrapped as Web
Services. If a Web Service composition problem only
studies the business process composed by Web Services,
we call it a narrow Web Service composition problem
(narrow WSC). Most existing Web Service composition
papers actually study narrow WSC problems (cf. section
2.1). When using planning for narrow WSC problems, a
Web Service is modelled with pre-conditions and post-
conditions. The execution of a Web Service would change
the state of the world. The planner decides orders of the
Web Services according to the goals. From a software
engineering point of view, the outputs of a Web Service
are the inputs of its following Web Services.

 However, narrow WSC does not cover all the scenarios
for which Web Services can be used for business process
composition. For example, if we want to build a software
agent that can search for Web Services that provide hotel
and airline information to build a travel plan, the Web
Services that the agent uses are not part of the business
process. Therefore, we need to introduce the wide Web
Service composition problem (Wide WSC):

The wide Web Service composition problem is to
build a business process by using Web Services.

Using Web Services means not only compose Web
Services into a business process, but also use information
from Web Services at the planning phase. Many existing
Web Services are what we call informative Web
Services that only provide information about a service or
a product. They are not the activities in the composed
business process. Examples of informative Web Service
are flight schedule Web Services and stock quote Web
Services. Invoking this kind of Web Services does not
change the state of the world, because no real business
actions are taken. Currently a large part of available Web
Services are informative Web Services. Some evidences
are the services listed by www.xmethods.com. Another
example is that a travel plan is decided by the availability
of flights and hotels and the information can be got only
by informative Web Services. In contrast to informative
Web Services, we call the Web Services that provide
actual business services executable Web Services. Some
examples are order processing Web Services and ticket
purchasing Web Services. Narrow WSC is a special case
that all business activities in the composed business

process are executable Web Services. The relations of
narrow WSC and wide WSC to Business Process
Composition (BPC) is:

Narrow WSC ⊂ Wide WCS ⊂ BPC (1)
The output of a wide WSC problem is a normal

business process that includes many kinds of activities,
and is not limited to Web Services. The representation of
a business process can use a BPEL4WS with some work-
around, or some description languages from Workflow
community.

In this paper, we focus on the Wide WSC problem that
is to use informative Web Services for planning a
business process. We will demonstrate how to tuning the
parameters of services to optimize the orders of activities.

4. Solving the Wide WSC Problem

4.1 Motivating Example

Consider a travel plan problem. Suppose John wants to

travel from Fredericton to Toronto on business. Here are
the activities he proposes:
• Possibly leave on Saturday and return on the

following Friday. (The date is flexible depending on
the price of the flight ticket and hotel.)

• Business meetings on Monday and Tuesday.
• Stay in hotel in Toronto.
• Rent a car after arriving at Toronto.
John is free on Thursday afternoon, so he plans to do the
following:
• If the weather is good, watch a baseball game.
• If the weather is bad, see a music performance and

find a restaurant for supper.

start

end

BaseBall

Weather

Flight Ticket

Hotel

Car Rental

Opera

Restaurant

Figure 1. John’s travel activity flowchart

There are some constraints, e.g., the date of booking a

hotel and renting a car depends on the flight ticket, and
the order of having supper and watching music
performance depends on the price of the music. (If the

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 4

afternoon music ticket is expensive, John will have supper
first watch the performance at night.) Suppose several
Web Services provide information about flights, hotels
and car rentals. The business process composer needs to
choose the best service and determine the plan for the trip.
Figure 1 is the flowchart of John’s activities.

4.2 The Composer and the Partial Observable
Problem Space

We want to make use of informative Web Services to
compose a business process. The working environment of
a Web Service composer is shown in figure 2. The user
requirements are fed into the Web Service composer (WS
Composer in Figure 2). The WS Composer queries
informative Web Services (IWS1…n in figure 2) about the
parameters of services. The business process is the output
of the WS Composer.

WS Composer

IWS1 IWS2
IWSn

Buz ProcRequirements

…

Figure 2. The working environment of Web

Services composer

WS Composer needs to solve the following issues:
1) Orders of the services to reach the goal. AI planning is
a proper choice for this task.
2) Constraints among the services. Although the services
are independent to each other as a single service, when
they were put into a sequential execution path, the
execution of the services depends on the input and output
of the context services.
3) Parameters of the services. Planning can also deal with
parameters if parameters are modelled in the problem.

The difficulty is that in the Web Service environment,
the parameter data belongs to different Web Services.
This means that it is impossible to enumerate the problem
space and feed it into a planner. The problem space is not
fully observable. In order to get the optimized solution,
we need yet another tool to navigate the problem space.
This leads to one solution presented in the next section.

4.3 Combining Genetic Algorithms with Planning

We present a method to optimize planning results with

an incompletely observed problem space where Genetic
Algorithms (GA) is chosen to navigate.

The COMPOSER algorithm is in Figure 3. The main
function is based loosely on the GA described in [14].
The Web Services are organized as clusters based on the

similarity of their functions. For example all flight
information Web Services are in one cluster. Figure 4
shows n clusters. One Web Service wsk(i) is selected
randomly from cluster i. At each loop (**) in Figure 3,
two individuals x and y will be chosen as parents, the
selection based on the fitness of the individual. Once two
parents have been selected, the GA recombines them to
create two new offspring through crossover and mutation
operations. Then each new individual will be evaluated by
CHROMOSOME-EVALUATION. The process (**) will
go on until we generate the same number of offspring as
that of the parent. Those new offspring are one
generation. Process (*) will repeat generation by
generation until one of the termination criteria is satisfied.

 Figure 3. Web Services composition algorithm

function COMPOSER
 inputs: population //a set of individuals
 returns: an individual

 domain ← PREPAREDOMAIN //manually
 repeat (*)
 new_population ← empty set
 loop for i from 1 to SIZE(population) do (**)
 x ← SELECT(population)
 y ← SELECT(population)
 child ← CROSSOVER(x,y)
 child ← MUTATE(child)
 CHROMOSOME-EVALUATION(child)
 add child to new_population
 end of loop
 population ← new_population
 until some termination criteria is met
 return the best individual in population
end COMPOSER

function CHROMOSOME-EVALUATION
 inputs: chromosome
 FITNESS-FN //a function that measures

 //the fitness of an individual
 USER-PRE-FN //a function that represents

 //users preference
 returns: a fitness-value

 gene ← DECODE(chromosome)
 data ← QUERY-WS //get data from WS
 //generate problem in PDDL format
 problem ← PREPAREPROBLEMS(data)
 //generate all solutions
 solutions ← PLANNER(domain, problem)
 //Choose the best solution
 best-fitness-value ← FITNESS-FN(solutions)
end of CHROMOSOME-EVALUATION

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 5

In the function CHROMOSOME-EVALUATION, the
chromosome will be decoded into genes which represents
the correspondent Web Services {wsk(i) |i=1,…,n} (as in
figure 4). These Web Services are queried to get data set
{Data1~d(i)|i=1,…,n} which are the parameters of the
services. The data are used to generated the problem in
PDDL format. The planner is called to find all the
possible plans with the predefined domain and the
generated problem. The best solution in this planning
execution will be scored as the fitness value of that
chromosome. In this model, the planner is executed every
time a chromosome is evaluated. The Planner take the
chromosome as input and output the fitness value, the
orders and constraints of the services are handled in the
planner.

... ...ws1

WSi(1)

ws1 ws1

Ramdonly select one
WS from each cluster

wsk(1) wsk(2) wsk(n)

Data1~d(1) Data1~d(2) Data1~d(n)

Query data from every
selected WS

Generate all plans and
choose the best one

datah(1) datah(2) datah(n)

Cluster

WSi(2) WSi(n)

... ...

... ...

... ...

Single
WS

Data set

Single
data

(1)

(2)

(3)

Figure 4. The process of generating an individual

5. Algorithm Implementation and Results

5.1 Implementation of the Genetic Algorithms

5.1.1 Definition of chromosome. In our model, we use a
binary bit string, also called a chromosome, to encode the
business process. We define Chromosome = [C1, C2, …,

Cn], where n is the number of Web Services clusters, a
Web Services cluster is a group of Web Services that
perform a specific task, and Ci represents a specific Web
Service. That means we select one Web Service from one
cluster. We assume that the Web Services in one cluster
perform the same task and the clusters are disjoint.
Forming the clusters and the possible heterogeneous
descriptions and interfaces of the Web Services are not
under consideration of this paper.

According to our scenario, we have six clusters: Flight
Ticket; Hotel; Baseball; Opera; Car Rental: and,
Restaurant. The solution can be the combination of some
or all clusters, but the chromosome should include all
clusters, since we do not know which cluster will be
chosen until we run it in the planner. We suppose that

only one service can be selected from one Web Services
cluster.

Before encoding the chromosome, we should collect
all the available Web Services in the same cluster and
assign each concrete Web Service a binary bit string as a
gene. For example, the Sheraton Hotel Web Service might
be represented by a binary bit string {0000100}. The
length of gene depends on the number of the Web
Services in the cluster. If the length is too short, it can not
represent all the Web Services in this cluster. If the length
is too long, it might have many useless genes that do not
represent any Web Service, and hence could make the
convergence of GA slow.

Table 1 lists one of the possible Web Service
combinations. So the chromosome for this solution is:
[0011001,0101011,1100111,1010101,1111001,1010111].
Other potential solutions might be the composition of
selecting SouthWest Airline, Hilton hotel, etc.
5.1.2 Selection of Chromosome. An important aspect in
GA is to decide which individuals should be chosen as
parents. The selection is based on the fitness of the
individuals. According to the “survival of the fittest”
principle, a chromosome with higher fitness values has a
greater chance of being selected as a parent. In our model,
we use the roulette wheel selection.

Every time a new population is made, the chance that
we might lose the string with the best evaluation occurs.
This could make the result unstable and slow the
convergence. To overcome this problem, we use elitism
by simply copying the two best chromosomes into the
succeeding generation.
5.1.3 Genetic operations. Once two parents are selected,
we need to recombine them by performing genetic
operation to generate new offspring. Two new individuals
are created that typically share many of the characteristics
of their "parents." The genetic operations we used in this
paper are crossover and mutation.

Figure 5. Crossover and mutation operations

Here, we use one-point crossover, which randomly

selects an integer k between 1 and the number of the
cluster n, [1, n]. Two new chromosomes are created by

C1=[0011001,0101011,1100111,1010101,1111001,1010111]

C2=[1000000,1000000,1000000,1000000,1000000,1000000]

C1’=[0011001,0101011,1000000,1000000,1000000,1000000]

C2’=[1000000,1000000,1100111,1010101,1111001,1010111]

Crossover

Mutation of C2’

C2’’=[1001000,1000000,1100111,1010101,1110001,1010111]

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 6

swapping all bits between position k and n. Note that the
crossover operator is not always performed, and the
probability of the crossover depends on the crossover rate.

Mutation is performed after the crossover. The purpose
of mutation is to introduce divergence into a converging
population, which can avoid setting the algorithm trapped
into a local optimal solution. Each bit along the
chromosome might have a chance to flip from 1 to 0 or
vice versa. As in the crossover operation, the probability
of doing the mutation operation depends on the mutation
rate, which is very small. Figure 5 shows the examples of
crossover and mutation operations.

5.1.4 Definition of Fitness Function. The fitness
function really depends on the specific problem we are
trying to solve, but the general idea is to give a higher
score to the closer solution. After every new chromosome
is generated, the solution must be evaluated in order to
decide whether it is a good or bad individual by using
fitness function. In our model, each chromosome might
have zero or more solutions to the problem because each
Web Service might provide more than one piece of data.

For example, in the chromosome shown in Table 1, we
will have two solutions because Air Canada Web Service
provides two pieces of flight information. Typically, in a
business process, low cost is one of the important user
considerations. In this case, we chose Flight AC1024
instead of Flight AC08. Other criteria for selecting the
solution can also be defined according to the user’s
preferences and common sense in practice. We do not
consider those non-measurable aspects or non-functional
demand in this paper.

Table 1. Potential solutions for John’s trip
Gene Web Service candidate data
0011001 Air Canada Flight AC08, $300
 Flight AC1024, $250
0101011 Hotels.com $50 for each day
1100111 National car rental $100
1010101 Japanese food $15
1111001 Best baseball $15
1010111 Classic opera $10

After we choose the best solution, we can assign a
fitness score to that chromosome. The score can be the
inverse of the total cost of all services, that is, 1/∑(cost).
For example, we assume the total cost of the solution in
the previous chromosome has a value of 380. Then the
fitness score of this chromosome is 1/380. If the planner
can not find any solution for a chromosome, we consider
this chromosome is unvalued and give it a very low
fitness score.
5.1.5 Termination. The iterative process continues until
one of the termination conditions has been reached. In this
paper, the terminating flags are: (1) when a known
optimal or acceptable solution level is attained; (2) when

the best fitness score is kept the same for more than a pre-
setting repeated time; and, (3) when a maximum number
of generations have been performed.
5.1.6 Parameters. Some factors can affect the result of
the GA greatly, such as population size, crossover
probability, mutation probability, and the strategy for a
selection method. In our (Table 1) model, we set the
parameters as follows: population size = 60; crossover
rate = 0.6; mutation rate = 0.001; the maximum
generation value was set to 100; and the elitism value is 2.

5.2 Planning

Every chromosome must be evaluated to be able to
distinguish between good and bad. The following steps
describe how we use planning to help evaluating the
chromosome.
5.2.1 Domain Description in PDDL. In our model, the
description of the problem will change according to the
chromosome, but the description of the domain will be the
same, since it is in the same travel domain. Therefore, we
need to define the domain only once at the beginning.
Figure 6 is the snippet of the domain description.

Figure 6. Snippet of domain description

5.2.2 Problem Description in PDDL. The problem
description will change according to the chromosome
because different chromosomes have different
combinations of Web Services, and each Web Service
will provide different data. So, to generate the problem
dynamically, we need to query data from the given Web
Service. (In our model, we use the artificial data set to
simulate the data from different Web Services.)

Note: not all genes can be mapped to the Web Service,
since some genes are useless. In this case, it will return an
empty data set.

(defdomain tripPlanning
 (
 ;;define book ticket operator
 (:operator (!book-ticket ?s1 ?d1 ?name1 ?date1 ?flight1)
 (
 (trans-info ?s1 ?d1 ?name1 ?date1x ?time1x
 ?date1xx ?time1xx ?flight1 ?price1)
)
 ()
 ((by-airlineservice ?s1 ?d1 ?name1 ?date1 ?flight1))
);;end of book ticket operator
 ;;define book hotel operator
 (:operator (!book-hotel ?name2 ?date2 ?days2)
 (
 (hotel-info ?name2 ?date2 ?price2)
)
 ()
 ((by-hotelservice ?name2 ?date2 ?days2))
);;end of book hotel operator

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 7

After querying all the data, we can generate the
problem using the template. For each domain, we define a
problem template. Figure 7 is the snippet of the problem
description.

Figure 6. Snippet of problem description

5.2.3 Execution of Planning. After the domain and
problem are generated, the planner can be executed. The
solution of the planning will be scored by fitness function
in the GA. The integration of the planner and GA is
showed in Figure 4.

5.3 Results

To test the motivating example in section 4.1, we set up

some artificial data as follows:
• Six clusters.
• 100 Web Services in each cluster.
• 100 pieces of data in each Web Service.

The goal is to find the lowest cost solution for John’s trip.
In this model, there is no specific known solution,

which means no goal state. So we will choose the (2) and
(3) in the section 5.1.5 as terminating flags. In the
experiment, the highest score chromosome in the last
generation is the best solution. The best result is:

{1010000,0011110,0101011,1011111,*,0010001}
In the result chromosome, gene * represents Baseball

Web Service. We can see that the choice of Baseball Web
Service will not affect the final score because there is no
action on the Baseball Web Services cluster in the
solution list. We can see from Figure 7 that the mean
fitness value is improved with the continuing iteration.
The activity flowchart of the final solution is shown in
Figure 8. It includes six actions: booking flight ticket;
booking hotel; renting a car; booking museum ticket;

booking restaurant; and, the last action of calculating the
total cost.

0

0.05

0.1

0.15

0.2

0.25

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337

Generations

F
it

n
e

s
s

 V
a

lu
e

mean value

Figure 7. The evolution procedure

Figure 8. Final Solution

6. Comparison with Related Work

This paper uses GA and AI planning to solve the Wide
WCS problem. It is related to, but different from, some
existing work. First, most existing Web Service
composition papers using AI planning discuss the narrow
WCS problem [10][11][12][13] are based on the matching
of input, output parameters and the properties of the
services, beyond this, our approach focus on the dynamics
of information queried from the services. The planning
execution is leaded by GAs and executed multiple times.
We also argue that the Wide WCS problem is a more
realistic problem in the real world, where most available
Web Services are informative Web Services. Second, the
Wide WCS problem is also different from the distributed
AI planning problem. Distributed AI planning studies
planning problems in a multi-agent system where each
agent has its beliefs, goals and intentions [15]. In a Web
Service environment, Web Services themselves are not
intelligent agents that are ready to negotiate and change
their actions. Indeed, Wide WCS problem is not a
distributed planning problem in this sense, because
planning is done at a central point. The distributed
environment just makes the problem space un-
enumerable.

(defproblem problem tripPlanning (
;; Flight Data
(trans-info fredericton toronto
 aircanada117 20051201 6 20051201
 6 F11730 236.1764)
(trans-info fredericton Toronto
 aircanada117 20051201 6 20051201
 6 F11752 261.2015)

;; Hotel Data
(hotel-info sherton50 20051201
165.8853)
(hotel-info sherton50 20051201
169.6691)

;; Other Information
(stay-days 6)(total-cost 0))
((travel-planning fredericton
toronto)))

A plan with cost 6.0 was found:

(!book-ticket fredericton toronto flightws80 20051201
f8021 150.17)
(!book-hotel hotelws30 20051201 63.02)
(!rentcar carrentalws43 17.3209)
(!book-opera operaws17 13.1143 17:00 18:30)
(!book-restaurant restaurantws95 8.432)
(!set-cost 0.0 252.0572)

4th IEEE International Conference on Web Services, Chicago, USA, Sept. 18-22, 2006 8

Some other work does not use planning for Web
Service composition. Reference [16] considers Web
Service compositions as parameter selections when the
template of a process is determined. Though planning can
deal with parameters if they are modeling in the problem,
most WS composition papers using planning do not
model parameters. However, our method models
parameters and determines both the orders of services and
parameters of services. Reference [4] uses also GA to
select services. Their work uses process templates where
services are selected based on QoA parameters. It is
different from the problem we study in this paper.

7. Conclusions

This paper presents a method to solve the Wide WCS
problem where informative Web Services are queried to
get parameter information for services. We regard this as
the common situation in the real world, since most of the
available Web Services are informative Web Services.
Since we can’t get all information in all the databases of
all the Web Services, the problem space is only partially
observable through querying the Web Services. We
present a solution to combine GA with planning
techniques to get optimal plans. In each GA loop, Web
Services are queried and new sub problem spaces are
constructed. The planner generates plans in the sub space.
The plans are evaluated by the fitness function to select
better plans. This method is demonstrated by an example.
The results show it is a workable solution. In the future,
we will work on efficiency improvement and will
automatically formulate the user preferences as
constraints.

8. References

[1] Web Services Business Process Execution Language Version
2.0, Working Draft, 23 August 2005,
http://xml.coverpages.org/WSBPEL-SpecDraftV181.pdf,
retrieved in Dec. 2005.
[2] OWL-S: Semantic Markup for Web Services, W3C Member
Submission 22 November 2004.
http://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/, retrieved in Dec. 2005.
[3] Web Service Choreography Interface (WSCI) 1.0, W3C
Note 8 August 2002. http://www.w3.org/TR/wsci/, retrieved in
Dec. 2005.
[4] Zhang, L.-J., Li, B., Chao, T., Chang, H. “On Demand Web
Services-Based Business Process Composition”, Proceedings of
the 2003 IEEE Conference on System, Man, and Cybernetics
(SMC'03), Washington DC, 5-8 Oct. 2003 pp:4057 - 4064 vol.4.
[5] Holland, J.H. “Adaptation in Natural and Artificial
Systems”, Cambridge, MA. The MIT Press.
[6] Ghallab, M., Nau, D., and Traverso, P., “Automated
Planning: Theory and Practice”, Morgan Kaufmann, 2004.

[7] The Language of the Fourth International Planning
Competition. ls5-www.cs.uni-dortmund.de/~edelkamp/ipc-4/,
retrieved in Dec. 2005.
[8] Documentation for JSHOP 2.0.
http://www.cs.umd.edu/projects/shop, retrieved in Dec. 2005.
[9] Glossary of US Government Accountability Office,
http://www.gao.gov/policy/itguide/glossary.htm, retrieved in
Dec. 2005.
[10] Wu, D. and Parsia, B., “Automating DAML-S Web
Services Composition Using SHOP2”, Proceedings of ISWC
2003, Sanibel, Island, FL, USA October 2003, pp.195-210.
[11] Pistore, M., Traverso, P., Bertoli, A., and Marconi, A.,
“Automated Synthesis of Composite BPEL4WS Web Services”.
In Proc. of ICWS 2005, Orlando, Florida, USA, July 11-15
2005, pp.293-301.
[12] McIlraith, S. and Son, T.C. “Adapting golog for
composition of semantic Web Services”, Proc. of the 11th
international conference on World Wide Web, Honolulu,
Hawaii, USA, 2002, pp. 77 – 88.
[13] Rao, J. and Su, S. “A Survey of Automated Web Service
Composition Methods”, Semantic Web Services and Web
Process Composition, San Diego, California, USA, July 6, 2004,
pp.43-54.
[14] Russell, S., and Norvig, P., “Artificial Intelligence: A
Modern Approach”, second edition, Prentice Hall, p116.
[15] Durfee, E., “Planning in Distributed Artificial Intelligence”,
Foundations of Distributed Artificial Intelligence, Edited by G.
M. P. O’Hare and N. R. Jennings, John Wiley & Sons, Inc.
1996, pp.231-245.
[16] ten Teije, A., van Harmelen, F., and Wielinga, B.
“Configuration of Web Services as Parametric Design”.
Valencia, Spain, ECAI 2004, August 23-27, pp.1097-1098.

