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The objective of the research presented here is to develop a new morphing mechanism using smart 

materials such as Shape Memory Alloy (SMA) as actuators and fuzzy logic techniques. These smart 

actuators deform the upper wing surface, made of a flexible skin, so that the laminar-to-turbulent 

transition point could move close to the wing trailing edge. The ultimate goal of this research project is to 

obtain a drag reduction as a function of flow condition by changing the wing shape. The transition 

location detection is based on pressure signals measured by optical and Kulite sensors installed on the 

upper wing flexible surface. Depending on the project evolution phase, two architectures are considered 

for the morphing system: open loop and closed loop. The difference between these two architectures is 

given by the use of the transition point as feedback signal. This research work was a part of a morphing 

wing project developed by the Ecole de Technologie Supérieure in Montréal, Canada, in collaboration 

with the Ecole Polytechnique in Montréal and the Institute for Aerospace Research at the National 

Research Council Canada (IAR-NRC). 

Recently, morphing wing system studies have branched out into new research directions. Extremely 

complex and catalogued as inter- and multidisciplinary studies, morphing wing studies continue to ‘push’ 

the science, up to the extreme boundaries of mathematics and physics. These multidisciplinary studies 

therefore require knowledge in the following disciplines: aerodynamics and computational fluid dynamics, 

aeroelasticity, automatic control, intelligent materials, signal detection using the latest miniaturized 

sensors, high computer-time calculations, wind tunnel and flight testing, instruments,  and signal 

acquisition - these signals have such speed that they are raising serious problems for the existing calculus 

technology. Consequently, real-time system functioning is conditioned (in addition to other factors) by the 

obtaining of the best data processing algorithms, easy to implement software within the command and 

control unit. Fuzzy logic theories, which offer remarkable facilities, may therefore be used in these 

algorithms. They facilitate signal processing by allowing empirical models to be designed based on 

experimental data; and thus, the complex mathematical calculus currently in use can be avoided. In 

addition, fuzzy logic can be used to model highly non-linear, multidimensional systems, including those 

with parameter variations, or where the sensors’ signals are not accurate enough for other models. This 

research project included the following: optical sensor selection and testing for laminar-to-turbulent flow 

transition validation (by use of XFoil code and Matlab), smart material actuator modeling, aeroelasticity 

wing studies using MSC/Nastran, open loop and closed loop transition delay controller design, integration 

and validation on a wing equipped with SMAs and optical sensors. 

A first phase of this project involved the determination of optimized airfoils available for 35 different 

flow conditions expressed in terms of five Mach numbers and seven angles of attack combinations. The 

optimized airfoils, derived from a laminar WTEA-TE1 reference airfoil (Fig. 1), were calculated and were 

used as a starting point in the actuation system design. Two steps were completed in the actuation system 

design phase: optimization of the number and positions of flexible skin actuation points, establishment of 

each actuation line’s architecture (Fig. 2). The next phase of the project was about the design of the 

actuation control in open loop architecture of the morphing wing, for which an integrated on-off versus a 

fuzzy PID architecture was chosen (Fig. 3 to Fig. 5). In this design, numerical simulations of the open 

loop morphing wing integrated system, based on a SMA non-linear model, were performed; as subsequent 

validation methods, a bench test (Fig. 6, Fig. 7) and a wind tunnel test were conducted (Fig. 8, Fig. 9). In 

the final phase a closed loop controller was developed and experimentally validated (Fig. 10-Fig. 13). 



Fig. 1 Morphed airfoil shapes for different flow cases 

Fig. 2 Model of the flexible structure 

 

Fig. 3 Operating scheme of the SMA actuators control 
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Fig. 4 The simulation model for the controlled SMA actuator 

Fig. 5 The fuzzy PID architecture 

Fig. 6 Morphing wing system in the bench test runs 
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Fig. 7 Bench test results for α=0°, M=0.225 and for α=1°, M=0.3 

 

 

 

 

 

 

-1

0

1

2

3

4

5

20 30 40 50 60 70 80

50 100 150 200 250 300 3500

Time [s]

act #1

act #2

50 100 150 200 250 300 3500

Time [s]

act #1

act #2

T
em

p
er

at
u

re
 [

o
C

]
D

is
p
la

ce
m

en
ts

 d
Y

1
, 
d

Y
2
 (
 v

) 
[m

m
]

=0°, Mach=0.225

Temperature [oC]

D
is

p
la

ce
m

en
ts

 d
Y

1
, 
d

Y
2
 (
 v

) 
[m

m
]

-1

0

1

2

3

4

5

20

30

40

50

60

70

80

act #1 desired

act #1 obtained

act #2 desired

act #2 obtained

50 100 150 200 250 300 350
-1

0

1

2

3

4

5

6

7

8

0

Time [s]

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 3500

Time [s]

20 30 40 50 60 70 80 90 100

act #1

act #2

D
is

p
la

ce
m

en
ts

 d
Y

1
, 
d

Y
2
 (
 v

) 
[m

m
]

T
em

p
er

at
u

re
 [

o
C

]

-1

0

1

2

3

4

5

6

7

8

D
is

p
la

ce
m

en
ts

 d
Y

1
, 
d

Y
2
 (
 v

) 
[m

m
]

=1°, Mach=0.3

Temperature [oC]

act #1 desired

act #1 obtained

act #2 desired

act #2 obtained

act #1

act #2



Fig. 8 Wind tunnel morphing wing model 

   Fig. 9 Wind tunnel test results for α=1°, M=0.2 and for α=2°, M=0.25  
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Fig. 10 Closed loop architecture of the morphing wing 

Fig. 11 Pressure signals FFT for un-morphed and morphed wing, for α=0°, M=0.3. 
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Fig. 12 GUI for un-morphed and morphed wing, for α=0°, M=0.3. 

Fig. 13 Wind tunnel test for α=0°, M=0.3 flow condition 
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