Nd:YAG Laser Welding of AA6061: Experimental Differences Between the Tee and Lap Joint Configurations
Dubourg, L.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Publisher’s version / Version de l’éditeur:

NRC Publications Record / Notice d’Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=52347652-c0f3-4889-9307-f5eb0b52a5c5
https://publications-cnrc.canada.ca/fra/voir/objet/?id=52347652-c0f3-4889-9307-f5eb0b52a5c5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Abstract

Effect of laser welding parameters such as power, out-of-focus length, welding speed and feeding speed on weld properties are studied in tee and lap configurations. Two millimetre thick plates of AA6061 were welded in Tee joint configuration using a cw/Nd:YAG laser and AA5356 wire as the filler metal. The same set-up and wire feeding were used for the lap joining of two millimetre thick square tubing and plates of AA6061. Combination of Taguchi and E.M. design of experiments was carried out to explore efficiently the multidimensional volume of welding parameters, to optimise these parameters and to compare the experimental differences between the two joint configurations. Samples were characterised by optical microscopy, SEM and hardness measurements. The weld properties of interest were weld fillet size, penetration depth, concavity size and heat affected zone dimensions measured by the hardness profiles. The process parameters and their respective and interactive effects on the final responses have been investigated. The results indicate the interlateral relationship between laser process parameters and responses and fundamental differences between the Tee and lap joint laser welding. Difference of hardness profiles between these two configurations highlighted the difference of cooling flows of the two set-up.

Introduction

Many studies conducted on aluminium laser welding have shown that a number of process parameters could affect weld properties. Effects of composition as well as volumetric flow rate of the shielding gas [1, 2], laser power [1, 2], welding speed [1-4] and out-of-focus length [4, 5] on one or more of the properties such as porosity, keyhole stability, weld geometry, hot cracking, penetration depth, loss of alloying elements due to vaporization and the HAZ size have been investigated. Most studies are based on butt joint or bead-on-plate welding without using any filler. In instances where a large number of parameters is considered, the use of design of experiment (DOE) is recommended. In this study, DOE was conducted using both Taguchi and EM (define Taguchi/EM) methods. The Taguchi method is based on an orthogonal array system and leads to a design where the effect of every parameter can be evaluated in far fewer runs [6-8]. The EM technique is based on building an euclidian domain and modifying it in an interactive way, varying all the parameters at the same time [9-11]. The combination of Taguchi and EM methods has already been used in aluminium laser welding [12]. This allows the investigation of the process parameters and their respective and interactive effects on the final responses (weld fillet size, penetration depth, concavity size). The results indicate the interlateral between laser process parameters and responses and fundamental differences between the tee and lap laser welding.

Experimental procedure

A Nd:YAG laser of 1.064-μm wavelength and an optical fibre of 600-μm diameter were used in continuous wave mode. A lens of 200-mm focal length focussed the beam to a diameter of 0.6 mm. In tee configuration, AA6061-T6 plates of 2-mm thick were welded on AA6061-T6 sheets of 3-mm thick (Fig. 1.a). In lap configuration, AA6061-T6 plates of 2-mm thick were welded on AA6061-T6 square extrusion tubing of 2.5-mm thick wall (Fig. 1.b).
Figure 3: a) Example of Taguchi method: L9 design for 2 factors at 3 level each, b) Example of EM method: feasibility domain of the process (blue zone), c) Example of Taguchi/EM method (point obtained with Taguchi, : point obtained with EM, blue zone: feasibility domain, orange zone: domain explored with the Taguchi method).

The weld geometry was evaluated using an optical microscope. Four dimensions were measured for each sample as shown in Fig. 4. (H) and (L) are the vertical and horizontal leg sizes respectively of the fillet weld and the average size is defined as (H+L)/2. The distance from the junction of the two joint members to the most distant weld point in the substrate is defined as the penetration depth (P). For this work the effective weld throat was not measured. Finally, a triangle of height (H) and width (L) was drawn. The hypotenuse of this triangle represents a flat weld of same dimension as the actual weld. The concavity of the weld is the maximum gap (C) between the hypotenuse and the weld surface. Hardness measurements were used to determine the HAZ size in the two joint configurations. To this end, hardness mapping was conducted through the thickness of both joint members for an 8 mm length about the root of the weld, with a sampling step of 250 µm in the two directions. These measurements were performed with a load of 50g applied for 15s.

Figure 4: Dimensions measured for weld characterization.

Results and discussion

With the Taguchi/EM method, two steps were considered. A L18 matrix was used in the first step, combining 4 input parameters with 4 levels each, for a total of 18 trials. These input parameters were the laser power (ranging from 2500 to 3500 W), the out-of-focus length (ranging from -1 to 1 mm, negative length meaning a focal point within the substrate), the wire filler speed (from 2 to 6 m.min⁻¹) and the welding speed (between 2 and 4 m.min⁻¹). This exercise promptly defined the feasibility domain and explored efficiently the multidimensional volume. In the second step, the interactive EM technique was used, i.e. varying all the parameters at the same time. The domain was refined test after test and each subsequent test was selected in such way to maximize the gain in new information. This method takes a more interactive approach leading to the dynamic construction of the feasibility domain throughout the data collection. After these two steps, the feasibility domain was well known and the prediction equations were stable [12]. All regression equations modelling the different responses as function of the input parameters showed R² regression coefficients above 70%, indicating a good fit.

Fig. 5 and 6 show the Pareto charts for the weld average size and penetration depth as a function of welding parameters. The Pareto chart is an illustration of the estimated effects of the input parameters. The length of each chart bar is proportional to the positive or negative standardized effect. According to Fig. 5, weld average size is correctly predicted by the laser power (P) and the welding speed (V_weld) for the two joint configurations. This leads to the following conclusions. (i) The weld size is mainly proportional to the linear energy input, i.e. the laser power divided by the welding speed. (ii) Wire feeding speed (V_wire), i.e. the quantity of filler material, does not influence
The weld size. This observation led to the conclusion that, for each couple \((P - V_{\text{laser}})\), it exists a single value \((V_{\text{wire}})\), which can lead to a correct weld. \((iii)\) The square of the out-of-focus length, i.e. the area of the laser beam spot linked to power density, does not influence the weld size. \((iv)\) The welding behaviour is not influenced by the different joint configurations and cooling flows, \((P)\) and \((V_{\text{laser}})\) being the main predictors. Nevertheless, the weld size of tee joint welding is mainly predicted by the welding speed with a standardized effect of -0.17, while the weld size of lap joining is predominated by the laser power (standardized effect of 0.19).

The laser power and the wire feeding speed can predict the penetration depth of tee and lap joints as shown in Fig. 6. A higher laser power leads to a deeper penetration. On the other hand, a higher wire speed leads to a higher laser beam masking to the sample surface, causing a smaller power input reduction and therefore a shallower penetration depth. We can see in the Fig. 6 that the main predictor of the penetration depth is the laser power \((P)\) in the case tee joint with a standardized effect of 0.42. In contrast with this, the lap joint welding is dominated by the wire feeding speed with a standardized effect of -0.18.

The previous process modelling was used to find the welding parameters most optimised and robust for both joint configurations. The optimisation criteria were defined as follows: the welding speed was...
maximized in order to minimize the HAZ size, the weld average size was targeted of 1.9 mm, concavity size was targeted of 0 mm and penetration depth was minimized to 0.3 mm. Fig. 7 shows the optimised welding parameters obtained by the Taguchi/EM method for the tee and lap joint configurations. The weld cross-sections observed with these optimised parameters are also presented. As shown in Fig. 7, the targeted weld specifications were met with these parameters. Moreover, the welding speed for lap joining ($V_{laser} = 3.9 \text{ m.min}^{-1}$) is about 2 times higher than one observed for tee joining ($V_{laser} = 2.2 \text{ m.min}^{-1}$). This difference can be explained by the difference of cooling flows between the two types of set-up. In the case of tee joint, the horizontal plate is clamped onto an aluminium table. This set-up increases the cooling flow through the horizontal plate. Consequently, in order to obtain the targeted weld, the heat input must be higher; the welding speed is then reduced. Paradoxically, this phenomenon cannot be balanced by an increase of laser power: a laser power increase leads to a higher penetration depth as shown in the Pareto chart of the Fig. 6a. In order to obtain the same material feeding and consequently the same weld size at higher welding speed, the wire speed of tee joint welding ($V_{wire} = 3.1 \text{ m.min}^{-1}$) is raised to 4.8 m.min$^{-1}$ for lap joint welding. For both sets-up, the same out-of-focus length ($L_{def} = -1.3 \text{ mm}$) is observed. With respect to lap weld quality, fusion (i.e. adequate depth of fusion) to the extrusion tubing was achieved with minimal risk of a microfissuring occurring on the underside of the weld. For gauges of the order of 2.5 mm, this is difficult to achieve with the GMAW process. It does appear easier to control depth of fusion of laser welds than GMA welds.

![Figure 7: Optimised welding parameters and weld cross-sections for: a) tee joint, b) lap joint.](image)

Fig. 8 presents the hardness mapping in the two cross-sections of the optimised welds. The HAZ sizes are equivalent in both configurations. The HAZ size of tee joint is about 1.3 mm around the weld while the lap joint one is about 1.3 mm in the tube and 1.8 mm in the sheet. The isotherms of the tee weld are more uniform than in the case of the lap joint. The non-uniformity of the isotherms in the latter case is probably due to intermittent contact between the plate and the extrusion. The incomplete contact creates a thermal barrier causing more heat to enter the plate. Normally, the HAZ size of tee joint must be higher than the one of the lap joint. The linear energy input of the tee weld (68.1 J.mm$^{-1}$) is indeed 50% higher than the one of the lap welding (44.6 J.mm$^{-1}$). This phenomenon can be explained by the higher cooling flow of the tee set-up. This balances the higher energy input involved and leads to the similar HAZ sizes of the two welds.
The present work studied the influence of various laser welding parameters such as power, out-of-focus length, welding speed and wire feeding speed on weld properties. Plates of AA6061 were welded in tee configuration using a cw/Nd:YAG laser and AA5356 wire as the filler metal. The same set-up and wire feeding were used for the lap joining of extrusion square tubing and plates of AA6061. This study used a combination of Taguchi and EM designs-of-experiment in order to define the feasibility domain, to explore efficiently the multidimensional volume and to optimise the welding processes. For the two joint configurations, weld size is correctly predicted by the laser power and the welding speed, i.e. the linear energy input. Moreover, for each couple power - welding speed, it exists a single value of the wire feeding speed, which can lead to a correct weld. Similarly, the laser power and the wire feeding speed can predict the penetration depth of tee and lap joints. The welding speed of lap joining is about 2 times higher than one observed for tee joining. Nevertheless, the HAZ sizes are similar in both configurations. Laser welding of intermediate gauges of aluminium can achieve good depth of fusion with minimal risk of melt-through, especially for a tubular section, in contrast to GMA welding.

Acknowledgements
The author thanks D. Rasmussen, M. Larouche and F. O. Gagnon for laser welding, A. Boily and H. Grégoire for metallography and hardness measurements and B. Altschuller for his assistance.

References
Conference of Computer Technology in Welding, Cambridge, UK 3-4 June (1992) Vol. 128,

Titre du document: Nd:YAG laser welding of AA6061: experimental differences between the Tee and lap joint configurations

Statut du document: Général

Types de document:
- Sommaire (Abstract)

Document soumis pour publication:
- Si un sommaire (abstract) a été soumis précédemment, veuillez indiquer les numéros

Date de la conférence: October 2005
Lieu: MIAMI, FLA
A paraître dans: Proceedings

Rapport:
- Technique
- Industriel de service

Partenaires: Aucun

Déclaration d'invention: Non
Demande de brevet déposée: Non

Si non, explications: Recherche bibliographique et de brevets sur le laser cladding

Auteur (nom prénom): Dubourg L
Affiliation: 502300 502301 Externe
Signature: 15/11/2005

* Je certifie, en tant que premier auteur, que j'ai vérifié avec le(s) partenaire(s) qu'il(s) n'a (n')ont pas d'objection à ce document.

Approbations:
- Signature: [Signature]
- Date: [Date]
- Chef de groupe
- Signature: [Signature]
- Date: [Date]
- Directeur de section
- Signature: [Signature]
- Date: [Date]
- Directeur général
- Signature: [Signature]
- Date: [Date]

Numéro IMI: 2005 - 10683 - 9 CNRC 47937
Nd:YAG laser welding of AA6061: experimental differences between the Tee and lap joint configurations

L. Dubourga,1

a Aluminium Technology Centre, National Research Council Canada

1 Corresponding author: Tel. +1 418 545-5098; Fax +1 418 545-5345
E-mail: laurent.dubourg@cnrc-nrc.gc.ca (L. Dubourg)

ABSTRACT

Effect of laser welding parameters such as power, out-of-focus length, welding speed and feeding speed on weld properties are studied in tee and lap configurations. Two millimetre thick plates of AA6061 were welded in Tee joint configuration using a cw/Nd:YAG laser and AA5356 wire as the filler metal. The same set-up and wire feeding were used for the lap joining of two millimetre thick square tubes and plates of AA6061. Combination of Taguchi and E.M. design of experiments was carried out to explore efficiently the multidimensional volume of welding parameters, to optimise these parameters and to compare the experimental differences between the two joint configurations. This combination defines promptly the feasibility domain and builds dynamically of this feasibility domain throughout the data collection. Samples were characterised by optical microscopy, SEM and hardness measurements. The weld properties of interest were weld fillet size, penetration depth, concavity size, liquation density and heat affected zone dimensions measured by the hardness profiles. The process parameters and their respective and interactive effects on the final responses have been investigated. The results indicate the interlateral relationship between laser process parameters and responses and fundamental differences between the Tee and lap joint laser welding. Difference of hardness profiles between these two configurations, as well as the liquation densities and locations, highlighted the difference of cooling flows of the two set-up.
Comparison of PM1 and PM2.5 concentrations of diesel exhaust emissions to those of conventional gasoline and biodiesel exhaust emissions under real-world driving conditions.

Introduction

The increasing use of diesel engines in vehicles has raised concerns about their emissions, particularly PM1 and PM2.5 concentrations, which are harmful to human health. This study aims to compare the exhaust emissions of diesel engines to those of gasoline and biodiesel engines under real-world driving conditions.

Methodology

The study was conducted under real-world driving conditions, using a range of vehicle models and driving intensities. The emissions of PM1 and PM2.5 were measured using certified equipment and methods. The results were compared to established standards to assess the level of compliance.

Results

The results of the study showed a significant increase in PM1 and PM2.5 emissions from diesel engines compared to gasoline and biodiesel engines. The concentration levels exceeded the established standards in most cases.

Discussion

The high levels of PM1 and PM2.5 emissions from diesel engines highlight the need for further research and development to improve emissions control technologies.政策制定者和行业应考虑这一结果，以制定更严格的标准和政策，以保护公众健康。