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Prioritising individual water mains for renewal 

Yehuda Kleiner and Balvant Rajani  

Abstract 

The statistical analysis of historical breakage patterns of water mains is a cost effective 

approach to discern their deterioration, where physical mechanisms that lead to their 

deterioration are often very complex and not well understood. Furthermore, data 

required to model these physical mechanisms are rarely available and prohibitively 

costly to acquire.  

Several models exist in the literature, which use various statistical methods to analyse 

patterns of pipe breakage histories. Some of these models were designed to address 

relatively large groups of pipes, which are presumed to be homogeneous with respect to 

their deterioration patterns, while others address individual water mains. However, 

predicting a breakage pattern in an individual pipe has proven to be quite a challenge 

and the validation of these models is generally done on the basis of aggregate breakage 

rate although the model purports to predict individual pipe behaviour.  

The structural deterioration of water mains and their subsequent failure are affected by 

many factors, both static (e.g., pipe material, pipe size, age (vintage), soil type) and 

dynamic (e.g., climate, cathodic protection, pressure zone changes). Dynamic factors can 

currently be considered only in a model that was designed to deal with pipe groups. 

While group deterioration analysis is important for high-level renewal planning, 

operational considerations require the prioritisation of individual pipe for renewal within 

such groups. Consequently, the National Research Council of Canada (NRC), with 

support from the American Water Works Association Research Foundation (AwwaRF) is 

investigating how to prioritise individual pipes within a so-called ‘homogeneous’ group 

of water mains. Several approaches have been explored in this research initiative with 

various degrees of success. In this paper we describe the development of a non-

homogeneous Poisson model, which considers dynamic factors that can affect water main 

failure and some preliminary results are reported. 

 

1. Introduction  

There is ample recognition in the literature on the benefit of using statistical methods to 

discern patterns of historical breakage rates and use them to predict water main breaks 

towards the effective management of pipe renewal. Kleiner and Rajani, (2001) provided a 

comprehensive review of approaches and methods that had been developed prior to their 

review. Since then, several more methods have been proposed, such as Park and 

Loganathan (2002), Mailhot et al. (2003), Dridi et al. (2005), Giustolisi et al. (2005), 

Watson et al. (2006), Boxall et al. (2007) and Le Gat (2007) to name but a few. 

Many factors, operational, environmental and pipe-intrinsic factors, jointly affect the 
breakage rate of a water main. It is rational to assume that pipe-intrinsic factors (material, 
diameter, etc) affect all pipes in the same way that share a specific property (e.g., pipes of 
a given diameter can be expected to have the same breakage pattern if all other known 
factors are equal). However, non-pipe-intrinsic factors may have varying effect on the 
breakage patterns of different pipes, even if all else is equal. For example, two pipes of 



the same material, diameter, age, etc. can be impacted differently by climate. These 
differences are due to variability for which we may never have enough data to account. 
At the same time, it is unreasonable to perform a statistical analysis on breaks of a single 
pipe because of there often are insufficient breaks to conduct a credible analysis. For this 
reason, the forecasting of breaks in individual water mains has proven to be quite a 
challenge. In this paper we propose an approach that is based on the assumption that 
breaks on an individual pipe occur as a non-homogeneous Poisson process (NHPP). 
NHPP has been suggested by others to model the same phenomenon (e.g., Constantine 
and Darroch, 1993; Røstum, 2000; Jarrett et al., 2003, among others). The approach 
proposed here allows for the consideration of dynamic factors as well, while existing 
NHPP approaches consider only static factors (i.e., pipe-intrinsic). 

The rest of this paper is organised as follows: Section 2 provides the theoretical 

background for the model, section 3 discusses issues related to the use of specific 

covariates, section 4 provides a case study to illustrate the model application and section 

5 provides summary and conclusions. 

 

2. Non homogeneous Poisson-based model 

In the proposed model we assume that breaks at year t for an individual pipe i are Poisson 

arrivals with mean intensity λi,t. Therefore, the probability of observing ki,t breaks is given 

by 
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where z
i
 is a vector of pipe-dependent covariates (length, diameter, etc.), p

t
 is a vector of 

time-dependent covariates (climate) and q
i,t 

is a vector of both pipe-dependent and time-

dependent covariates (number of previous failures, hotspot anodes). As λi,t has to be a 

real positive number, loge transformations were selected for the covariates. 
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where αo is a constant and α, β, γ are the appropriate vectors of coefficients, found by the 

maximum likelihood method. Note that this formulation implies that each covariate 

affects the mean intensity independently, i.e., interdependencies between covariates are 

assumed non-existent, unless a specific covariate is constructed to explicitly consider 

such interdependency (e. g., a ratio or a product of two “independent” covariates).  

Consideration of pipe age (with respect to installation year or any other reference year) as 

a covariate in equation (2) implies an exponential dependency of mean breakage intensity 

on pipe age. Such dependency sometimes results in overestimation of breakage rate at 

high age values. Taking the loge of age (in the exponent) will result in a power-law 

dependency on age of the form 
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where β*
 is the so-called ageing coefficient and t0 is a reference year, which for 

convenience can be taken as the first year for which breakage records are available.  

 

3. Covariates 

Pipe-dependent 

It is clear that the selection of covariates is limited by the amount and quality of available 

data. Further, subject to fundamental assumptions, covariates can be considered explicitly 

in the probabilistic model or implicitly by partitioning the data into homogeneous 

populations with respect to these covariates. For example, pipe diameter is a likely 

candidate to be covariate that impacts breakage rate. If one includes pipe diameter in the 

z
i
 vector of covariates the mean breakage intensities for all pipes with the same diameter 

are impacted by the same magnitude and pipes of different diameters are impacted 

proportionally to the loge of the ratio between their respective diameters. Alternatively, 

one can partition the population of pipes into groups, each comprising only pipes with the 

same diameter. Each group is then analysed separately, producing group specific 

coefficients. The advantage of the latter approach is the removal of the forced 

proportionality described above at the cost of reduced statistical significance due to 

analysis of smaller pipe populations (groups). Another advantage is that assumptions 

about the independence of individual covariates (as described in the previous section) can 

be relaxed. For example, a pipe population can be partitioned into groups, each 

comprising pipes of a certain diameter and a certain vintage. Thus, interdependencies 

between diameter and vintage (with respect to their impact on the mean intensity), if any, 

is implicitly considered, albeit again, at a cost of analysing much smaller pipe 

populations. 

Time-dependent 

In the category of time-dependent covariates, three climate-related covariates were 

considered in the case study below, namely freezing index (FI), cumulative rain deficit 

(RDc) and snapshot rain deficit (RDs). A detailed introduction and a rational for using 

these covariates are provided in Kleiner and Rajani (2004). FI is a surrogate for the 

severity of a winter, RDc is a surrogate for average annual soil moisture and RDs is a 

surrogate for locked-in winter soil moisture (appropriate for cold regions, where soil can 

freeze in the winter).  

Note that climate-related covariates can be used to train the model on observed historical 

breaks but not to forecast (unless one endeavours to forecast climate as well). The 

rational for using climate-related covariates is that “true” background ageing rate (in 

terms of increase in breakage intensity as a function of time) are more likely to emerge if 

external effects, such as climate, are considered in the training process. 



Pipe and time-dependent 

We considered two pipe-dependent and time-dependent covariates, namely previous 

known number of failures (PKNOF) and a covariate related to hotspot cathodic protection 

(HSCP).  

The dependency of pipe failure rate on the number of previous failures has been observed 

by others (e.g., Andreou et al., 1987; Rostum, 2000). Typically, covariates used were 

break order, or number of breaks observed since installation. As the vast majority of 

water utilities do not have a complete breakage history of pipes since installation (left 

censored data), we selected a more realistically available (if less rigorous) covariate of 

previously known number of failures.  

A hotspot cathodic protection (CP) program is an opportunistic placement of sacrificial 

anodes, whereby a sacrificial anode is installed every time a pipe is exposed for repair. 

These anodes typically reach full effectiveness some time after installation and deplete 

after a number of years. Consequently, each pipe i in each year t has a discernable 

number of active anodes CPAi,t protecting it. The covariate HSCP in pipe i at year t is a 

function of the density of active anodes and is empirically expressed as 

))30exp(1(1.0 1,, −−−= titi qHSCP  (4) 

where qi,t is the density of active anodes in units per metre. Note that HSCP tends 

asymptotically to 0.1 as the number of active anodes increases. This implies that the 

efficacy of HSCP protection is maximised at one anode per 10 m of pipe length.  

Group level vs. pipe level consideration of time-dependent covariates 

The form of equation (1) represents a group level analysis, which implies that all time-

dependent covariates act in the same way (though not with the same magnitude) on all 

pipes. For example, if a coefficient of magnitude c is discerned for, say FI, it means that 

freezing index has the same impact (c) on all pipes. Analyses can be performed in two 

levels to remove this implication. At group level consider all pipe-dependent covariates, 

as well as those time-dependent covariates that are assumed to have the same impact on 

all pipes. Once a baseline mean breakage intensity is established at the group level, 

analysis at the pipe level is performed using those covariates that are deemed to have a 

differential impact on individual pipes. This lower pipe-level analysis is performed on 

each pipe, using equation (1) (while holding i constant). Thus, each pipe receives a 

unique set of coefficients for those covariates that are deemed to impact differentially. 

This allows pipe-specific analysis while limiting the loss of degrees of freedom. 

Constant terms 

In addition to the pipe-dependent and time-dependent covariates, two constant terms (in 

the exponent), one for group level and another for pipe level analyses are introduced. The 

group-level constant is denoted by αo in equation (2). The pipe-level constant is intended 

to capture consistent deviation of a single pipe breakage rate from the baseline rate 

established at the group level.  



Testing and validating the model  

The testing protocol consists of three steps. The first step involves the training the model 

(discern coefficients) on data of T years (training period). The second step of the testing 

protocol involves using the discerned coefficients to forecast breaks in subsequent V 

years (validation period). The third step compares the forecasted and observed breaks in 

the validation period.  

Training was conducted by the maximum likelihood method, using the LGO algorithm 

(Pintér, 2005). The existence of covariates such as PKNOF and HSCP, which depend on 

previously observed counts of breaks, precludes the direct usage of mean forecasted 

breakage intensities to forecast future breaks. A simulation-based method is proposed, 

where the forecasted breakage intensity in year T + 1 is used to randomly generate the 

(Poisson distributed) number of breaks in that year T + 1. Subsequently, breakage 

intensity in year T + 2 can be generated and used to probabilistically simulate the number 

of breaks in year T + 2, and so forth for the entire validation period, V.  

Three measures are proposed to compare the adequacy of the model, each generated in 

different scenarios. The training standard error (STDEt) measures the ‘goodness of fit’ of 

training data, and is defined as  
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where N is the number of pipes, T is the number of years in the training period, ni,j is the 

number of observed breaks in pipe i at year j and is the estimated breakage intensity 

in pipe i at year j. Similarly, the validation standard error (STDEv) measures the 

‘goodness of fit’ of the observed and forecasted breaks and is defined as  
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where V is the number of years in the validation period, and  is the estimated 

(probabilistically generated) number of forecasted breaks for pipe i at year j. Note that 

while STDEt is calculated as the difference between the aggregated number of observed 

and estimated breakage intensity of all pipes in each year, STDEv is calculated as the 

difference between observed and forecasted breaks of each pipe in each year.  

jin ,
ˆ

In addition to ‘goodness of fit’, the model should also be examined on its ability to 

forecast which will be the pipes with the highest number of future break (even if the 

forecasted number of breaks is inaccurate). In other words, the ability to non-

parametrically rank the pipes in descending order of future breaks. We used the 



Spearman rank correlation coefficient as a measure of this ranking ability. At this stage of 

the research we did not look at the significance of the obtained coefficients (to accept or 

reject a null hypothesis of ranking similarity), rather we used those to compare the results 

of various scenarios. 

 

4. Case study 

We used a data set obtained from a water utility in Eastern Ontario, Canada to illustrate 

the performance of the proposed model. Available data included pipe material, diameter, 

installation year, length, pipe, X-Y coordinates of pipe nodes and break date and break 

type. Any intervention that involved pipe exposure and repair was considered a “break” 

event. The utility has documented breakage records since 1962. The utility embarked on 

a hotspot cathodic protection program in 1990.  

For the analysis, a homogeneous group of pipes was extracted that comprises of all 6” 

(150 mm) unlined cast iron (UCI) pipes installed in the 10-year period 1951-60. In total 

897 individual pipe records (we respected the utility’s definition of ‘individual pipe’ as 

was reflected in the database) with total length of about 125 km were identified. The 

shortest and longest pipes on record were about 2.4 m and 663 m, respectively. Climate 

data for the analysis years were obtained from Environment Canada. Analysis was 

conducted on breaks recorded between 1970-2006 since no breaks were identified prior 

to 1970 for this specific group. Further, the group of pipes consists of only breaks that 

were specifically identified as circular, longitudinal or corrosion hole. Aggregate 

breakage data are illustrated in Figure 1. The availability of a relatively long breakage 

history enabled us to test the model on different time periods. 
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Figure 1. Aggregate breaks by year 
 



We ran the model with several hundred different scenarios, where we varied training 

period durations, validation period durations, full dataset, partial datasets (e.g., only pipes 

with at least x breaks in the training period, only pipes at least 20 m long), combinations 

of group and pipe-level covariates, etc. The following general trends emerged:  

• A longer duration training period improved STDEt, slightly improved STDEv, but did 

not affect rank correlation 

• Longer validation period did not affect STDEv or rank correlation but improved the 

forecast of aggregate breaks.  

• Climate covariates applied at group level improved STDEt slightly, but degraded it 

when applied at the pipe level. 

• Usage of climate covariates at pipe level in training period tended to mitigate a large 

over-prediction in the validation but did not improve rank correlation. 

• Length covariate did not have a significant impact on STDEt or STDEv or rank 

correlation. 

• PKNOF covariate significantly improved STDEv. 

• Usage of HSPC covariate at group and pipe levels improves STDEt and rank 

correlation, but improved STDEv only at pipe level. 

• Pipe-level constant somewhat improved STDEv and rank correlation. 

• Applying the model only to pipes with length of at least 20 m, or only to pipes that 

experienced at least 1 or 2 or 3 breaks during the training period had no significant 

impact.  

• Scenarios with the lowest STDEt did not necessarily correspond to scenarios with the 

lowest STDEv, which in turn did not correspond to those with the highest rank 

correlation values.  

As an illustration we describe here the results of a scenario that used the entire dataset 

(897 pipes) over the entire available breakage history, i.e., training period of 1970-2001 

and validation period of 2002-2006. All covariates were used at the group level, except 

for the pipe-level constant, which was of course used at pipe level. The coefficients 

obtained from training are presented in Figure 2, along with an illustration of the trained 

model (aggregate breaks) with respect to the observed data. Pipe-level constant 

coefficients are not shown because by definition each pipe has a unique coefficient.  

An examination of the coefficients reveals that background ageing is proportional to 

cubic root (power of 0.33) of time. The impact of climate covariates on the model is 

inconsistent. Freezing index (FI) showed little impact, snapshot rain deficit (RDs) 

appeared to have a more significant impact, but cumulative rain deficit (RDc) showed a 

relative larger impact but in a counter intuitive direction (negative coefficient). Water 

mains of this water utility are typically buried at a depth of 2.4 m, which may explain the 

insignificant impact of FI, but not the negative sign of RDc. The negative coefficient of 

HSCP reflects the fact that hotspot anodes act to reduce breakage intensity. The positive 

sign of PKNOF may point to a “worse than old” condition (in repairable systems three 

repair-related conditions are observed, “good as new”, “good as old” and “worse than 

old”). The length covariate in this case study was taken as the loge of pipe length, which 

means that length to the power of approximately 2/3 is the influencing factor. 



The forecast for the validation period was generated by running the scenario 20 times 

since the forecast is typically probabilistic. The validation standard error was 0.37 < 

STDEv < 0.44. Spearman rank correlation coefficient was between 0.16 and 0.27. In 

addition, we tested how well the forecast could identify the highest breaking pipes in the 

entire validation period. Results are presented in Table 1. 

 
Group constant Ageing FI RDc RDs Length PKNOF HSCP 

-7.68 0.33 0.01 -0.21 0.15 0.66 0.26 -7.92 
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Figure 2. Trained model. 

 

Table 1.  

How many pipes observed with n breaks or more in the validation period did the model 

actually identify? 

n Number of pipes observed Number of pipes identified 

5 1 0 

4 4 0 - 2 

3 13 0 - 4 

2 40 6 - 10 

1 189 61 - 72 

 

For comparison, it should be noted that the probability of drawing at random one correct 

pipe out of 897 is about 0.1%. The probability of drawing at random 4 correct pipes of 

897 and “hitting more than zero of them correctly is about 1.8% (probability of “hitting” 

more than 1 is about 0.1%). Similarly, probability of “hitting” more than 2 when drawing 

13 pipes of 897 is about 0.06%. Probability of hitting more than 5 when drawing 40 pipes 



out of 897 is about 0.7%. And finally, probability of “hitting more than 60 times when 

drawing at random 189 pipes out of 897 is about 0.003%.  

 

5. Summary and conclusions 

A non-homogeneous Poisson process based model, which considers three classes of 

covariates, pipe-dependent, time-dependent and pipe and time dependent is proposed to 

forecast water main breaks. It is proposed that analyses should be conducted at two levels 

namely, at group and pipe levels to avoid the implication that all covariates have the same 

impact on all pipes. Break data analysis involves two steps: first step involves the training 

the model (discern coefficients) on data of T years (training period) and the second step 

involves simulation where discerned coefficients are used to forecast breaks in 

subsequent V years (validation period). 

Preliminary results, reflected in the case study, indicate the proposed model has good 

potential. A method needs to be developed to select the best combination for a given 

dataset since the model can be applied with various combinations of covariates (i.e., at 

pipe-level, at group level, etc.). 
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