
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

10th International Conference on Computing and Control for the Water Industry, 
CCWI 2009 Conference [Proceedings], p. 10, 2009-09-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=51017034-34ba-4539-b6a6-4893b8cc45dc

https://publications-cnrc.canada.ca/fra/voir/objet/?id=51017034-34ba-4539-b6a6-4893b8cc45dc

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

I-WARP: individual water main renewal planner
Kleiner, Y.; Rajani, B. B.



 

http://www.nrc-cnrc.gc.ca/irc

I -WARP: individual w ater main renew al planner 

 N R C C - 5 2 6 4 0  

 

K l e i n e r ,  Y . ;  R a j a n i ,  B . B .  

 

S e p t e m b e r  2 0 0 9  
 

  

 

A version of this document is published in / Une version de ce document se trouve dans: 

10th International Conference on Computing and Control for the Water Industry 

- CCWI2009 Conference, Sheffield, UK, September 1-3, 2009,  pp. 10 

 

  

 

 

 

 

 

 

 

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international 
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without 
written permission.  For more information visit  http://laws.justice.gc.ca/en/showtdm/cs/C-42  

 
Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et 
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de 
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42 

 

 

 

http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42


I-WARP: Individual Water Main Renewal Planner 

Yehuda Kleiner and Balvant Rajani  

National Research Council Canada, Ottawa, Ontario, Canada 

Abstract 

I-WARP is based upon a nonhomogeneous Poisson approach to model breakage rates in 

individual water mains. The structural deterioration of water mains and their subsequent 

failure are affected by many factors, both static (e.g., pipe material, pipe size, age 

(vintage), soil type) and dynamic (e.g., climate, cathodic protection, pressure zone 

changes). I-WARP allows for the consideration of both static and dynamic factors in the 

statistical analysis of historical breakage patterns. This paper describes the 

mathematical approach and demonstrates its application with the help of a case study. 

The research project within which I-WARP was developed, was jointly funded by the 

National Research Council of Canada (NRC), and the Water Research foundation 

(formerly known as the American Water Works Association Research Foundation - 

AwwaRF) and supported by water utilities from USA and Canada. 

 

1. Introduction  

The use of statistical methods to discern patterns of historical breakage rates and use 

them to predict water main breaks has been widely documented. Kleiner and Rajani, 

(2001) provided a comprehensive review of approaches and methods that had been 

developed prior to their review. Since then, several more methods have been proposed, 

such as those by Park and Loganathan (2002), Mailhot et al. (2003), Dridi et al. (2005), 

Giustolisi et al. (2005), Watson et al. (2006), Giustolisi and Berardi (2207), Boxall et al. 

(2007), Le Gat (2008) and Economou et al. (2008) to name but a few. 

Many factors, operational, environmental and pipe-intrinsic factors, jointly affect the 

breakage rate of a water main. While not all pipes are created equal (even pipes of the 

same material and size), it is normally assumed that pipes that share a specific intrinsic 

property, such as material, or diameter, can be expected to have the same breakage 

pattern, all else being equal. However, non-pipe-intrinsic factors may have varying effect 

on the breakage patterns of different pipes, even if all else is equal. For example, two 

pipes of the same material, diameter, age, etc. can be impacted differently by climate. 

These differences are due to variability for which we may never have enough data to 

account. At the same time, it is unreasonable to perform a statistical analysis on the 

breakage pattern of a single pipe because there often are insufficient breaks to conduct a 

credible analysis. For this reason, the forecasting of breaks in individual water mains has 

proven to be quite a challenge.  

In this paper we present I-WARP (Individual Water mAin Renewal Planner), which is a 

tool to analyse the historical breakage patterns of individual water mains. I-WARP is 

based on the assumption that breaks on an individual pipe occur as a non-homogeneous 

Poisson process (NHPP). NHPP has been suggested by others to model the same 

phenomenon (e.g., Constantine and Darroch, 1993; Røstum, 2000; Jarrett et al., 2003, 

among others). The approach proposed here differs from others in that allows for the 



consideration of dynamic factors, while existing NHPP approaches consider only static 

factors (i.e., pipe-intrinsic). 

The rest of this paper is organised as follows: Section 2 provides the theoretical 

background for the model, section 3 discusses issues related to the use of specific 

covariates, section 4 describes the Zero-inflated Poisson concept, which is provided as an 

option in I-WARP, Section 5 provides details on the testing and validation of I-WARP 

results, Section 6 provides a case study to illustrate the model application and section 7 

provides summary and conclusions. 

2. Non-homogeneous Poisson-based model 

In the proposed model we assume that breaks at year t for an individual pipe i are Poisson 

arrivals with mean intensity λi,t. Therefore, the probability of observing ki,t breaks is given 

by 
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where αo is a constant, τ(gi,t) is the age covariate, and θ is its coefficient, gi,t is the age of 

pipe i at year t; z
i
 is a row vector of pipe-dependent covariates (e.g., length, diameter, 

etc.) and α is a column vector of the corresponding coefficients; p
t
 is a row vector of 

time-dependent covariates (e.g., climate) and β is a column vector of the corresponding 

coefficients; q
i,t 

is a row vector of both pipe-dependent and time-dependent covariates 

(e.g., number of known previous failure - NOKPF, cathodic protection) and γ is a column 

vector of the corresponding coefficients. Note that if τ(gi,t) = gi,t then the aging is 

exponential, i.e., λ is an exponential function of pipe age, whereas if τ(t) = loge(gi,t) then 

λ becomes a power function of pipe age. Year t is taken relative to the first year for 

which breakage records are available. Coefficients are obtained using the maximum 

likelihood method. 

3. Covariates 

Pipe-dependent 

Pipe-dependent covariates can be considered explicitly in the probabilistic model or 

implicitly by partitioning the data into homogeneous populations with respect to these 

covariates. The explicit consideration introduces some limitations. For example, if one 

includes pipe diameter in the z
i
 vector of covariates the mean breakage intensities for all 

pipes with the same diameter are assumed to be impacted by the same magnitude. 

Moreover, this inclusion implies that pipes of different diameters are impacted 

proportionally to the loge of the ratio between their respective diameters. Alternatively, 

one can partition the population of pipes into groups, each comprising only pipes with the 

same diameter. Each group is then analysed separately, producing group specific 

coefficients. The latter approach encompasses two advantages: (a) removal of the forced 

proportionality described above, and (b) relaxation of the implied assumption that each 

covariate affects the mean intensity independently. These two advantages come at the 



cost of reduced statistical significance due to analysis of smaller pipe populations 

(groups).  

I-WARP uses pipe diameter as a grouping criterion, as well as categorical properties such 

as pipe material, soil type, service connections or any such property that may be 

supported by available data. However, pipe length and pipe cluster are used as explicit 

covariates in the probabilistic model. Pipe cluster is a surrogate for spatial covariates for 

which data may not always be available. Water utilities often lack data that are (directly 

or indirectly) geographically related, such as soil data, overburden characteristics (land 

development, traffic loading), historical installation practices, groundwater fluctuations, 

transient pressures, poor bedding, etc. These data, if available, may sometimes help to 

‘explain’ variations in breakage rates among individual water mains. In the absence of 

such data, the proximity of a pipe to a cluster of historical breaks may serve as a useful 

surrogate. The details on how to form pipe clusters and the cluster covariates are not 

discussed in this paper. 

Time-dependent 

In the category of time-dependent covariates, three climate-related covariates were 

considered, namely freezing index (FI), cumulative rain deficit (RDc) and snapshot rain 

deficit (RDs). Kleiner and Rajani (2004) provided a detailed introduction and a rational 

for using these covariates by. FI is a surrogate for the severity of a winter, RDc is a 

surrogate for average annual soil moisture and RDs is a surrogate for locked-in winter 

soil moisture (appropriate for cold regions, where soil can freeze in the winter).  

I-WARP is not restricted in the way it can consider time-dependent covariates. In fact 

any phenomenon, suspected as a contributor to observed variations in breakage rate, can 

be considered in the model, provided there exists a time series describing this 

phenomenon over the observed period of time. Such phenomena can be represented 

quantitatively or qualitatively. For example, in one of the case studies documented in this 

research, uncharacteristically elevated breakage rates were observed in a network during 

two non-contiguous years.. A quick inquiry revealed that the network experienced pump 

station failures in those years, which resulted in high breakage rates probably due to 

transient pressures. A qualitative time series describing this phenomenon was 

incorporated in the model and the calibration results improved significantly. 

Pipe and time-dependent 

I-WARP considers three pipe-dependent and time-dependent covariates, namely, number 

of known previous failures (NOKPF), a covariate related to hot spot cathodic protection 

(HSCP) and a covariate related to retrofit cathodic protection (RetroCP). To ensure 

stability in the maximum likelihood calculations it may be beneficial to use the loge of 

NOKPF as the covariate, especially when there are substantial discrepancies between 

breakage rates of individual pipes in the group. 

The dependency of pipe failure rate on the number of previous failures has been observed 

by others (e.g., Andreou et al., 1987; Rostum, 2000). Typically, covariates used were 

break order, or number of breaks observed since installation. As the vast majority of 

water utilities do not have a complete breakage history of pipes since installation (left 

truncated data), we selected a more realistically available (if less rigorous) covariate of 



previously known number of failures. The aforementioned cathodic protection covariates 

are not described in this paper 

4. The Zero-inflated Poisson (ZIP) process  

In reality, most water mains fail relatively rarely, which means that in a typical data set 

many (if not most) of our data points will have the observed value ki,t  = 0 (i.e., zero 

breaks observed for pipe i at year t - see equation 1). It has been observed (e.g., Lambert, 

1992) that a counting process with many zeros (i.e., many more than what is expected 

from Equation 1) cannot be adequately represented by a Poisson process. Lambert (1992) 

proposed a technique she called ‘zero inflated Poisson’ (ZIP) regression, for handling 

zero inflated count data. In this approach, the counting process at hand is produced 

simultaneously by two mechanisms, namely a zero generating process and a Poisson 

process. Economou et al. (2008) used this approach in their model to predict pipe 

breakage rates, and called the probability of obtaining a zero data point “the natural 

tendency of the pipe to resist failure”. I-WARP allows the option of incorporating the ZIP 

process in the analysis, as it can (but is not guaranteed to) improve prediction accuracy. 

When ZIP is considered the probability of observing ki,t breaks (at year t for an individual 

pipe i) becomes 
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where N is the number of pipes and T is the number of years of available breakage data, 

Gi,t is the parameter of the second mechanism (the first in the Poisson process) that 

produces ki,t = 0 with probability Gi,t. It is convenient to formulate Gi,t  in a logit form 

because its value must lie in the interval [0, 1], i.e., 
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It is reasonable to assume that Gi,t is generally influenced by the same covariates that 

influence the mean intensity λi,t. Therefore we define Gi,t as a function of λi,t 
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where go is the ZIP coefficient. Note that with this formulation Gi,t tends to zero as λi,t 

increases and Gi,t tends to unity as λi,t decreases. 

5. Testing and validating I-WARP  

The testing protocol consists of three steps: (a) training the model (discern coefficients) 

on data of T years (training period), (b) use the discerned coefficients to forecast breaks 



in subsequent V years (validation period), and (c) compare the forecasted and observed 

breaks in the validation period. 

The evaluation of how well the trained model fits observed data (step (a)) is challenging 

for this type of model because observed data are integers (counts of breaks) while the 

model predicts expected number of breaks (referred to earlier as ‘mean intensity’ or 

‘mean rate of occurrence’ of failure), which are real numbers. Therefore, measures like 

root mean square deviations or generalized R
2
 (Nagelkerke, 1991) are not well suited for 

this type of model. Consequently, two goodness of fit measures were used, namely a 

pipe-dimension coefficient of determination, pR
2
, and a time-dimension coefficient of 

determination, tR
2
.  
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where ki,t is the observed - and ti ,λ̂  is the estimated - number of breaks in pipe i at year t. 

Essentially pR
2
 computes the coefficient of determination between the observed and 

predicted data, where the data are aggregated by pipe (i.e., for each pipe it compares the 

total number of observed breaks with predicted values over training period T). Similarly, 

tR
2
 computes the coefficient of determination between the observed and predicted data, 

where the data are aggregated by year (i.e., for each year in T it compares the total 

number of observed breaks to predicted values in all N pipes).  

Equation 5 can also be used to evaluate results of step (c), i.e., the forecasting accuracy. 

In addition, we used a measure to assess the ‘ranking ability’ (in terms of forecasted 

number of breaks) of the forecast. This measure is explained as follows: if in a group P, 

comprising p pipes there is a subset N comprising n pipes that have at least m breaks, if 

one draws at random n pipes out of P, then P-value is defined as the probability that at 

least k pipes (from those drawn at random) are members of N. It can be shown that k is a 

random variable with a hyper-geometric probability distribution, and P-value can thus be 

computed. For example, suppose that in a group of 100 pipes 5 pipes are observed to 

have experienced at 4 breaks (each) during the validation period. If 5 pipes are selected at 

random from the 100 pipes, the probability that at least two of those selected will have 5 

breaks in the validation period is P-value ≈ 0.019. It follows that if the model succeeds in 

identifying 2 out of the 5 highest breaking pipes (in a group of 100 pipes) it is doing 

significantly better than a random draw (which has only about 2% chance to do as well).  

The statistical significance of the contribution of each covariate to the model accuracy 

can be determined by e.g., the likelihood ratio test (e.g., Ansel and Phillips, 1994). This 

topic, however, is not discussed in this paper. 



6. Case study 

We use a data set obtained from a water utility in western Canada to illustrate the 

performance of I-WARP. The data set comprises 1091 individual pipes (each with a 

minimum length of 20 m) with a total length of 146.6 km, all 150 mm diameter unlined 

cast iron pipes, installed between 1956 and 1960. Available pipe data included pipe 

material, diameter, installation year, length, and x-y coordinates of pipe nodes. Any 

intervention that involved pipe exposure and repair was considered a “break” event, for 

which date, type and related pipe ID was provided. Full year breakage data were 

available for the years 1961 – 2006. Some information on cathodic protection was also 

provided but is not used in this example. Climate data for the analysis years were 

obtained from Environment Canada. I-WARP was trained on 40 years failure data from 

1962 to 2001 and the coefficients obtained from training were used to forecast breaks for 

validation for the subsequent 5 years, i.e., 2002-2006. 

The temporal distribution of the breaks is illustrated in Figure 1. Note the two outliers in 

1982 and 1986. The utility engineering staff noted that pumping station failures occurred 

in these years with the consequence of a significant spike in the number of pipe failures. 

As discussed earlier, I-WARP allows the inclusion of such information by means of a 

user-defined time-dependent covariate. Figure 2 illustrates the training and validation 

results with temporal aggregation (top) and pipe-aggregation (bottom). Table 1 provides 

the ranking ability of the model. Note that the ranking ability is for the validation (not 

training) period.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. Breaks Aggregated by year 
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Figure 2. Training and validation results  
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Table 1. Ranking ability of the model (validation period) 

N break(s) in the validation period n = 1 n = 2 n = 3 n = 4 n = 5 

# pipes with at least n (observed) 

break(s) out of 1091 pipes in 

group 

170 30 6 2 0 

# of pipes, k, identified correctly 53 9 1 1 N/A 

P-value (probability of identifying 

k pipes by pure chance) 
0.0 0.0 0.033 0.004  

 

The ageing covariate τ(t) = loge(gi,t) was used in this case study. An examination of the 

coefficients (Figure 2) reveals that background ageing was therefore proportional to sixth 

root (power of about 0.16) of pipe age. The impact of climate covariates on the model 

was inconsistent. Freezing index (FI) showed little impact, rain deficit (RDc) appeared to 

have a more significant impact, but the impact of snapshot rain deficit (RDs) was in a 

counter intuitive direction (negative coefficient). Water mains of this water utility are 

typically buried at a depth of 2.4 m, which may explain the insignificant impact of FI, but 

not the negative sign of RDs. The positive sign of PKNOF may point to a “worse than 

old” condition (in repairable systems four repair-related conditions are observed, “good 

as new”, “good as old”, “better than old” and “worse than old”). The length covariate in 

this case study was taken as the loge of pipe length, which means that the number of 

estimated break was proportional to the length of the pipe raised to the power of 0.7, 

which is a relatively strong dependency.  

The results seem to indicate that in this case study: 

• I-WARP tended to be quite accurate in predicting total numbers of breaks:  

 # Breaks 

 Training period Validation period 

Observed 1184 208 

Predicted 1173 189 

• I-WARP was rather successful in estimating the total number of breaks per year of 

the entire group (tR
2
 = 0.61) 

• I-WARP was not as successful in estimating the number of breaks per pipe (pR
2
 = 

0.43). It tended to over-estimate the number of breaks for pipes that experienced few 

breaks, while under-estimating the number of breaks for those pipes that experienced 

a higher number of breaks. A similar tendency has been observed by others, e.g., 

Rostum (2000). This may be due to the fact that there are many pipes with zero or 

few breaks and only a few pipes with many breaks. 

• I-WARP displayed a statistically significant ranking ability in its forecast, which 

would help to prioritise pipes for renewal. 
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Additionally, when we varied the length of the validation period we have observed that 

longer validation periods resulted in improved ranking ability of the forecast. This may 

be because I-WARP forecasts mean intensities, while observed values are random events. 

The longer the forecast period the more these observed values would tend towards their 

means. 

7. Summary and conclusions 

I-WARP is a non-homogeneous Poisson process-based model, which considers three 

classes of covariates, pipe-dependent, time-dependent and pipe and time dependent. 

Some pipe-dependent covariates (e.g., pipe diameter, material, soil type, vintage, etc.) are 

considered implicitly through pipe grouping, while time-dependent (e.g., climate) and 

pipe and time dependent (e.g., NOKPF, cathodic protection) covariates are considered 

explicitly in the statistical analysis.  

I-WARP was demonstrated using a case study. The model was trained on 40 years of 

historical breakage data and the trained model used to forecast breaks in the subsequent 5 

years. While prediction of aggregate number of breaks per year was good, the aggregated 

total number of breaks per pipe was over estimated for pipes with few historical breaks and 

underestimated for pipes with many historical breaks. Ranking ability was statistically quite 

significant. 

A prototype computer application was created for the application of I-WARP. It will soon 

be publicly available through WRF. 
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