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Abstract— Face recognition in video is an example of the
problem which is outstandingly well performed by humans, com-
pared to the performance of machine-built recognition systems.
This phenomenon is generally attributed to the following three
main factors pertaining to the way human brain processes and
memorizes information, which can be succinctly labeled as 1)
non-linear processing, 2) massively distributed collective decision
making, and 3) synaptic plasticity.

Over the last half a century, many mathematical models have
been developed to simulate these factors in computer systems.
This presentation formalizes the recognition process, as it is
performed in brain, using one of such mathematical models,
within which the projection learning appears to be a natural
improvement to the correlation learning. We show that, just as the
correlation learning, the projection learning can also be written
in incremental form. By taking in account the past data and
being non-local, this rule however provides a way to automatically
emphasize more important attributes and training data over the
less important ones.

The presented model, while providing a simple way to incor-
porate the main three factors of biological memorization listed
above, is very powerful. This is demonstrated by incorporating
it into a face recognition system which is shown to be capable
of recognizing faces in video under conditions known to be very
difficult for traditional Von-Neumann-type recognition systems.

I. MODELING ASSOCIATIVE PROCESS

Let us consider the task of associating one stimulus (R

– receptor stimulus) to another (E – effector stimulus). One

famous example of this task is the Pavlov dogs experiment,

within which the dogs trained on a buzz (R) - food (E) stimuli

pairs were shown to salivate at the sound of the buzz even

when no food was presented.

Another example of this task, from our everyday life and

which remains to be one of the most difficult tasks for the

computer to do, is associating a person’s face (R) to a certain

feeling or knowledge (E): disgust, familiarity, race, level of

IQ, name, etc.

To model this association process, lets consider synapses

Cij which, for simplicity and because we do not know exactly

what is connected in the brain to what, are assumed to connect

all attributes of stimuli pair R and E among each other.

For a general model, several layers between R and E, each

connecting to one another, may be considered, which can

be simulated by adding extra attributes into the aggregated

stimulus vector.

These synapses have to be adjusted in the training stage so

that in the recognition stage, when sensing R, which is close

to what the system has sensed before, based on the trained

synaptic values a sense of the missing corresponding stimulus

E is produced. Mathematically this can be written as follows.

Let �V = (Ri, Ei) be an aggregated N-dimensional vector

made of all binary decoded attributes (R i, Ei ∈ {−1; +1})

of the stimuli pair. The NxN synaptic matrix C = {Cij} has

to be computed so that when having an incomplete version of

a training stimulus, the collective decision making produces

the effector attributes most similar to those used in training,

where the decision making process is based on summation of

all input attributes weighted by the synaptic values, performed

several times until the consensus is reached:

Vi(t + 1) = sign
(

Sj(t)
)

(1)

Sj(t) =
∑N

i=1 CijVj(t), until (2)

Vi(t + 1) = Vi(t) = Vi(t
∗) (3)

The last equation expresses the stability condition of the

system. When it holds for all neurons, it describes the situation

of the reached consensus. The obtained stimulus �V (t∗), called

the stable state or attractor of the network, is then decoded

into receptor and effector components: R i(t
∗) and Ei(t

∗)) for

further analysis of the result of the performed association.

The main question arises: How to compute synaptic values

Cij so that the best associative recall is achieved?

Ideally this should be done so that the computation of the

synaptic values defined by a learning rule

i) does not require the system to go through the already

presented stimuli, i.e. there are no iterations involved, and

ii) would update the synapses based on the currently presented

stimuli pair only, without knowing which stimuli will follow,

i.e. no batch mode is involved.

These two conditions represent the idea of incremental learn-

ing:

Cm
ij = Cm−1

ij + dCm
ij . (4)

Starting from zero (C0
ij = 0), indicating that nothing is learnt,

each synaptic weight Cij undertakes a small increment dCij ,

the value of which, either positive or negative, is determined

by the training stimuli pair.



It is understood that for optimal memorization, the incre-

ments dCm
ij should be functions of the current stimulus pair

attributes (i.e. �V m) and what has been previously memorized

(i.e. C):

dCm
ij = f(�V m,C). (5)

II. CORRELATION LEARNING RULES

Within the formalization of the problem described above,

correlation learning, which updates Cij based on the corre-

lation of the corresponding attributes i and j of the training

stimulus:

dCm
ij = αV m

i V m
j , 0 < α < 1 (6)

is one of the most frequently used. It makes the stimuli used

in training (�V m, m = 1...M) the minima locations of the

Hamiltonian

E(�Y (t))
.
= −

1

2
�Y T (t)�S(t) = −

1

2
�Y T (t)C�Y (t), (7)

which is known to govern the evolution of a dynamic system

defined by the update rules of Eqs. 2-3. It can be seen however

that this rule makes a default assumption that all training

stimuli are equally important as are all attributes i, which is

practically never true. As a result, the associative capability of

this type of learning is poor.

Therefore, for better performance other rules taking into

account the history of learning are used. One of the most

known is the Widrow-Hoff delta rule:

dCm
ij = αV m

i (V m
j − Sm

j ), 0 < α < 1 (8)

or another version of it

dCm
ij = α(V m

i − Sm
i )(V m

j − Sm
j ). (9)

where Sm
j is the postsynaptic potential computed in 3. It can

be seen that this rule does use the knowledge of the past

experience (as it uses C), but is not perfect either, since the

learning rate α is the same for all training stimuli, regardless

of whether the stimulus is useful or not.

Nevertheless, this rule is one of the most frequently used

in neural computation, where it is used iteratively; rather

than applying one-step increments to all synapses, this rule

is executed several times on the entire training sequence, until

dCm
ij becomes sufficiently close to zero. The iterative nature of

this rule however assumes that all training stimuli are always

available or stored somewhere, which for many applications,

such as real-time face memorization from live video, are not.

This is why another incremental learning rule, which would

take in account the level of usefulness of each stimulus as well

as the importance of the stimuli attributes, is needed to make

the performance of the model better.

III. PROJECTION LEARNING

The projection learning rule, also known as the pseudo-

inverse learning rule, has been originally proposed in 1971

by Amari, then intensively explored by Kohonen, and then

intensively used and refined in several institutes in Europe

by such researchers as Gascuel and Weinfeld, Garder and

Derrida, Diederich and Opper, Personnaz and Dreyfus, Kanter

and Sampolinsky, Gorodnichy and Reznik.

It is obtained from the condition that the consensus, based

on the collective decision making of the neural network, is

reached for all training stimuli [1]. Using Eq. 4 this leads to

the following system of equations needed to be resolved for

unknown synapse values:

C�V m = λm
�V m, (m = 1, ..., M), λm > 0, (10)

which can be rewritten in matrix form for λm = 1 as

CV = V, (11)

where V is the matrix made of column prototype vectors

(training stimuli). Resolving this matrix equation gives us the

rule:

C = VV
+, (12)

where V
+ .

= (VT
V)−1

V
T is the pseudoinverse of matrix V.

The matrix defined by Eq. 12 is the orthogonal projection

matrix into the subspace spanned by the prototype vectors

{ �V m}, which explains the name of the rule.

At first, this rule may look like a non-incremental batch

rule, which needs to know all prototypes prior to learning. As

shown in [1] however, by using the Greville formula, one can

rewrite this rule as a one-step incremental rule too as follows:

C
0 = 0 (13)

C
m = C

m−1 + (�V m−C
m−1�V m)(�V m−C

m−1�V m)T

‖�V m−Cm−1�V m‖2
(14)

or in scalar form as

dCm
ij = 1

D2(V m) (V
m
i − Sm

i )(V m
j − Sm

j ), where (15)

D2(V m) = ||�V m − C�V m||2 = N −
∑N

i=1 V m
i Sm

i . (16)

If �V m = C
m−1�V m, which means that the prototype �V m is

a linear combination of other already stored prototypes, then

the weight matrix remains unchanged. D(V m) in Eq. 16 is the

projection distance, which indicates how far a new stimulus is

from those already stored and which can be used to filter out

identical visual stimuli.

For iterative training if required, the following approxima-

tion of the projective learning rule can be used:

Cm
ij =

α

D2(V m)
(V m

i − Sm
i )(V m

j − Sm
j ), 0 < α < 1 (17)

It can be seen that the projective learning, as described

by Eqs. 15, 17, looks very similar to the correlation learning

described in the previous section. It however takes into account

more of what has been already learnt and, as a result, provides

a better associative recall for the model.

A. Processing and memory considerations

The associative model based on the projection learning

guarantees convergence of a network to an attractor using syn-

chronous dynamics, as long as the weight matrix is symmetric

[2]. This makes the network fast not only in memorization but

also in recognition. For this, as proposed in [2] and justified



biologically, postsynaptic potentials Sj of Eq. 2 should be

computed using only those K neurons , which have changed

since the last iteration, as

Sj(t) = Sj(t − 1) − 2
K

∑

i=1

CijYi(t) (18)

Since the number of these neurons drops down drastically as

the network evolves, the number of multiplications becomes

very small. This makes the model very suitable for memoriza-

tion and recognition in real time.

Memory-wise, the model is also very efficient. The

amount of memory used by the network of N neurons is

N(N+1)/2*bytes per weight. Experiments show that representing

weights using one byte is not sufficient, while using two bytes

is. Thus the network of size N=1739, which as our experiments

show is sufficient for face recognition in low-resolution video,

occupies only 3.5Mb.

B. Dealing with unlimited stream of data

It can be mentioned that, thanks to the theoretical properties

of the projection learning, one can analytically estimate the

quality of the associative recall of the network prior to the

retrieval by examining the weights of the network. – The

higher the ratio of diagonal weights to non-diagonal ones, the

worse the association. Similarly, as shown in [3], [4], one can

reduce the synaptic self-connections (i.e. diagonal weights of

the synaptic matrix) in a process called the desaturation of the

network, as

Cii = d ∗ Cii, 0 < d < 1 (19)

without affecting the location of the main attractors, thereby

improving the associative recall of the main attractors.

C. On biological justification

While the presented memorization model may look too

much of a simplification compared to the actual brain, it

does cover many properties of the brain [5], [6], [7], such

as the binary nature of neuron states, the non-binary nature

of inhibitory and excitatory synapses tuned according to the

stimulus-response correlation, attractor-based dynamics, etc.

The thresholds, exceeding which causes physical neurons to

fire, are modeled by the self-connection weight values. The

assumption of full connectivity allows one to model a highly

interconnected network, where the weights of the synapses

that do not exist will automatically approach zero as the

training progresses. The study on neurogenesis [8] shows that

increasing the neural network size, required to accommodate

the increasing number of training stimuli, might also be

biologically justified.

One can see that the described model provides a simple, yet

efficient means for accumulating knowledge over time, which

is what is needed, for example, for video-based recognition

where each individual video frame, while being of low res-

olution and quality, cannot be used by itself, but where an

accumulation of information from several frames can lead to

an adequate (i.e. comparable to that of humans) memorization

of a face.

Fig. 1. Recognizing faces in a TV show using the neuro-biological
model. For each video frame, the neurons corresponding to the
person’s nametag fire.

IV. CASE STUDY: FACE MEMORIZATION FROM VIDEO

As emphasized at the Second Face Processing in Video

workshop at this conference, video data differs from photo-

graphic data in two main aspects. First, each individual video

frame is of low quality (blur, low-resolution, variations in

facial expression and orientation). Second, there are many

of those low-quality pieces of data coming from a video

stream, all of which can contribute to the memorization and/or

recognition of an object in video

It can be seen therefore that the described model for

associative memorization and recognition is very suitable for

the problem of memorization-recognition of faces in video.

The main task one has to do for this model to work is to

create stimuli vector pairs �V = (R, E) for each video frame.

We do it as follows.

The effector stimulus (E), which decodes the face nametag,

is obtained by fixing the neuron corresponding to the person’s

ID excited (+1), while keeping other neurons unexcited (−1),

with the number of neurons equal to the total number of

nametags. When the person’s ID is unknown, as in recognition

stage, all effector neurons are set unexcited (−1) or equal

to zero. Extra (“void”) neurons, similar to the hidden layer

neurons used in multi-layered networks, can be added to the

network to increase the network capacity and improve the

recognition performance. Besides, in order to have a temporal

dependency in the recognition process, extra neurons can also

be added to the network to serve as transmitters of the neural

outcome from the previous frame to the current one.

The receptor stimulus R is made of 1728=24*24*3 binary

facial feature attributes obtained from the video frame as

described in [9], [10].

The snapshot of running our recognition system for the

case of identifying the guests of a TV show is shown in

Figure 1. There are four in the show, each memorized with the

described projection learning technique using 5-second video



clips showing the persons (several facial images extracted

from the training video-clips are shown at the bottom of the

figure). The resolution of the video is kept low at 160x120

pixels, which is just sufficient for humans to identify the

persons and which is known to be difficult for conventional

image-based face recognition approaches. When the entire 20-

minute recording of the show is then presented to the system,

the systems identifies in real-time (by firing the appropriate

neuron) who of the four guests is being shown at the moment.

V. CONCLUSION

In recognition rate achieved for the video-annotation prob-

lem described above is around 90%. That is, out of ten

video-frames, the face is not recognized properly in one of

them. However, since the final recognition decision is based

on several consecutive frames, rather than a single frame,

the actual recognition rate is close to 95%. This is quite a

good result for an automatic face recognition system, taking

into account the unconstrained environment within which it is

tested. What is most important however is that the presented

neuro-associative model allows one to approach the video-

based recognition problem within a new, non Von-Neumann,

biologically inspired framework, which is very much needed

for this problem, since it takes advantage of video over still

imagery and can deal with the continuous flow of video data.

Rather than storing a continuous amount of individual video

frames, the approach uses the incoming flow of visual data

to continuously tune the synaptic connections of a multi-

connected neural network, similar to the process of associative

memorization in the visual cortex. Then, when a new video

stimulus is presented to the retina, the neural network con-

verges to a state which is best described by the past experience.

The described neuro-biological model based on the pro-

jective learning can be also applied to other recognition and

associative tasks. The care has only to be taken not too saturate

the model (when some weights significantly dominate the

others as a result of the limited size of the system), which

can be done by either using the iterative approximation of the

rule or the network desaturation technique described in this

presentation.

The binaries of our demo programs as well as the cpp

code of the implementation of the basic incremental projection

learning are available from our website.
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