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Abstract 

The residential sector uses nearly 30% of all electricity in Canada, and, it is important to know how this 

energy is being used, so that savings may be identified and realised.  We propose a method that can be 

applied to hourly whole-house electrical energy data to partially disaggregate total household electricity 

use into five load categories/parameters (base load, activity load, heating season gradient, cooling 

season gradient and lowest external temperature at which air-conditioning is used).  This paper 

develops the proposed method, and verifies it using high-resolution end-use data from twelve 

households with known characteristics.  We then apply the method to hourly whole-house (smart 

meter) data from 327 households in Ontario.  The roll-out of smart (advanced) metering infrastructure 

in many countries will make hourly whole-house data abundant, and we propose that this method could 

be widely applied by utilities to target their demand-side management programs towards households 

more likely to provide benefits, thus increasing the cost-effectiveness of such programs. 
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1.  Introduction 

Residences are major users of energy, for example, they were responsible for 17% of total energy used 

in Canada in 2008 [1].  The particular focus of this paper is on electricity use, and here residences were 

responsible for 30% of electrical energy use in Canada.  There is a strong desire worldwide to reduce 

energy use, and in particular our reliance on fossil fuels, and in this context, residential energy use is 

seen as an important target.  In order to identify and realise substantial savings, it is first necessary to 

understand in detail how energy is used in households.  Traditionally, for large samples of households, 

only total household usage was available at a monthly time resolution, via utility bills.  Studies of smaller 

samples of houses have been undertaken, primarily for electrical energy use, that provided data at a 

greater temporal resolution (e.g. every 15 minutes) and, in some cases, by individual end-use (e.g. air-

conditioning unit, clothes dryer, stove).  However, data collection of this kind comes at a high 

incremental cost for sub-metering equipment, which limited the number of houses studied and the time 

over which data was gathered [e.g. 2 - 5].  Relatively low-cost wireless plug load monitoring devices are 

now being introduced that may reduce the costs of sub-metering substantially, but even this lower cost 

may still be too high to facilitate large datasets. 

On the other hand, whole-house data at hourly time resolution (at least) is starting to flow in volume to 

utilities due to the widespread introduction of advanced (or “smart” meters) [6 - 9]. The introduction of 

smart meters was justified by the facilitation of time-of-use (TOU) pricing, which is expected to reduce 

on-peak use of electricity by providing householders with price signals loosely correlated with demand 

for electricity and the real-time cost of producing and distributing it; a review of the effectiveness of 

TOU pricing was provided by Newsham & Bowker [10].  Other justifications for the capital investment in 

smart meters were less labour-intensive meter reading, and faster identification of outages.  But can this 

large amount of hourly (or sub-hourly) data provide utilities with other valuable information?  One 
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possibility is to enhance the promotion of demand-side management (DSM) programs to yield more 

cost-effective load reductions.  Reducing load, particularly peak load, is of growing importance to 

utilities, as the cost and regulatory barriers of adding additional generating capacity, especially in a low-

carbon environment, grow.  Typically, DSM programs are advertized to all customers, but clearly some 

customers are better targets for certain programs, and concentrating marketing and support resources 

on these customers may deliver greater benefits to utilities.   

Disaggregating individual load non-intrusively has received some attention from other researchers.  

Zeifman & Roth [11] reviewed methods that use high-frequency sampling (from 1 Hz to several kHz) to 

monitor individual household loads using whole-house data, but such data requires additional 

equipment beyond a smart meter. Kolter et al. [12] described a method of disaggregating individual 

electrical loads from whole-house, hourly data.  However, the method needs a training dataset of one 

week of hourly data for individual appliances in a sub-sample of houses.  Margossian [13] proposed a 

method of disaggregating individual large electrical loads (e.g. a/c, water heaters) from 15-minute 

whole-house data, which may be available from some smart meters.  However, the method requires 

some survey data from each house on appliance holdings, and a priori estimates of the size of each of 

these loads.  Nelson [14] suggested using hourly smart meter data to identify minimum electricity use by 

households as a way of highlighting for the homeowner excessive base loads and standby loads that 

might be reduced.  Firth et al. [15] described how whole-house data collected at 5-minute intervals 

could be divided amongst three broad end-use categories (continuous & standby, cold (refrigeration 

appliances), active), and validated this against sub-metered data from other studies.  The well-known 

PRISM technique [16, 17] uses monthly whole-house utility data only, and uses these data to develop 

parameters to describe the response in household energy use to changes in outside temperature.  Our 

work was stimulated by these prior studies, and proposes a new technique that goes even further in 
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highlighting different loads from whole-house data.  Although supplementary information is used in the 

derivation of the method, its application would not require additional sub-metered data or survey data. 

In this paper we will show how hourly data from smart meters may be disaggregated into end-use 

categories/parameters (to some extent), using a straightforward technique inspired by the inverse 

modelling technique described by Carpenter et al. [18].  Different DSM programs may be more effective 

in addressing each of these end-use categories/parameters, and therefore identifying a household as a 

relatively high user in one or more of these categories/parameters could lead to it receiving different 

DSM messages compared to neighbouring households.  This paper unfolds as follows: we introduce a 

large dataset of whole-house hourly data which we use to show some general trends.  We then move to 

a smaller data set of 12 inhabited sub-metered households with known characteristics on which we 

develop our method.  Then we apply the developed method to the households in the original larger 

sample and demonstrate the range in the various disaggregated end-use categories/parameters.  

Finally, we discuss the potential use of the method by utilities.  An Appendix illustrates the benefit of 

having whole-house data at shorter time intervals. 

2.  Methods & Procedures 

2.1 Hourly data from a large sample of houses 

Hourly household electricity use was obtained from smart meter data provided by a municipal utility in 

southern Ontario. Complete data for 2008 was provided for 1297 households; of these, 1010 

households also had complete data for 2007, and 638 households also had complete data for 2006.  In 

April 2006 the utility conducted a telephone survey focussed on HVAC equipment; 360 of the 

households for which we had hourly energy data responded to this survey.  The survey included 

questions on: house age, water heater type, space heating type(s), air conditioner (a/c) type(s), age of 

a/c equipment, floor area of finished living space, number of occupants, and house type.   
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In developing the analysis method we began by plotting the mean hourly electrical energy use per 

household vs. external air temperature (Figure 1) for all data available from 2006-20081.  Hourly 

temperatures were obtained from the closest Environment Canada monitoring station (30 km away).  

Some interesting trends were apparent.  Above around 18°C electrical energy use increased as 

temperature increased, due primarily, we surmise, to a/c use, with additional contributions from 

appliances used more often in hot weather, such as fans and pool pumps, and refrigeration appliances 

that work harder at higher ambient temperatures.  Below around 10°C, electricity use increased slightly 

with decreasing temperature.  This may be due to increased space heating (a very large majority of this 

sample used central gas furnaces for space heating, but these employ electric fans for air circulation, 

there may also be supplemental electric heating), increased lighting (colder periods also tend to have 

fewer hours of adequate daylight), and generally longer periods spent indoors with associated increased 

appliance use.  A “valley” occurs for outside temperatures between 10°C and 18°C when thermal 

conditioning of the internal environment is modest.  If such trends are apparent when looking at the 

mean energy use across many households, are similar trends present for individual houses?   

                                                           
1
 In this, and all subsequent analysis, we include all day types; i.e. weekdays, weekends, and holidays. 
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Figure 1. Mean hourly electrical energy versus external air temperature.  Each data point represents a 

single hourly record over which the data from all houses is averaged.  A different symbol is used for each 

hour of the day (i.e. 24 symbols are used), and some “banding” indicating time-of-day effects is evident 

(e.g. energy use at 3 a.m. will tend to be lower than that at 7 p.m. even at the same outdoor 

temperature, because lighting, TVs etc. will be off).   

 

2.2 Minutely whole-house data from 12 houses 

To begin to answer this question, we started with the energy use data of 12 normally occupied 

volunteer households in which sub-meters had been installed on three circuits (whole-house total, a/c 

and furnace) [19], and data were collected at 1-minute intervals over a 13-month period (July 2009 to 

August 2010).  These houses were not part of the larger dataset above, and were in a different city in 

Ontario.  The use of the sub-metered data allowed us to learn more about each of the houses, for 

example, “what was the lowest external temperature at which a/c was used?”.  We began by plotting 

the hourly electrical energy use for each household vs. external temperature, again external 

temperature data came from the nearest Environment Canada station, in the same city as the houses.  
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An example for one household (House sub2-3) is shown in Figure 2 (analogous to Figure 1).  For this 

household a general trend of increased energy use at higher temperatures is observed, but there is a lot 

of scatter in the data.  Indeed, for other households the same graph at first glance appeared to be a 

somewhat formless scatter plot, but we suspected this was because rare extreme values were masking 

an underlying structure based on more frequently occurring values.   

To extract the structure we aggregated the data points in 1°C bins, and then took the median of these 

values; we included all temperature bins with at least 20 data points.  Figure 3 shows these median 

values (red crosses) plotted vs. their temperature bin, along with the 10th and 90th percentiles values 

(green and blue crosses respectively).  The 10th and 90th percentiles were chosen to represent typical 

high and low bounds of energy use at each temperature, without including extreme outlier values that 

occurred very rarely and which would bias interpretation (Mathieu et al. [21] used similar logic).  As can 

be seen, an underlying structure, similar to that in Figure 1, emerged.  

 

Figure 2.  Hourly electrical energy use of House sub-3 vs. external temperature. 

                                                           
2
 The numerically indexed houses in the sample of 12 sub-metered houses are labeled with the prefix “sub”, those 

from the utility smart meter sample are labeled with the prefix “smt”. 
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Figure 3.  Hourly electrical energy use of House sub-3 vs. external temperature.  This plot is for the same 

house as shown in Figure 2, but now data have been binned into 1°C groups and the median (red), 10th 

(green) and 90th (blue) percentile of each bin plotted. 

 

Kissock et al. [20] and Carpenter et al. [18] developed several linear change point models to describe 

energy use vs. external temperature in commercial buildings.  These models typically used monthly 

averages for the input, and fitted combinations of two or three linear lines to the data points, with one 

of the lines often fixed horizontally.  We used this method as the inspiration for linear fits to the data 

exemplified in Figure 3.  Several variations were tested on the data of the 12 sub-metered households to 

obtain a generic fit model that worked well on the majority of households.  Variations ranged from 

having three sections with a horizontal mid-section (5 parameter heating and cooling model from 

Kissock et al. [20]) to four sections (combination of the 4 parameter heating and cooling models from 

Kissock et al. [20]).  The model that gave the most consistent results across the 12 households used 

three constrained linear sections where all sections could have any gradient.  Constraints for the length 

of each section were put in place to more closely match more common heating and cooling practices, 
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and to prevent any initial linear fitting to less than five data points.  Section 1 starts at -15°C and uses 

data points up to at least 10°C and to a maximum of 20°C.  Sections 2 and 3 start where the previous 

section finishes and must encompass at least five data points each, though their maximum length can be 

15°C when the other two sections are their minimum length. 

The model fitting was performed in two stages.  In the first stage three independent linear fits (one for 

each section) were performed for all combinations of potential section lengths.  The root mean square 

error (RMSE) was calculated for each section, and summed across the three sections to provide an 

overall RMSE for the combination (the energy use at the change point between sections was used in the 

RMSE calculation for both lines involving that change point).  The combination of section lengths that 

had the lowest overall RMSE was retained.   

However, this frequently yielded a set of three lines that were discontinuous at the change points 

between sections.  Therefore, the second stage of the model fitting adjusted the fits to yield a 

continuous line.  To do this we generated two 9 x 9 grids centred at (XcpA,YcpA) and (XcpB,YcpB), 

illustrated in Figure 4.  XcpA and XcpB are the initial temperature change points found in the first stage, 

and YcpA and YcpB are centred between the ends of the two section linear fits at XcpA and XcpB, 

respectively.  The size of the grid along the x axis (∆x) was fixed at 0.5°C.  The size of the grid along the y 

axis (∆y) varied for each change point and was calculated using Equations 1 and 2.  

  
4

12
YcpAYcpA

yA

−
=∆     (1) 

  
4

23
YcpBYcpB

yB

−
=∆     (2) 
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The final continuous line was found by calculating the RMSE for all combinations of lines when the end 

of section 1 was fixed to the start of section 2 at (xAi,yAj), and the end of section 2 was fixed to the start 

of section 3 at (xBm,yBn)3 on each 9 x 9 grid, and choosing the combination with the lowest RMSE. 

 

Figure 4. The results of the 3 independent linear functions (blue lines) from the first stage of fitting are 

used to generate a 9 x 9 grid.  The coordinates of the intersections of the grid are used in a second 

search for a continuous line (black lines in the call-outs) with the smallest RMSE using the coordinates 

(xAi,xAj) and (xBm,xBn) as fixed points for the three joined lines.  90th percentile data for House sub-3 are 

shown. 

 

The final model fit for 10th and 90th percentile values, and median values, is shown in Figure 5 for House 

sub-3.  Note the modification in the x value of the change point between the two stages of curve fitting 

for some cases.  The final model may change the number of data points per section as the constraints 

from stage 1 are not enforced.  The following parameters were recorded to describe the model; slope of 

                                                           
3
 Note that the middle section was not fitted using a least squares method to any data points in the second stage 

(light blue crosses in Figure 5) as it was a line joining two fixed points.  The data points were used, however, in 

determination of the RMSE. 
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each section (S1, S2, S3), the coordinates of the change points (Xcp1,Ycp1) and (Xcp2,Ycp2), and the 

RMS error of the final fit, with separate values established for each percentile curve.  The coordinates 

(Xcp1,Ycp1) and (Xcp2,Ycp2) are equal to (xAi,xAj) and (xBm,xBn) of the best fit solution (smallest RMSE).  

The next step was to attribute some physical meaning to these parameters by examining the sub-

metered data from the 12 households in more detail. 

 

Figure 5.  Example of the final model fit for the median, 10th and 90th percentile data points for each 1°C 

bin.  The initial fitting of curves are shown, with the solid black running through each data set being the 

final model solution.  Data for House sub-3 are shown. 

 

2.2 Minutely sub-metered data from 12 houses 

Figure 6 shows, for House sub-3, the hourly energy use of the three circuits monitored (whole-house 

(identical to Figure 2), furnace fan, and a/c loads) plotted against hourly external temperature.  Non-

HVAC energy use was calculated by subtracting a/c and furnace measurements from the total household 
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energy use measurements; this ‘non-HVAC energy use’ is also presented in Figure 6.  We now examine, 

in more depth, each of these elements in turn. 

  

  

Figure 6. Individual plots of hourly electrical energy use for the whole house (top left), non-HVAC (top 

right), furnace (bottom left) and a/c (bottom right) loads vs. external temperature. 

 

We start by considering a/c energy use.  Figure 6 shows House sub-3 to be a moderate user of a/c, with 

some a/c use in 1234 hours over the 13 month period (i.e. 13% of all monitored hours).  It also shows 

that a/c was used to some extent when external temperatures were as low as 17°C, and was used 

frequently when external temperatures were 20°C and above.  We can compare this with the change 

point temperatures from the linear fits in Figure 5.  Given that we are looking at the lowest external 

temperatures at which a/c was used, it seems reasonable to consider the 90th percentile model 
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parameters, which represent typical high-bound total electricity use at a given external temperature, to 

see if there was a correspondence.   

We found that the houses could be classified into two groups: group 1 when change point 1 (Xcp1) on 

the 90th percentile fit was the closest to the lowest external temperatures at which a/c was used; and 

group 2 when change point 2 (Xcp2) was the closest (see Table 1).  To differentiate the two groups for 

the larger dataset (in which a/c usage was not separated from whole-house data) we looked at the 

gradients of sections 2 and 3.  For group 1 houses we found that the gradient of section 2 was greater 

than the gradient of section 3 (S2 > S3) and for group 2 it was the opposite (i.e. S3 > S2). 

Table 1.  Summary a/c metrics for the 12 sub-metered houses, and the characteristics of the three-

section, continuous linear fit to the 90th percentile binned data of hourly whole-house electricity use vs. 

external temperature.  Units of S1, S2 and S3 are (kWh/h/°C). 

House 

ID 
a/c use 

# hours 

a/c used 

Approx.* lowest 

external temp. a/c 

used (±1°C) 

Xcp1 

(°C) 

Xcp2 

(°C) 
S1 S2 S3 

a/c 

group 

sub-1 Extremely Low 12 21 15 27 -0.00513 -0.045 0.040 2 

sub-2 Low 142 21 18.5 24.5 -0.00682 0.023 0.251 2 

sub-3 Moderate 1234 18 14 19.5 -0.00842 0.019 0.297 2 

sub-4 Low 147 21 8 20.5 -0.00823 -0.039 0.084 2 

sub-5 Moderate 1342 13 14 21.5 -0.0118 0.211 0.020 1 

sub-6 Moderate 667 19 10.5 22 -0.0121 0.060 0.232 2 

sub-7 High 2444 12 13 22 -0.0117 0.138 0.072 1 

sub-8 Low 367 18 8 17 0.00974 -0.057 0.113 2 

sub-9 Moderate 791 13 12 19 -0.0172 0.115 0.029 1 

sub-10 Moderate 1491 13 9 28 -0.0105 0.177 -0.167 1 

sub-11 Low 459 15 13 19.5 -0.0217 0.115 0.039 1 

sub-12 Moderate 754 17 17 20.5 -0.0360 0.478 0.036 1 

* We don’t quote the absolute lowest temperature at which a/c was used, but rather a temperature at which 

several hours of a/c use had been recorded, consistent with the choice of the 90
th

 percentile data. 

 

Table 1 summarizes the results for the 12 sub-metered households.  The shaded boxes in the Xcp1 and 

Xcp2 columns of Table 1 are the closest match to the lowest external temperature at which a/c was 

used, as determined from the sub-metered data for each household.  Shading is also shown for the 

larger of the two gradients, S2 and S3, which determines the a/c grouping.  Table 1 shows a good 
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correspondence between the change point temperature associated with the a/c group (Xcp1 or Xcp2), 

and the observed lowest external temperature at which a/c was used for 10 of the 12 households.  

House sub-1 and House sub-2 are not well-characterized.  This may be because they are the lowest users 

of a/c in the sample, and thus provide little data that can be used to reliably derive a relationship.  

Interestingly though, they are both categorized as group 2, which would lead to a Xcp2 as the estimate 

of the lowest external temperature at which a/c was used, and the Xcp2 values for these two houses are 

the highest of the 12 households.  This would lead to the correct conclusion that a/c use was not a major 

issue for these houses.  

Note that later in the paper (e.g. Figure 7) we refer to the larger of the two gradients from sections 2 

and 3 as the cooling season gradient.  This is because it includes both the increase in electricity use of 

a/c with external temperature, but also any other loads that might also increase with external 

temperature. 

As illustrated in Figure 7, the gradient of section 1 of the 90th percentile linear fit corresponds to a 

change in the total electric load as external temperature falls in the heating season.  For most houses 

this slope is negative, meaning that load goes up as external temperature goes down.  For houses 

heated primarily by natural gas, the increasing load is most obviously due to greater use of the furnace 

fan as more heating is required (as shown in Figure 6 for House sub-3), but might also include 

supplemental electric space heating, increased lighting, and generally longer periods spent indoors with 

associated increased appliance use.  One would expect that a household with primary electric space 

heating will have a larger negative slope on section 1 for the 90th percentile model fit (although no such 

houses were represented in the set of sub-metered data). 

A household base load was also determined from the model parameters as the smaller of the two 

values, Ycp1 and Ycp2 on the 10th percentile line.  The base load represents hours in the middle of the 

night when there are no space conditioning loads and active occupancy loads.  The base load includes 
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things like the refrigerator and freezer cycling on and off, “phantom” loads (e.g. equipment that is in 

standby mode, chargers etc.), circulation fans, hot water systems and security systems. 

Another load category we estimated was the “activity load”, and was the smaller of the two values Ycp1 

and Ycp2 on the 90th percentile curve minus the base load.  These are hours when there is little thermal 

conditioning of the household, but a high coincidence of other loads related to active occupants.  The 

activity load includes the use of such things as stove, laundry, dishwasher, lighting, and audio-visual 

equipment.  This value is not the maximum possible activity load because there is a diversity factor to 

consider: at the 90th percentile value not all appliances would have been on for a full hour 

simultaneously.   The categories/parameters discussed above are shown in Figure 7. 

 
Figure 7. The extracted categories/parameters for house sub-3 are shown. 

In all cases, a comparison of the derived values in Figure 9 with the detailed sub-metered data in Figure 

7, indicated a good correspondence for House sub-3, and this was generally true for the other houses in 

the sub-metered sample. 
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3.  Results of Applying the Method to a Larger Sample of Households 

We then applied the method developed in the previous section to a subset of the 1297 households for 

which we had hourly smart meter data (whole house) from 2008.  The households in the subset were 

those that responded to a survey in 2006 about household characteristics.  We chose this subset 

because the survey data provided us with some information with which to verify the model outputs.  We 

removed households whose energy use was extreme (greater than three standard deviations from the 

mean) as outliers, or had more than one hour of missing data, leaving a final sample of 327 households.  

The sample of households consisted of 67% detached, 16% semi-detached and 15% town or row homes.  

84% of the households had natural gas furnaces with a further 6% having electric furnaces.  In the 

sample, 85% of the households had a central a/c, 4% had window a/c and 10% had no a/c. 

Figure 8 shows the distribution of various model outputs (related to end-use categories/parameters) 

across the sample.  The mean (and standard deviation) base load was 0.3 kWh/h (0.2 kWh/h); activity 

load 1.0 kWh/h (0.5 kWh/h); heating season gradient -0.017 kWh/h/°C (0.020 kWh/h/°C); lowest 

external temperature at which a/c was used 18°C (5°C); and, cooling season gradient 0.289 kWh/h/°C 

(0.230kWh/h/°C).  Nelson [14] reported base loads using hourly data from households in British 

Columbia, Canada.  This is a location with little residential air conditioning, and Nelson’s definition of 

base load was the absolute minimum usage hour in the year (not the 10th percentile).  Nevertheless, 

Nelson reported values close to ours: an average base load of 0.30 kW for single-family dwellings, and 

0.15 kW for row houses.  Some household’s lowest external temperature at which a/c was used is 

unexpectedly low (8°C), there are two possible explanations for this.  The first is that the a/c is actually 

used at such low external temperatures.  We confirmed this by reviewing data from the 12 sub-metered 

households.  A household that is well-sealed with high solar heat gains and internal loads may still 

require cooling to address loads from stored heat, even after external temperatures have dropped in 

the evening.  Also, some a/c units have crankcase heaters to stop refrigerant from condensing in the 
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compressor’s crankcase, and will draw some power when energised but not cooling.   However, 

secondly, it could be due an artefact of the modelling.  As such, it is important that individual 

parameters are not considered in isolation but rather the model output is considered as a whole.  

  

  

 

Figure 8. Histograms showing the range of values for the base load, activity load, heating season 

gradient, cooling season gradient, and lowest external temperature at which a/c was used for the 327 

households in 2008.   
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Figure 9 shows the model results of three specific households in the 327-house subset as illustrative 

examples.  House smt-70 was a detached house with electric baseboard heaters and a central a/c.  The 

use of the baseboard heaters was reflected by a relatively large heating season gradient.  House smt-75 

was a larger detached house with a natural gas furnace and a central a/c.  The heating season gradient 

was much smaller than House smt-70, as expected, and close to the mean.  The cooling season gradient 

was steeper than house smt-70, and the lowest external temperature at which a/c was used was lower 

than the mean.  The occupants of House smt-113 indicated that they had no air conditioner in 2006, 

however, the hourly energy use vs. temperature plot suggests that they might have acquired one by 

2008, though the increase in electricity use at higher external temperatures might have been due to 

other loads that increased with temperature (e.g. ceiling fans, pool).  Of course, we are unable to verify 

these parameters without sub-metered data, but they appear reasonable given what we do know about 

these houses. 
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House Type – Detached 

House Size - 1500-1999 ft2 (139-186 m2) 

Year Built - 1970-1979 

Heater Type - Electric Baseboard 

Air Con. type - Central Air Conditioner 

# Occupants - 2 

 

Base Load: 0.52 kWh/h 

Activity Load: 1.1 kWh/h 

Lowest ext. temp. a/c used: 21.5°C 

Cooling season gradient: 0.118 kWh/h/°C 

Heating season gradient: -0.074 kWh/h/°C 

 

House Type - Detached 

House Size - 2000-2999 ft2 (186-279 m2) 

Year Built - 1980-1989 

Heater Type - Natural Gas Furnace 

Air Con. type - Central  Air Conditioner 

# Occupants - 3 

 

Base Load: 0.23 kWh/h 

Activity Load: 0.6 kWh/h 

Lowest ext. temp. a/c used: 16°C 

Cooling season gradient: 0.324 kWh/h/°C  

Heating season gradient: -0.019 kWh/h/°C 

 

House Type - Town or Row 

House Size - 1000-1499 ft2 (93-139 m2) 

Year Built - Unknown 

Heater Type - Natural Gas Furnace 

Air Con. type – None 

# Occupants - 4 

 

Base Load: 0.27 kWh/h 

Activity Load: 1.6 kWh/h 

Lowest ext. temp. a/c used: 19.5°C 

Cooling season gradient: 0.132 kWh/h/°C 

Heating season gradient: -0.003 kWh/h/°C 

Figure 9.  Three example households in the 327 household subset.  Electrical energy use in 2008 vs. 

external temperature is on the left, and household characteristics from 2006 survey, and method 

outputs are on the right. 
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4.  Discussion 

By fitting a model consisting of three joined linear lines we were able to disaggregate (to some extent) 

total household electrical load.  The end-use parameters identified from the model are: Base load 

(kWh/h), Activity load (kWh/h), Lowest external temperature at which a/c is used (°C), Cooling season 

gradient (kWh/h/°C), and Heating season gradient (kWh/h/°C).    Although the technique was derived 

from households with a limited range of characteristics, we believe the model will work in most cases, 

where the heating and cooling seasons are well-defined.  Variations in the heating source (gas furnace, 

heat pumps, electric baseboards etc.) should only affect the gradient of the heating season gradient and 

the magnitude of energy used, and not the applicability of the model.  The same would be true for 

cooling equipment.  The model cannot account for unusual occupant behaviors, for example, extended 

vacations at either the peak of summer or winter or unique/extreme household characteristics. 

One obvious question is how these parameters vary over time in the same household.  For households 

with few changes concerning the occupants or their equipment, we would expect the derived 

parameters to be similar over time.  On the other hand, a major change in household characteristics 

should be evident in changing parameters.  We explored this to some extent on the 55 households in 

our 327-house subset which had three complete years of data (2006-2008).  For brevity we will not 

detail any results here, except to note that the expected outcomes were observed.  Readers wanting 

more information may contact the authors directly.     

With the arrival of abundant smart meter data, utilities can easily apply our method to post-process 

data they are already collecting to derive estimates for these five end-use parameters for individual 

households.  This information could be used diagnostically to target DSM programs and retrofits to 

households more likely to be in a situation to respond, thus optimizing resources.  For example, 

households with a relatively large base load might receive refrigerator replacement incentives or 

guidance on reducing phantom loads.  Households with a relatively large heating season gradient may 
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be offered furnace replacement incentives (with the benefits of variable speed drives for furnace fans 

highlighted), or coupons for efficient lighting solutions or insulation.  Low external temperatures with 

a/c use likely occur when houses keep their windows shut in the evening or overnight when the external 

temperature is below the thermostat setpoint, and so houses with low values of this parameter might 

receive advice about the benefits of natural ventilation.  We propose that this would be relatively 

straightforward to administer through existing utility billing processes.  Indeed, there are companies 

emerging with proprietary offerings in this domain [22, 23]. 

This method was derived with reference to detailed, sub-metered data from 12 households, and 

appears to provide reasonable estimates for a larger sample of households.  However, it does not work 

on all houses all of the time.  This may be an inevitable consequence of the highly-variable nature of 

hourly data from individual households, though it is likely that more sophisticated analysis techniques 

could provide better estimates for a greater number of households.  The inclusion of a parameter 

outlining the goodness of fit in more sophisticated techniques would be beneficial in guiding the end 

user in determining the reliability of the output of the method at the individual house level.  We 

encourage others to pursue this.  Nevertheless, we submit that the method as it stands provides 

parameter estimates over a population of buildings that are better than not having this information, and 

provides additional value to the utility in the hourly data they are collecting anyway, and which may be 

extracted without recourse to expensive and invasive sub-metering at very short time steps. 

Another route to improving the accuracy and value of this concept could be a greater time resolution in 

the whole-house smart meter data [e.g. 15].  Some utilities do collect such data at 15-minute intervals, 

but as intervals get shorter the volume of data goes up and data storage and processing time might 

become an issue.  We propose that one solution might be to dynamically adjust the smart meter data 

collection interval; perhaps the interval could shift from 60 minutes to 1 minute, but just for one day per 

month, with that day varying between households.  We suspect that one day per month of very high 
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resolution data would enhance the load disaggregation information, but it is for future work to 

demonstrate this thoroughly.  We conducted a preliminary investigation on the use of higher-resolution 

data using our sub-metered households, which had whole-house data at 1-minute resolution.  Appendix 

A shows the results for one of these households. 

It is also important to note that we derived this technique on a sample of data from a single location, 

with a sample of households that were primarily single-family detached houses with natural gas 

furnaces for heating.  Although we think the general approach will be robust, it would be advantageous 

to further explore the validity of the method across a greater variety of households, locations, and HVAC 

equipment before applying the method very broadly. 

5.  Conclusions 

We have developed a method that plots hourly, whole-house electricity use data for an individual 

household vs. external temperature to partially disaggregate loads into end-use categories/parameters: 

Base load (kWh/h) – the typical power the house uses when there is no space conditioning of the air 

(heating or cooling) and the majority of appliances are not in use.  Base load consists of, for example, 

refrigerator and freezer cycling, circulation fans, phantom loads of electrical appliances in standby 

mode, chargers, and security systems.  Occupants are likely away from home or asleep.     

Activity load (kWh/h) – the typical maximum power used by loads not utilized for space thermal 

conditioning, and which are not part of the base load.  The activity load is an aggregate of the loads 

resulting from the partial overlap in operation of televisions, computers, washing machines, clothes 

dryers, ovens, lighting, etc.  

Lowest external temperature at which a/c is used (°C) – the typical minimum external temperature at 

which a/c is used during the cooling season.  We focus on a/c here but this measure may also include 

other loads that are used only during summer (e.g. pool pumps, fans).  This may also be a function of 

thermostat setting, equipment efficiencies, window opening and shading strategy, and house insulation. 
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Cooling season gradient (kWh/h/°C) – the typical maximum rate at which electricity use increases with 

increasing external temperature in the cooling season.  This is due primarily, we surmise, to air 

conditioner use, with additional contributions from appliances used more often in hot weather, such as 

fans and pool pumps, and refrigeration appliances that work harder at higher ambient temperatures.  

This may also be a function of thermostat setting, equipment efficiencies, window opening and shading 

strategy, and house insulation. 

Heating season gradient (kWh/h/°C) – the typical maximum rate at which electricity use increases with 

decreasing external temperature in the heating season.  This may be due to the extra use of heating 

systems, additional lighting during darker winter days, and an increase in use of other loads due to more 

time spent indoors in winter.  This may also be a function of thermostat setting, equipment efficiencies, 

and house insulation. 

This information may be used by utilities to target demand-side management programs more 

effectively.  This illustrates the value that may be extracted from the torrent of hourly data that is 

beginning to flow from an advanced meter infrastructure that was primarily installed to facilitate time-

of-use billing, and will be an important component of the coming Smart Grid.  We expect that future 

research will apply still more sophisticated methods to extract even more useful information from time-

series household data.  
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Appendix A. Application of method on high time resolution data 

To see the potential results that higher resolution data has on the method’s output and interpretation, 

we explored one household (sub-3) where we had whole-house data every minute for 13 months.  

Figure A1 shows the median, 10th and 90th percentiles values per 1°C bin calculated using this data.  We 

did not have per-minute temperature data, and instead applied the hourly value to all minutes in that 

hour.  The first advantage of using per-minute data is that the quantity of values per bin is increased, 

allowing for a greater range of temperatures to be plotted (-23°C to 34°C) with a reasonable number of 

data points per bin, compared to hourly data. 

Figure A1. Per minute data was binned with the median, 10th and 90th percentile curves plotted as per 

the described method. No models were fitted to the data.  

 

In this example, the 90th percentile curve suggests a potential plateau at temperatures greater than 

30°C.  At these temperatures it is likely that the a/c will be operating at its maximum capacity for an 
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entire measurement interval at the 90th percentile, which is unlikely with hourly data (Mathieu et al. [21] 

observed a similar load shape for commercial buildings).  In this case, the change in the 90th percentile 

curve from its minimum (0.9 kWmin/min) to its plateau on the right (4.8 kWmin/min) is approximately 

equal to the size of the a/c load plus the furnace fan (3.9 kW), which is confirmed by the sub-metered 

data in Figure 7.  Note that the existence of a plateau means that a three line fit to the points in Figure 

A1 may not be successful, and a different functional form may need to be sought for data with high time 

resolution. 

The 10th percentile curve is lower than that in the hourly energy plot (Figure 6).  This is due the fact that 

at the one-minute level the 10th percentile data no longer includes a fraction of the on cycle of cold 

storage appliances (refrigerator, freezer), which may run for a few minutes at a time, several times in an 

hour.  Therefore, the 10th percentile curve in Figure A1 gives a measure of phantom loads and other 

constant loads only. 


