NRC Publications Archive Archives des publications du CNRC

Best practices for life cycle design and management of critical infrastructure

Lounis, Zoubir

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/21275371

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=46574d21-eef5-423d-8ce4-f3919c89611e https://publications-cnrc.canada.ca/fra/voir/objet/?id=46574d21-eef5-423d-8ce4-f3919c89611e

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC CIRC

16-17 September 2014 | The Old Mill, Toronto

Best Practices for Life Cycle Design and **Management of Critical Infrastructure**

Dr. Zoubir Lounis National Research Council Canada

National Research Conseil national de recherches Canada

Canada

Outline

- Background
- Key issues / challenges
- · Evolution of infrastructure design and management
- · Approaches for infrastructure sustainability and resilience
- Examples
- Epilogue

Critical Infrastructure

- Roads, bridges, transit, railways, dams, water systems, energy networks
 - Provide core services: transportation, water, energy
 - Critical to economy and quality of life of communities

MC CMC

Background

- · Aging and deterioration of critical infrastructure
- · Reductions of levels of service
- Growing concerns for extreme natural & man-made hazards
- Limited available funds for construction and rehabilitation of infrastructures- Infrastructure deficit

Background

- · Infrastructure report cards: ASCE, FCM
- Infrastructure deficits
- · Catastrophic failures of some critical infrastructures

NRC CNRC

Challenges

- Current design codes/standards
 - Performance-based design for safety and serviceability
 - Prescriptive rules for durability
 - Brittle materials and systems vulnerable to small, unforeseen perturbations
- Limited modeling of the interactions between infrastructures and natural environments

NRC CNRC

Challenges

- Current asset management systems
 - Prescriptive rules for inspection and maintenance
 - Qualitative condition assessment measures
 - Inadequate life cycle performance forecast models
 - Lack of integrated management of different assets: roads, bridges, water - "Silo" Approach
 - Limited consideration for sustainability and resilience

NRC CNRC

Challenges

- Considerable uncertainty in infrastructure performance
 - demand, capacity, material properties
 - environment
 - failure consequences
 - life cycle costs
- Need to consider uncertainty associated with infrastructure performance
 - Considerable variability from mean values of key parameters
 - Uncertainty of physical models
 - Uncertainty of events

Framework for Performance Assessment and Management of Critical Infrastructure

- Strategic Objectives: Sustainable & Resilient Communities
 - Safety, security, health
 - Mobility
 - Environmental protection
 - Social equity
 - Economic prosperity

MC CMC

Framework for Performance Assessment and Management of Critical Infrastructure

- Need to integrate management of different assets
- Need to integrate management of assets and services
 - Risk management
 - Maximum return on investment

NRC CNRC

Evolution of Design and Management of Critical Infrastructure

- Performance-based design for Safety & Serviceability
- Prescriptive design for durability
- Qualitative Condition Assessment
- -Qualitative Asset Management

- Performance-based design for Safety & Serviceability
- Prescriptive design for durability
- Design for security of critical infrastructures
- Qualitative Condition Assessment
- -Qualitative Asset Management
- Green Infrastructure

- Performance-based design for Safety, Serviceability & Durability
- Design of Resilient Infrastructures
- Quantitative Condition Assessment
- -Risk-Based Asset Management

Future

- Design of Sustainable Infrastructure: Environment-Society-Economy
- Smart Infrastructure

Past Present

NAC CIAC

Solutions: Innovative Technologies

- High performance materials
 - High /ultra high performance concrete
 - Corrosion-resistant steel
 - Super strength reinforcement
 - Fiber-reinforced polymers
- Smart infrastructures
 - Smart damage detection
 - Continuous intelligent health and security monitoring
 - Data-driven asset management

NRC CNRC

Solutions: Infrastructure Regulations

- Standards & Codes for Performance-Based Durability Design
- Life Cycle Design and Management Approaches for Sustainable Infrastructures: Economic-Social & Environmental Sustainability
- Design of Resilient Infrastructures Against Low Likelihood & High Consequences Events: Infrastructure safety and security

NRC-CNRC

Sustainability & Resilience: Concepts & Definitions

Sustainability is the capacity to:

- Meet the needs of present and future generations
- · Curb our consumption of resources and emissions
- Protect environment
- Social equity
- Economic prosperity

Resilience is the capacity to:

- Resist unexpected events (bomb blast)
- Adapt to change (e.g., high wind loads)
- Survive catastrophes

Modes of Infrastructure Failure

· Loss of structural integrity of asset

Failure is the inability of a structural system or one of its primary load-carrying components to perform its intended function.

•Loss of functionality/ reduction of level of service Failure is the inability of an infrastructure system to provide the level of functionality or service it was designed for.

NAC CNAC

Risk of Failure of Infrastructure Systems

- Risk of failure=Probability of failure X Consequences of failure
- · Probability of failure
- P [Capacity< Demand] < Pacceptable
- Consequences of failure
 - Social
 - Economic
 - Environmental

NRC-CNRC

Consequences of Failure

- Social impacts
 - fatalities, injuries
 - illnesses
- Economic impacts
 - maintenance, rehab/replacement costs
 - liability costs
 - loss of functionality /disruption of services
 - recovery time
- Environmental impacts
 - CO₂ emissions
 - Contamination of air, water, soil
 - waste materials

NRC CNRC

Towards Sustainable & Resilient Critical Infrastructures

- Physical integrity of assets
 - Acceptable levels of structural safety
 - Acceptable levels of serviceability
 - Resilient/robust systems
- Acceptable levels of service/ functionality
- Long service life
- Minimum life cycle costs
- Acceptable risks of failure

Examples of Resilient and Sustainable Infrastructure Solutions

- Risk-based long term planning of design and maintenance of sustainable infrastructure
- Green infrastructure
- · Resilient infrastructure against bomb blast
- · Smart critical infrastructure

Failure Modes Corrosion of reinforcing steel Internal cracking Spalling and delamination of deck a) Internal cracking c) Spalling b) Surface cracking d) Delamination

Life Cycle Design and Maintenance Planning

- · Use of high performance concrete
- Use of corrosion-resistant steel (stainless, galvanized)
- Use of glass-fiber reinforced polymer (GFRP) reinforcing bars
- · Increase concrete cover depth
- · Patch repairs of damaged deck
- · Rehabilitation of chloride-contaminated concrete cover
- Replacement of deck

MC CMC

Long Term Maintenance Planning

- •Focus on 2 life extension strategies:
- Rehabilitation and replacement with conventional normal performance concrete (NPC) deck reinforced with carbon steel
- ii. Replacement with high performance concrete (HPC) technology deck reinforced with carbon steel

Long Term Maintenance Planning

·Criteria:

- Social Sustainability: Minimize fatalities, injuries, traffic delays
- Economic Sustainability: Minimize life cycle costs, users' costs
- Environmental Sustainability: Minimize CO2 emissions and construction material waste

Expected Service Life

- Failure/End of life: Probability of spalling= 30%
- Expected service life
 - 22 years for conventional concrete bridge deck (NPC)
 - 40 years for high performance concrete bridge deck (HPC)

MC CMC

Travel Delay Costs

Travel Delay Costs

Maximum speed:100km/h

Actual average speed: 20km/h

NRC CNRC

Travel Delay Costs

- · Length of highway affected by activity
- Traffic speed during activity
- Normal traffic speed
- Durations of maintenance, rehabilitation, and replacement activities
- Annual average daily traffic (AADT)
- Annual average daily truck traffic (AADTT)
- Average values of automobile and truck drivers time
 - \$12/hr for automobile drivers
 - \$20/hr for truck drivers

NRC-CNRC

Total Costs

- Life cycle= 40 years
- Discount rate= 3%
- Present value life cycle costs:
 - · Initial construction costs
 - · Discounted cost of inspections
 - · Discounted costs of repairs and rehabilitation
 - · Discounted costs of replacement
 - Discounted salvage value
 - · Discounted travel delay and accident costs

NRC CNRC

Green Bridge Infrastructure

- · Green concrete technology:
 - Replace 25% of cement by fly ash
 - · Fly ash: by-product of coal production with cementing properties
 - Replacement of 1Ton of cement reduces 1Ton of CO2 emissions

Example: Smart Critical Infrastructure

- · Smart sensors for damage detection and health monitoring
- Continuous data acquisition of:
 - Materials properties
 - Demand and capacity of assets
 - -Levels of service
- "Big Data" storage & processing
- · Data analysis and decision support
- · Continuous risk assessment and management
- · Communication to stakeholders

MC CMC

Conclusions

 Sustainability and resilience criteria need to be considered at the design stage and at the long term management stage of critical infrastructures

NRC-CNRC

Conclusions

- Risk-based design and management approaches to enhance the sustainability and resilience of infrastructures that consider:
 - All potential hazards
 - All direct and indirect consequences
 - Relevant measures of sustainability and resilience
 - Uncertainty and time/space dependence in events, parameters and physical models captured by probabilistic models

MC CMC

Epilogue

To achieve <u>sustainable and resilient critical infrastructure</u> there is a need to develop innovative materials, regulations and comprehensive risk-based design and management approaches that enable infrastructure systems to provide:

- · Long life and low maintenance assets
- High resistance and functionality under small perturbations
- Remote and continuous monitoring of high risk infrastructures
- Consideration of socio-economic, and environmental impacts of critical infrastructures

